首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyzed the changes in pesticide use and risk in the Province of Ontario, Canada, from 1973 to 1998 to monitor the success of Food Systems 2002, a program to reduce pesticide use by 50%. Pesticide risk was calculated by multiplying the amount of pesticide used (kilograms of active ingredient) by the Environmental Impact Quotient (EIQ), a score for the potential risk of pesticides to farmworkers, consumers, and the environment. Pesticide use increased by 46% from 1973 to 1983. From 1983, the baseline year for Food Systems 2002, to 1998, pesticide use decreased by 38.5% and risk declined 39.5%. The reductions in pesticide use and risk were primarily on corn (Zea mays L.) and tobacco (Nicotiana tabacum L.), the crops with the highest pesticide use in 1983. Total pesticide use on soybean [Glycine max (L.) Merr.] did not change, but the mean application rate (kg ha(-1)) decreased by 57%. Corn and soybean account for 65% of pesticide use, but have a relatively low pesticide use and risk per hectare and per tonne of production. Total pesticide use on tobacco, fruits, and vegetables was lower than on corn or soybean, but the pesticide use and risk per hectare were much higher. Small reductions in pesticide use on corn and soybean may allow a 50% reduction in pesticide use, but greater reductions in risk can be achieved by reducing the use of "high risk" pesticides on fruit and vegetables.  相似文献   

2.
Remote sensing technology offers an opportunity to significantly increase the amount of site-specific information about field characteristics such as pest populations. Coupled with variable rate application technologies, this added information has the potential to provide environmental benefits through reduced pesticide applications. However, producers face a complicated adoption decision because output prices and crop yields are uncertain. A model is developed to examine the potential value of remote sensing information to pesticide applications in an option-value framework under uncertainty. Simulations suggest that remote sensing information could decrease pesticide use, but uncertainty and irreversibility are likely to limit technological adoption by farmers. Potential cost-share subsidies are discussed.  相似文献   

3.
Sodium monofluoroacetate (1080) is a mammalian pesticide used in different parts of the world for the control of mammalian pest species. In New Zealand it is used extensively and very successfully as a conservation management tool for the control of brushtail possums (Trichosurus vulpecula) – an introduced marsupial that has become a substantial agricultural and conservation management pest. Possums pose a threat to cattle farming in New Zealand as they are a vector for bovine tuberculosis. In protected natural areas, possum browsing is responsible for large scale defoliation of native vegetation. As with many other pesticides, there has been some degree of popular concern about the use of this toxin and its safety, with particular reference to non-target effects. These concerns have been associated with potential non-target effects on human health, and the health of animals of recreational value (e.g., hunting dogs and game animals). This has led to the development of a strong “anti-1080” lobby in New Zealand. In contrast, this study encompasses a science-based risk analysis focusing on the potential risks to non-target native wildlife with a particular focus on chronic toxicity. It finds that there is evidence that 1080 may have endocrine disrupting capabilities (with potential relevance for non-target wildlife) but that this still needs more detailed investigation. This can be clarified by further targeted research. Further research is also needed to test the degradation rates of 1080 and its breakdown products at ecologically-relevant temperatures (i.e., winter stream temperatures – below 11 °C). Such research may demonstrate that some adjustment to 1080 risk management is warranted in New Zealand, or it may help to put to rest the current controversy over the use of this cost effective conservation management tool.  相似文献   

4.
Cotton (Gossypium hirsutum L.) defoliant runoff was recently identified as an ecological risk. However, assessments are not supported by field studies. Runoff potential of three defoliant active ingredients, dimethipin (2,3-dihydro-5,6-dimethyl-1,4-dithiin 1,1,4,4-tetraoxide), thidiazuron (N-phenyl-N-1,2,3-thidiazol-5-yl-urea), and tribufos (S,S,S-tributyl phosphorotrithioate) was investigated by rainfall simulation on strip (ST) and conventionally tilled (CT) cotton in south central Georgia. Simulated rainfall timing relative to defoliant application (1 h after) represented an extreme worst-case scenario; however, weather records indicate that it was not unrealistic for the region. Thidiazuron and tribufos losses were 12 to 15% of applied. Only 2 to 5% of the more water soluble dimethipin was lost. Although ST erosion rates were less, loss of tribufos, a strongly sorbing compound, was not affected. Higher sediment-water partition coefficients (kd) were measured in ST samples. This likely explains why no tillage related differences in loss rates were observed, but it is unknown whether this result can be generalized. The study was conducted in the first year following establishment of tillage treatments at the study site. As soil conditions stabilize, ST impacts may change. Data provide an estimate of the maximum amount of the defoliants that will run off during a single postapplication storm event. Use of these values in place of the default value in runoff simulation models used in pesticide risk assessments will likely improve risk estimate accuracy and enhance evaluation of comparative risk among these active ingredients.  相似文献   

5.
The rationale for pesticide use in agriculture is that costs associated with pesticide pollution are to be justified by its benefits, but this is not so obvious. Valuing the benefits by simple economic analysis has increased pesticide use in agriculture and consequently produced pesticide-induced “public ills.” This paper attempts to explore the research gaps of the economic and social consequences of pesticide use in developing countries, particularly with an example of Nepal. We argue that although the negative sides of agricultural development, for example- soil, water, and air pollution; pest resistance and resurgence; bioaccumulation, bio-magnification; and loss of biodiversity and ecosystem resilience caused by the use of pesticides in agriculture, are “developmental problems” and are “unintentional,” the magnitude may be increased by undervaluing the problems in the analysis of its economic returns. Despite continuous effort for holistic system analyses for studying complex phenomena like pesticides impacts, the development within the academic science has proceeded in the opposite direction that might have accelerated marginalization of the third world subsistence agricultural communities. We hypothesize that, if these adversities are realized and accounted for, the benefits from the current use of pesticides could be outweighed by the costs of pollution and ill human health. This paper also illustrates different pathways and mechanisms for marginalization. In view of potential and overall negative impacts of pesticide use, we recommend alternative ways of controlling pests such as community integrated pest management (IPM) along with education and training activities. Such measures are likely to reduce the health and environmental costs of pesticide pollution, and also enhance the capabilities of third world agricultural communities in terms of knowledge, decision making, innovation, and policy change.  相似文献   

6.
This report summarizes well sampling protocols, data collection procedures, and analytical results for the presence of pesticides in ground water developed by the California Department of Pesticide Regulation (DPR). Specific well sampling protocols were developed to meet regulatory mandates of the Pesticide Contamination Prevention Act (PCPA) of 1986 and to provide further understanding of the agronomic, chemical, and geographic factors that contribute to movement of residues to ground water. The well sampling data have formed the basis for the DPR's regulatory decisions. For example, a sampling protocol, the Four-Section Survey, was developed to determine if reported detections were caused by nonpoint-source agricultural applications, a determination that can initiate formal review and subsequent regulation of a pesticide. Selection of sampling sites, which are primarily rural domestic wells, was initially based on pesticide use and cropping patterns. Recently, soil and depth-to-ground water data have been added to identify areas where a higher frequency of detection is expected. In accordance with the PCPA, the DPR maintains a database for all pesticide well sampling in California with submission required by all state agencies and with invitations for submission extended to all local and federal agencies or other entities. To date, residues for 16 active ingredients and breakdown products have been detected in California ground water as a result of legal agricultural use. Regulations have been adopted for all detected parent active ingredients, and they have been developed regardless of the level of detection.  相似文献   

7.
The assessment of pesticides is based on the intrinsic properties of the formulation, the ingredients of the␣formulation and the way the pesticide is applied. The parameters used in the assessment of the efficacy and environmental risks (plants, humans and animals) may be changed by the properties of new pesticides and new application techniques. The type of information needed for new pesticides and application techniques to comply with regulations set up by authorisation bodies will be discussed.  相似文献   

8.
The limit value of 0.1 μg/liter for “substances used in plant treatment and pest control including their main toxic degradation products” (PBSM) established in the German Drinking Water Regulations (Trinkwasserverordnung) serves comprehensively to protect drinking water from unexpected toxicological risks and thus corresponds to theaxiom of concern (Besorgnisgrundsatz) contained in §11,2 of the Federal Communicable Disease Control Act (Bundesseuchengesetz), which is an essential cornerstone of the Drinking Water Regulations. Furthermore, precautionary values that are specific to the particular substance and near the valid limit can be found for about 10% of all registered active substances. The goal of the PBSM Recommendations of the Federal Health Office (BGA) issued in July 1989 is to preserve and restore groundwater and drinking water through measures to be taken by the causal party, while reducing consumer health risks to the greatest extent possible. The EC commission's drawbacks on these recommendations and the imminent EC-wide directive for the uniform registration of pesticides being based solely on Article 43 of the European Treaty would seriously endanger this goal. Therefore, a situation threatens in Europe similar to that in the United States, where at least 18 active ingredients have been detected in groundwater in concentrations of up to 1000 times the toxicologically established limits for drinking water. This article appeared first in the German journal?ffentliches Gesundheitswesen 52(8–9); 372–379, 1990. We thank the editor (Georg Thieme Verlag, D-7000 Stuttgart) for the kind permission to publish this slightly revised English version inEnvironmental Management.  相似文献   

9.
Recent developments of safer formulations of agrochemicals   总被引:2,自引:0,他引:2  
The primary objectives of formulation technology are to optimise the biological activity of the pesticide, and to give a product which is safe and convenient for use. However, because of the wide variety of pesticide active ingredients which are available, many different types of formulations have been developed depending mainly on the physico-chemical properties of the active ingredients. In the past most formulations were based on simple solutions in water (SL), emulsifiable concentrates in a petroleum-based solvent (EC), or dusts (DP) and wettable powders (WP). The presence of petroleum-based solvents in EC formulations and dusty powders in DP and WP formulations can lead to safety hazards in use and a negative impact on the envirnoment generally. Most government and regulatory authorities are now demanding formulations which are cleaner and safer for the user, have minimal impact on the environment, and can be applied at the lowest dose rate. Developments in formulation technology and novel formulation types, sometimes in special packaging such as water-soluble packs, can also give products a competitive advantage, add value or extend the lif-cycle of active ingredients. There is also a demand from government authorities and consumer groups to use safer formulation additives and adjuvants, and to minimise the residues of pesticides on food crops after spraying. All of these aspects are putting increasing pressure on the development of improved formulation and adjuvant technologies. Pesticide formulations for spray application and for seed treatment are discussed, along with developments in bioenchancement.  相似文献   

10.
By suppressing pest populations, natural enemies provide an important ecosystem service that maintains the stability of agricultural ecosystems systems and potentially mitigates producers' pest control costs. Integrating natural control services into decisions about pesticide-based control has the potential to significantly improve the economic efficiency of pesticide use, with socially desirable outcomes. Two gaps have hindered the incorporation of natural enemies into pest management decision rules: (1) insufficient knowledge of pest and predator population dynamics and (2) lack of a decision framework for the economic tradeoffs among pest control options. Using a new intra-seasonal, dynamic bioeconomic optimization model, this study assesses how predation by natural enemies contributes to profit-maximizing pest management strategies. The model is applied to the management of the invasive soybean aphid, the most significant serious insect threat to soybean production in North America. The resulting lower bound estimate of the value of natural pest control ecosystem services was estimated at $84 million for the states of Illinois, Indiana, Iowa, Michigan and Minnesota in 2005.  相似文献   

11.
采用单一成分絮凝剂和多种成分絮凝剂按不同配比多种方法对污水进行处理。对所用药剂加以筛选,优化组合。结果表明用高分子絮凝剂成本低,沉降速度快。  相似文献   

12.
Abstract

The German cockroach is the most common pest of urban, low-income housing in the United States and is associated with high pesticide use by residents. Cockroach allergen is implicated in asthma exacerbation and initiation and in the growing social and medical aspects of the disease. A safe and secure home environment is an environmental justice issue, and environmentally sound and effective models of cockroach control are needed in public and low-income multifamily housing. One model that offers potential is the integrated pest management (IPM) peer educator model (IPM Educator) in public housing as a component of IPM. A pre–post-analysis of an IPM Educator pilot programme in Boston public housing was undertaken. Thirty-four moderate- to high-infested units received baseline assessment and three applications of gel baits and IPM treatment by a pest control operator. Before the first pest control application, residents received written notice to prepare their units for treatment, a standard procedure. Before the second and third pest control treatments, an IPM Educator instructed residents in basic pest biology and habits, preparation for treatment, and the role of sanitation in pest control. Results showed a significant improvement in rate of preparation for pest control treatment after the IPM Educator intervention when compared with the preparation rate before the education intervention, and a significant reduction in cockroach populations by the third visit in units that were prepared and had improved sanitation, when compared with unprepared units and unclean units. The IPM peer educator is a promising, low-cost model of educating and engaging residents of urban, low-income, multifamily housing in environmentally sound pest control, thereby giving them some power and control over their living environment. It is also a potential source of professional training and jobs for public housing and other low-income housing residents.  相似文献   

13.
The German cockroach is the most common pest of urban, low-income housing in the United States and is associated with high pesticide use by residents. Cockroach allergen is implicated in asthma exacerbation and initiation and in the growing social and medical aspects of the disease. A safe and secure home environment is an environmental justice issue, and environmentally sound and effective models of cockroach control are needed in public and low-income multifamily housing. One model that offers potential is the integrated pest management (IPM) peer educator model (IPM Educator) in public housing as a component of IPM. A pre-post-analysis of an IPM Educator pilot programme in Boston public housing was undertaken. Thirty-four moderate- to high-infested units received baseline assessment and three applications of gel baits and IPM treatment by a pest control operator. Before the first pest control application, residents received written notice to prepare their units for treatment, a standard procedure. Before the second and third pest control treatments, an IPM Educator instructed residents in basic pest biology and habits, preparation for treatment, and the role of sanitation in pest control. Results showed a significant improvement in rate of preparation for pest control treatment after the IPM Educator intervention when compared with the preparation rate before the education intervention, and a significant reduction in cockroach populations by the third visit in units that were prepared and had improved sanitation, when compared with unprepared units and unclean units. The IPM peer educator is a promising, low-cost model of educating and engaging residents of urban, low-income, multifamily housing in environmentally sound pest control, thereby giving them some power and control over their living environment. It is also a potential source of professional training and jobs for public housing and other low-income housing residents.  相似文献   

14.
Large-scale agricultural activities have come under scrutiny for possible contributions to the emission of ozone precursors. The San Joaquin Valley (SJV) of California is an area with intense agricultural activity that exceeds the federal ozone standards for more than 30 to 40 d yr(-1) and the more stringent state standards for more than 100 d yr(-1). Pesticides are used widely in both agricultural and residential subregions of the SJV, but the largest use, by weight of "active ingredient," is in agriculture. The objective of the study was to determine the role of pesticide application on airborne volatile organic compounds (VOC) concentrations and ozone formation in the SJV. The ozone formation from the pesticide formulation sprayed on commercial orchards was studied using two transportable smog chambers at four application sites during the summers of 2007 and 2008. In addition to the direct measurements of ozone formation, airborne VOC concentrations were measured before and after pesticide spraying using canister and sorbent tube sampling techniques. Soil VOC concentrations were also measured to understand the distribution of VOCs between different environmental compartments. Numerous VOCs were detected in the air and soil samples throughout the experiment but higher molecular weight aromatic hydrocarbons were the primary compounds observed in elevated concentrations immediately after pesticide spraying. Measurements indicate that the ozone concentration formed by VOC downwind of the orchard may increase up to 15 ppb after pesticide application, with a return back to prespray levels after 1 to 2 d.  相似文献   

15.
The extensive literature on environmental justice has, by now, well defined the essential ingredients of cumulative risk, namely, incompatible land uses and vulnerability. Most problematic is the case when risk is produced by a large aggregation of small sources of air toxics. In this article, we test these notions in an area of Southern California, Southeast Los Angeles (SELA), which has come to be known as Asthmatown. Developing a rapid risk mapping protocol, we scan the neighborhood for small potential sources of air toxics and find, literally, hundreds of small point sources within a 2-mile radius, interspersed with residences. We also map the estimated cancer risks and noncancer hazard indices across the landscape. We find that, indeed, such large aggregations of even small, nondominant sources of air toxics can produce markedly elevated levels of risk. In this study, the risk profiles show additional cancer risks of up to 800 in a million and noncancer hazard indices of up to 200 in SELA due to the agglomeration of small point sources. This is significant (for example, estimates of the average regional point-source-related cancer risk range from 125 to 200 in a million). Most importantly, if we were to talk about the risk contour as if they were geological structures, we would observe not only a handful of distinct peaks, but a general “mountain range” running all throughout the study area, which underscores the ubiquity of risk in SELA. Just as cumulative risk has deeply embedded itself into the fabric of the place, so, too, must intervention seek to embed strategies into the institutions and practices of SELA. This has implications for advocacy, as seen in a recently initiated participatory action research project aimed at building health research capacities into the community in keeping with an ethic of care.  相似文献   

16.
This paper analyses the cut flower market as an example of an invasion pathway along which species of non-indigenous plant pests can travel to reach new areas. The paper examines the probability of pest detection by assessing information on pest detection and detection effort associated with the import of cut flowers. We test the link between the probability of plant pest arrivals, as a precursor to potential invasion, and volume of traded flowers using count data regression models. The analysis is applied to the UK import of specific genera of cut flowers from Kenya between 1996 and 2004.There is a link between pest detection and the Genus of cut flower imported. Hence, pest detection efforts should focus on identifying and targeting those imported plants with a high risk of carrying pest species. For most of the plants studied, efforts allocated to inspection have a significant influence on the probability of pest detection. However, by better targeting inspection efforts, it is shown that plant inspection effort could be reduced without increasing the risk of pest entry. Similarly, for most of the plants analysed, an increase in volume traded will not necessarily lead to an increase in the number of pests entering the UK. For some species, such as Carthamus and Veronica, the volume of flowers traded has a significant and positive impact on the likelihood of pest detection. We conclude that analysis at the rank of plant Genus is important both to understand the effectiveness of plant pest detection efforts and consequently to manage the risk of introduction of non-indigenous species.  相似文献   

17.
Abstract: Few studies exist that evaluate or apply pesticide transport models based on measured parent and metabolite concentrations in fields with subsurface drainage. Furthermore, recent research suggests pesticide transport through exceedingly efficient direct connections, which occur when macropores are hydrologically connected to subsurface drains, but this connectivity has been simulated at only one field site in Allen County, Indiana. This research evaluates the Root Zone Water Quality Model (RZWQM) in simulating the transport of a parent compound and its metabolite at two subsurface drained field sites. Previous research used one of the field sites to test the original modification of the RZWQM to simulate directly connected macropores for bromide and the parent compound, but not for the metabolite. This research will evaluate RZWQM for parent/metabolite transformation and transport at this first field site, along with evaluating the model at an additional field site to evaluate whether the parameters for direct connectivity are transferable and whether model performance is consistent for the two field sites with unique soil, hydrologic, and environmental conditions. Isoxaflutole, the active ingredient in BALANCE® herbicide, was applied to both fields. Isoxaflutole rapidly degrades into a metabolite (RPA 202248). This research used calibrated RZWQM models for each field based on observed subsurface drain flow and/or edge of field conservative tracer concentrations in subsurface flow. The calibrated models for both field sites required a portion (approximately 2% but this fraction may require calibration) of the available water and chemical in macropore flow to be routed directly into the subsurface drains to simulate peak concentrations in edge of field subsurface drain flow shortly after chemical applications. Confirming the results from the first field site, the existing modification for directly connected macropores continually failed to predict pesticide concentrations on the recession limbs of drainage hydrographs, suggesting that the current strategy only partially accounts for direct connectivity. Thirty‐year distributions of annual mass (drainage) loss of parent and metabolite in terms of percent of isoxaflutole applied suggested annual simulated percent losses of parent and metabolite (3.04 and 1.31%) no greater in drainage than losses in runoff on nondrained fields as reported in the literature.  相似文献   

18.
This article is based on a multimethod study designed to clarify influences on wildfire hazard vulnerability in Arizona’s White Mountains, USA. Findings reveal that multiple factors operating across scales generate socially unequal wildfire risks. At the household scale, conflicting environmental values, reliance on fire insurance and firefighting institutions, a lack of place dependency, and social vulnerability (e.g., a lack of financial, physical, and/or legal capacity to reduce risks) were found to be important influences on wildfire risk. At the regional-scale, the shift from a resource extraction to environmental amenity-based economy has transformed ecological communities, produced unequal social distributions of risks and resources, and shaped people’s social and environmental interactions in everyday life. While working-class locals are more socially vulnerable than amenity migrants to wildfire hazards, they have also been more active in attempting to reduce risks in the aftermath of the disastrous 2002 Rodeo-Chediski fire. Social tensions between locals and amenity migrants temporarily dissolved immediately following the disaster, only to be exacerbated by the heightened perception of risk and the differential commitment to hazard mitigation displayed by these groups over a 2-year study period. Findings suggest that to enhance wildfire safety, environmental managers should acknowledge the environmental benefits associated with hazardous landscapes, the incentives created by risk management programs, and the specific constraints to action for relevant social groups in changing human-environmental context.  相似文献   

19.
Nanotechnologies have been called the "Next Industrial Revolution." At the same time, scientists are raising concerns about the potential health and environmental risks related to the nano-sized materials used in nanotechnologies. Analyses suggest that current U.S. federal regulatory structures are not likely to adequately address these risks in a proactive manner. Given these trends, the premise of this paper is that state and local-level agencies will likely deal with many "end-of-pipe" issues as nanomaterials enter environmental media without prior toxicity testing, federal standards, or emissions controls. In this paper we (1) briefly describe potential environmental risks and benefits related to emerging nanotechnologies; (2) outline the capacities of the Toxic Substances Control Act, the Clean Air Act, the Clean Water Act, and the Resources Conservation and Recovery Act to address potential nanotechnology risks, and how risk data gaps challenge these regulations; (3) outline some of the key data gaps that challenge state-level regulatory capacities to address nanotechnologies' potential risks, using Wisconsin as a case study; and (4) discuss advantages and disadvantages of state versus federal approaches to nanotechnology risk regulation. In summary, we suggest some ways government agencies can be better prepared to address nanotechnology risk knowledge gaps and risk management.  相似文献   

20.
Obsolete pesticides have accumulated in almost every developing country or economy in transition over the past several decades. Concerned about the risks these chemicals pose to nearby residents, public health and environmental authorities are eager to reduce health threats by removing and decontaminating stockpile sites. However, there are many sites, cleanup can be costly, and public resources are scarce, so decision makers need to set priorities. Under these conditions, it seems sensible to develop a methodology for prioritizing sites and treating them sequentially, as budgetary resources permit.This paper presents a new methodology that develops a cleanup priority index for 1915 metric tons of obsolete pesticide formulations at 197 stockpile sites in Tunisia. The approach integrates information on populations at risk, their proximity to stockpiles, and the relative toxic hazards of the stockpiles. What emerges from the Tunisia results is a strategy for sequentially addressing all 197 sites to rapidly reduce potential health damage in a cost-effective way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号