共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
A/O生物脱氮工艺处理生活污水中试(一)短程硝化反硝化的研究 总被引:17,自引:2,他引:17
应用A/O生物脱氮中试试验装置处理实际生活污水,从pH、污泥浓度(MLSS)、自由氨(FA)、温度、污泥龄(SRT)、溶解氧(DO)和水力停留时间(HRT)等方面系统的分析了A/O工艺实现短程硝化反硝化的主要影响因素.结果表明,DO浓度是A/O工艺实现短程硝化反硝化的主要因素,由FISH检测发现长期控制低DO浓度(0.3~0.7 mg·L-1)可以导致亚硝酸盐氧化菌(NOB)的淘洗,从而实现稳定的亚硝酸盐积累率,试验获得平均亚硝酸氮积累率为85%,有时甚至超过95%.提高DO浓度,1周内亚硝酸氮积累率从85%降到10%,继续维持低DO浓度,大约需要2个污泥龄时间才可重新恢复到较高的亚硝酸氮积累率(>75%).低DO浓度下,试验初期污泥沉淀性能随着亚硝酸氮积累率的增加而变差,而在试验后期,无论亚硝酸氮积累率多高,污泥沉淀性能一直很好,SVI值处于80~120 mL·g-1 相似文献
4.
短程硝化-反硝化生物滤池脱氮机制研究 总被引:3,自引:4,他引:3
研究了短程硝化生物滤池的调控因素以及短程硝化-反硝化生物滤池的脱氮机制.结果表明,针对城市污水处理厂二级出水中的氨氮和总氮,在水温为(30±1)℃的条件下,提高进水pH值有助于硝化生物滤池中亚硝酸盐的积累,较好地实现短程硝化过程,当进水pH值平均为8.5时,亚硝酸盐的积累达到最大.沿硝化生物滤池水流方向,pH和DO的变化呈相反趋势,亚硝酸盐的积累呈增加趋势,在反应器出水口较好地实现了亚硝酸盐的积累.短程硝化-反硝化生物滤池对NH4+-N有较好的去除效率(90%以上);当反硝化生物滤池进水COD/TN为3.0时,出水TN的浓度降低到8~9 mg.L-1的范围,去除率稳定在79%~81%. 相似文献
5.
6.
针对本试验垃圾渗滤液的水质特点和传统生物脱氮工艺存在的问题,结合目前国内外在该方向的研究现状,提出短程硝化反硝化处理垃圾渗滤液的新工艺。通过控制曝气池内溶解氧浓度平均在2.0 mg/L,温度(30±2)℃,实现了稳定的亚硝氮积累和较高的氨氮去除率,亚硝化率和氨氮去除率分别维持在83%和85%左右。试验结果表明,该工艺与传统生物脱氮工艺相比,污泥负荷明显增加,耗氧量和反硝化所需碳源减少,反硝化效率和速率明显提高,从而总氮去除率也显著提高。 相似文献
7.
不同方式实现短程硝化反硝化生物脱氮工艺的比较 总被引:13,自引:0,他引:13
采用序批式活性污泥法(SBR),以实际豆制品废水为处理对象,比较了控制温度(T=310.5℃)、溶解氧(DO=0.5mg/L)和pH值(7.8~8.7)3种途径实现短程硝化反硝化生物脱氮工艺.结果表明,无论从硝化速率、硝化时间、污泥沉降性能以及生物相上,控制溶解氧实现的短程硝化反硝化脱氮工艺均不如其他2种工艺.就该工艺存在的问题从活性污泥法反应动力学和微生物相上进行了理论探讨,3种途径实现短程硝化反硝化生物脱氮工艺在实际工程应用中均不同程度地存在一些问题. 相似文献
8.
交替好氧/缺氧短程硝化反硝化生物脱氮Ⅰ.方法实现与控制 总被引:22,自引:1,他引:22
采用实时控制策略和曝气 搅拌交替运行方式在 ( 2 6± 1 )℃下开发了一种新型短程硝化反硝化生物脱氮工艺 :实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺 .并对其与实时控制传统SBR法短程硝化反硝化脱氮和预先设定时间控制交替好氧 缺氧短程硝化反硝化脱氮工艺进行了比较研究 .结果显示 ,实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺无论从硝化速率、反硝化速率还是从硝化时间、反硝化时间上均优于实时控制传统SBR法短程硝化反硝化脱氮和预先设定时间控制交替好氧 缺氧短程硝化反硝化脱氮两种工艺 .其硝化速率和反硝化速率分别是预先设定时间控制交替好氧 缺氧短程硝化反硝化工艺的 1 3 8倍和 1 2 5倍 ,是实时控制传统SBR法短程硝化反硝化脱氮工艺的 1 82倍和 1 6 1倍 .因此 ,实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺不但能够合理分配曝气和搅拌时间 ,而且还能提高硝化、反硝化速率 ,缩短反应时间 ,从而达到降低运行成本的目的 相似文献
9.
10.
短程反硝化技术将硝酸盐还原的同时实现亚硝酸盐积累,不仅为厌氧氨氧化反应提供底物且能有效利用其反应产生的硝酸盐。因有机碳源需求少、反应速率高、污泥产量低及运行稳定等优点,短程反硝化具有重要的科学和工程意义,成为近年来的研究热点。介绍了短程反硝化技术的发展历程,从影响亚硝酸盐积累的环境因素及微生物群落结构等方面阐述了短程反硝化的原理,同时对现阶段短程反硝化存在的问题以及应用前景进行总结。最后对我国如何实现传统工艺向新兴高效的短程反硝化工艺的实践应用转型提出了建议。 相似文献
11.
12.
13.
14.
酒精废水消化液生物硝化和脱氮试验 总被引:1,自引:0,他引:1
酒精糟液厌氧消化液CODCr浓度为3500~4300mgL,BOD5浓度为1500~2100mgL,TN浓度为400~700mgL,NH3N浓度为300~600mgL。采用SBR反应器对该消化液进行生物脱氮试验,对反应器的有机负荷、氨氮负荷、脱氮效果、脱氮过程中氮形态的变化以及碳源提供等进行了研究分析。试验结果表明,当消化液碳源充足,SBR充水比λ=0.35,缺氧时间3h以及BOD5污泥负荷0.26~0.32kgkg·d条件下,SBR处理出水CODCr598~632mgL,BOD560~100mgL,氨氮6~9mgL,总氮200~216mgL,总氮去除率为60%左右。该处理系统中缺氧段反应时间仅为3h,却承担70%~75%的CODCr总去除负荷,显著提高了该系统的有机负荷和氨氮负荷。在消化液碳源不足的条件下,可投加乙酸钠作为生物脱氮的外碳源,投加量宜为500mgL。 相似文献
15.
SBR系统中同时硝化反硝化生物脱氮研究 总被引:9,自引:0,他引:9
采用单级SBR系统处理含有机物和氨氮的模拟污水并研究了单级生物脱氮的主要影响参数。实验采用葡萄糖作为碳源、硫酸铵作为氮源,研究了不同的CN和DO对同时硝化反硝化作用的影响。研究结果表明,当进水CODCr、NH3N浓度分别为244~500mgL和45.4~52.2mgL、反应条件为DO=1.0~3.0mgL、CODCrNH3N=5~10时,反应器中CODCr、NH3N的去除率分别达到87.1%~91.0%、75.1%~94.7%。根据试验结果,对同时硝化反硝化过程的一个代表性周期进行了分析。 相似文献
16.
17.
18.
为了更有效地控制晚期垃圾渗滤液短程硝化反应过程,需了解反应器内氮素转化规律。通过氮平衡实验,对亚硝酸型硝化反应器反应前后氮素构成进行分析,了解反应器内氮素转化规律。结果表明:进入反应柱的凯氏氮(包括氨氮和有机氮)转化成亚硝酸盐氮、硝酸盐氮、用于合成细胞进入污泥的凯氏氮、未转化的凯氏氮、出现的误差及微量氨吹脱的影响所占的百分比分别为1.96%、0.83%、1.29%、92.1%、3.82%。同时得出该晚期垃圾渗滤液中氨氮占凯氏氮比例约为0.898,有机氮可转化成氨氮的比例为89.6%。 相似文献
19.
20.
废水处理同时消化/反硝化脱氮技术现状与展望 总被引:1,自引:0,他引:1
阐述了废水生物处理同时硝化/反硝化脱氮技术现状及发展,对几种具有同时硝化/反硝化效应的生物反应器与工艺进行了概述和讨论,提出了今后可能的研究方向。 相似文献