首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Special FeatureWaste Management Research in Korea

A new joint publication  相似文献   

2.
3.

ANNOUNCEMENT

Online First publication of Journal of Material Cycles and Waste Management now available  相似文献   

4.
Nitrous oxide (N2O) release and denitrification rates were investigated from the intertidal saltmarsh and mudflats of two European river estuaries, the Couesnon in Normandy, France and the Torridge in Devon, UK. Sediment cores and water were collected from each study site and incubated for 72 h in tidal simulation chambers. Gas samples were collected at 6 and 12 h intervals from the chambers during incubation. From these N2O emission rates were calculated. The greatest rates for both N2O production and denitrification were measured from saltmarsh cores. These were 1032 mol N2O m–2 day–1 and 2518 mol N2 m–2 day–1, respectively, from the Couesnon and 109 mol N2O m–2 day–1 and 303 mol N2 m–2 day–1 from the Torridge. A strong positive correlation was apparent with N2O emission rates and ammonium concentration in the sediment, nitrate concentration in floodwater and sediment aerobicity.  相似文献   

5.
A block copolymer {P[(R,S)-HB-b-EG]} of atactic poly[(R,S)-3-hydroxybutyrate] {P[(R,S)-HB]} and poly(ethylene glycol) (PEG) was prepared by the ring-opening polymerization of -butyrolactone in the presence of a macroinitiator (PEG/ZnEt2/H2O) which had been produced by the reaction of ,-dihydroxy PEG ( n=3000) with ZnEt2/H2O (1/0.6) catalyst. The block copolymer ( n=10,500, w/ n=1.2) was an A-B-A triblock copolymer comprising atactic P[(R,S)-HB] (A) and PEG (B) segments. The miscibility, physical properties, and biodegradability of binary blends of microbial poly[(R)-3-hydroxybutyrate] {P[(R)-HB]} with the block copolymer P[(R,S)-HB-b-EG] has been studied. The glass-transition temperature (T g) data showed that the P[(R)-HB]/P[(R,S)-HB-b-EG] blend was miscible in the amorphous state. The P[(R)-HB] film became flexible and tough by means of blending with P[(R,S)-HB-b-EG] block copolymer. The enzymatic degradation of blend films was carried out at 37°C and pH 7.4 in a 0.1M phosphate solution of an extracellular PHB depolymerase fromAlcaligenes faecalis. The enzymatic degradation took place solely on the surface of the blend films.  相似文献   

6.
During the period from July 2002 to June 2004, the chemical characteristics of the rainwater samples collected in downtown São Paulo were investigated. The analysis of 224 wet-only precipitation samples included pH and electrical conductivity, as well as major ions (Na+, $ \rm NH^{ + }_{4} During the period from July 2002 to June 2004, the chemical characteristics of the rainwater samples collected in downtown S?o Paulo were investigated. The analysis of 224 wet-only precipitation samples included pH and electrical conductivity, as well as major ions (Na+, , K+, Ca2+, Mg2+, Cl, , ) and carboxylic acids (acetic, formic and oxalic) using ion chromatography. The volume weighted mean, VWM, of the anions , and Cl was, respectively, 20.3, 12.1 and 10.7 μmol l−1. Rainwater in S?o Paulo was acidic, with 55% of the samples exhibiting a pH below 5.6. The VWM of the free H+ was 6.27 μmol l−1), corresponding to a pH of 5.20. Ammonia (NH3), determined as (VWM = 32.8 μmol l−1), was the main acidity neutralizing agent. Considering that the H+ ion is the only counter ion produced from the non-sea-salt fraction of the dissociated anions, the contribution of each anion to the free acidity potential has the following profile: (31.1%), (26.0%), CH3COO (22.0%), Cl (13.7%), HCOO (5.4%) and (1.8%). The precipitation chemistry showed seasonal differences, with higher concentrations of ammonium and calcium during autumn and winter (dry period). The marine contribution was not significant, while the direct vehicular emission showed to be relevant in the ionic composition of precipitation.  相似文献   

7.
For characterisation of landscapes in north-eastern Estoniaaffected by alkaline oil shale fly ash and cement dust the zonation-method based on average annual (C y) and short-termconcentrations of pollutants in the air was used, as well as on deposition loads of dust and Ca2+. In the overground layer of atmosphere the zones with different air pollution loads were distinguished. A comparative analysis of pollution zones characteristics and biomonitoring data revealed that for sensitive lichen the dangerous level of alkaline dust in the air, introducingthe degradation of Sphagnum sp. at the level of C y of dust 10–20 g m-3 and at 0.5–1 hr maximums 100–150 g m-3. For Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) this limited concentration (decline of growth parameters) of cement dust is correspondingly following: 30–50 g m-3 and 150–500 g m-3, in case of fly ash the limit level of C y amounting 100 g m-3. Daily deposition load of Ca2+ should not exceed approximately 4.5–15 mg m-2 for lichen; for conifers the harmful pollution load is higher – >22 mg m-2.  相似文献   

8.
The synthetic analogue of a bacterially produced polyester, poly(-hydroxybutyrate) (PHB) was synthesized from racemic -butyrolactone using anin situ trimethyl aluminum-water catalyst. The polymer was fractionated into samples differing in molecular weight and isotactic diad content. The latter was closely related to degree of crystallinity. The biodegradation of these fractions were examined by monitoring mass loss over time in the presence of anAlcaligenes faecalis T1 extracellular bacterial poly(-hydroxybutyrate) depolymerase. The fraction with high isotactic diad tacticity content showed little or no degradation over a 50 hour incubation period, whereas the fraction of intermediate isotactic diad content degraded in a continuous steady fashion at a rate that was less than that for bacterial PHB. The low isotactic diad fraction underwent a rapid initial degradation, followed by no further mass loss. The presence of stereoblocks in the polymer structure of the various fractions was an influence on the degree of susceptibility towards degradation and is related to sample crystallinity.  相似文献   

9.
Thermal cracking of oils from waste plastics   总被引:2,自引:0,他引:2  
Thermal cracking of decomposed waste plastic oil produces a good yield of olefins. The solvent extraction of such waste plastic oil seems to be efficient for increasing gas yields and recycling monomers. To assess the potential of monomer recovery from municipal waste plastics, the oils were cracked using a laboratory-scale quartz-tube reactor. The waste plastic oils were provided by two commercial plants of the Sapporo Plastic Recycle Co. and the Dohoh Recycle Center Co. in Japan. A model waste plastic oil made in a laboratory was also examined. Yields of ethene, propene, and other products were measured at different temperatures. Two-step pyrolysis reduces coking compared with the direct thermal degradation of plastics. The raffinates from waste plastic oils extracted by sulfolane were also cracked. The primary products were almost the same as those from nontreated oils. The maximum total gas yield was 78wt%–85wt% at 750°C, an increase of about 20wt% compared with that of nonextracted oil. Solvent extraction removes stable aromatic hydrocarbons such as styrene, which is more coked than cracked.  相似文献   

10.
Aerosol particles in the workplace of a detergent industry were sampled during July 2005 by a Berner low-pressure impactor. The samples were analyzed by atomic absorption spectrometry and ion chromatography in order to determine the size distribution of metallic elements and water-soluble inorganic ions. The size distributions of some characteristic metallic elements (Cu, Fe, Al) were unimodal with their maximum found in coarse particles. Among the water-soluble aerosol components , , Cl, and Ca++ were the major contributors to total particle mass. The lung deposition resulting from the partially hygroscopic aerosol is estimated. The calculated lung deposition reveals the impact of separate chemical aerosol compounds on the levels of the inhaled dose. The differences observed between the total and regional deposition of the different compounds appear mainly due to their different size distributions. An erratum to this article can be found at  相似文献   

11.
We have previously manufactured activated carbon using waste paper board, which was prepared by adding 8% phenol resin adhesive to torn waste newspaper and hot-pressing. In this study, the pretreatment process of the raw material was simplified; the waste paper was extruded to form granules. The activated carbon was manufactured by the carbon dioxide activation method using the granules as the raw material. The properties of the activated carbon were evaluated based on the pore structure, the iodine adsorption number, and the adsorption of toluene vapor in a sealed chamber. The activated carbon, which was manufactured at an activation temperature of 1100°C and a treatment time of 60min, exhibited a specific surface area of 1241m2/g and an iodine adsorption number of 1120mg/g. These results were similar to those obtained for two commercially available activated carbons. The extent of toluene vapor adsorption by this activated carbon was similar to that observed for the two commercial activated carbons over a period of 130min.  相似文献   

12.
Lindberg  S. E.  Brooks  S.  Lin  C-J.  Scott  K.  Meyers  T.  Chambers  L.  Landis  M.  Stevens  R. 《Water, Air, & Soil Pollution: Focus》2001,1(5-6):295-302
We have measured total gaseous mercury concentrations(Hg°) at Point Barrow, Alaska since September 1998 in aneffort to determine the geographic extent and reaction mechanismof the so-called mercury depletion events (MDE) previouslyreported in the high Arctic at Alert, Canada. Hg° has beensampled now for nearly 2 years at Barrow. In September, 1999, webegan making the first automated measurements of reactive gaseousmercury (RGM) attempted in the Arctic, along with measurements ofHg accumulation in snowpack to determine the fate of the depleted Hg°. During the fall and early winter, Hg°and RGM exhibit only minor variation, Hg° remaining within10% of global background, near 1.6–1.8 ng m-3. The MDEperiods are quite different, however; within days of Arcticsunrise in January, Hg° exhibits major variations from themean, rapidly dropping as low as 0.05 ng m-3 and then cyclingback to typical levels, sometimes exceeding global background. These events continue throughout Arctic spring, then end abruptlyfollowing snowmelt, in early June. Prior to Arctic sunrise, RGMremains near detection (<2 pg m-3), but after sunriseincreases dramatically (to levels as high as 900 pg/m3) insynchrony with the depletion of Hg°. Both phenomenaexhibit a strong diel cycle, in parallel with UV-B. We concludethat MDE's involve rapid in-air oxidation of Hg° to aspecies of RGM by photochemically-driven reactions, probablyinvolving the same reactive bromine and chlorine compoundsinvolved in ozone destruction. Sharp increases in Hg in thesurface snowpack after sunrise coincident with periods of peakRGM suggest surface accumulation of the RGM by dry deposition.  相似文献   

13.
Carbon Molecular Sieving Membranes Derived from Lignin-Based Materials   总被引:1,自引:0,他引:1  
Carbon molecular sieving membranes were prepared by pyrolysis of lignocresol derived from lignin by the phase-separation method. Lignocresol membranes formed by a dip process on a porous -alumina tubing were carbonized at 400–800°C under nitrogen atmosphere. The thickness of the membrane formed on the outer surface of the substrate was about 400 nm judging from SEM observation. Gas-evolving behavior of lignocresol was measured using thermogravimetry-mass spectrometry (TG-MS). The gaseous products evolved from lignocresol included a number of fragments with higher molecular weights; whereas those from phenolic resin are mainly due to phenol and methylphenol. These evolved pyrolysis fragments effectively contribute to micropore formation of carbonized lignocresol membranes. Gas permeation rates through the membrane decreased in the order of increasing kinetic molecular diameter of the penetrant gas, and the membrane behaved like a molecular sieve. The permeation properties were dependent on heating conditions, and a pyrolysis temperature of 600°C gave the best membrane performance. Gas selectivities of the membrane prepared at 600°C were 50, 8, 290, and 87 for CO2/N2, O2/N2, H2/CH4, and CO2/CH4 at 35°C, respectively.  相似文献   

14.
A new method for evaluating biodegradability of starch-based and certain other polymer blends uses the pre- and postexposure stable carbon isotope composition of material coupled with weight loss data to determine which components have degraded. The naturally occurring stable isotope of carbon.13C, is enriched in corn starch (13C, approx. –11) compared to petroleum-derived synthetic polymers (13C, approx. –32). Results on starch-synthetic polymer blends indicate that the 13C signatures of these blends are near-linear mixtures of their component 13C. Values of a 13C for starch-synthetic polymer blends exposed to biologically active laboratory soil and artificial seawater conditions are depleted in13C compared to unexposed samples, suggesting loss of the starch component. Combined with weight loss data for the exposed samples, the 13C values are statistically consistent with models requiring loss of the soluble component glycerin, followed by loss of starch, then petrochemical polymer, or simultaneous loss of starch and petrochemical polymer. Replicate 13C analyses of starch-synthetic polymer blends increase the statistical power of this relatively inexpensive, accessible technique to discriminate between degrading components.  相似文献   

15.

Objectives

To characterise compost workers’ exposure to dust, endotoxin and β-(1-3) glucan during various operational practices and investigate whether dust concentrations are a useful indicator of endotoxin exposure in compost workers.

Methods

This study assessed inhalable dust fractions, bacterial endotoxin and β-(1-3) glucan in 117 personal samples and 88 ambient samples from four large-scale composting facilities.

Results

Employees’ exposures to inhalable dust, endotoxin and β-(1-3) glucan exhibited a large range. Inhalable dust was found to be generally low (GM 0.99 mg/m3, GSD 2.99 mg/m3). Analysis of the biological component of the dust showed that employees’ exposures to endotoxin were elevated (GM 35.10 EU/m3, GSD 9.97 EU/m3). Employees’ exposure to β-(1-3) glucan was low (GM 0.98 ng/m3, GSD 13.39 ng/m3). Dust levels were elevated during manual sorting and screening of waste and high levels of endotoxin and β-(1-3) glucan were observed during all practices involving the movement of waste. A significant correlation was observed between the personal dust levels and personal endotoxin concentrations (r = 0.783, p < 0.05) and that personal inhalable dust concentration may be a valuable predictor for personal endotoxin concentration in the sites studied.

Conclusions

Workers at composting sites are exposed to high levels of bacterial endotoxin consistent with adverse respiratory outcomes even though in most cases, their personal dust exposure is below the suggested regulatory levels. Dose-response data for the biological components present in the dust encountered at composting sites are not well established at this time and site operators should adopt precautionary measures when assessing and managing these potential risks.  相似文献   

16.
Dissolved organic carbon (DOC) fractions and different low molecular weight organic acids (LMWOAs) were determined in soil solutions from two lime or ash treated Norway spruce sites in the south of Sweden. At Hasslöv, 3.45 t ha-1 or 8.75 t ha-1 dolomite were applied 15 years before sampling. Horröd was treated with 4.28 t ha-1 ash and 3.25 t ha-1 dolomite and sampled four years later. Propionate (7–268 M) and malonate (2–34 M) were the LMWOAsfound in the highest concentrations at Hasslöv. Two other LMWOAs dominated at Horröd, namely citrate (18–64 M)and fumarate (5–31 M). The differences in concentration of most of the determined LMWOAs at Hasslöv were significantly increased due to treatment. The LMWOAs comprised between 1.1–6.3% of the DOC at Hasslöv and 4.5–17.6% at Horröd. At Hasslöv normally 3–10% of the total acidity (TA) was due to LMWOAs and the average specific buffer capacity was 74 ± 22 mmol mol-1C.The total DOC concentration in the mor layer solution was 16 mM for the dolomite treated plots compared to 10 mM at the untreated plot. A major part of the increase in DOC at the treated plots apparently had a hydrophobic character and was of high molecular weight corresponding to 3–10 kDa. The concentration of DOC < 1 kDa in the control and treated plots was similar.  相似文献   

17.
The concentrations of heavy, trace elements and major ions measuredin the Uluda and Bursa aerosols were investigated to assess size distributions, spatial and temporal variability, sources and source regions affecting the composition of aerosols in Uluda and Bursa. A total of 81 samples were collected in two sites, one in Bursa city and another in the Uluda Mountain during two sampling campaigns. Daily samples were collected using a high volume sampler on Whatman 41 cellulose filters in Uluda, while three days interval samples were collected in Bursa using an automatic dichotomous sampler on PTFE Teflon filters. Samples were analysed for 15 trace and heavy metals (Al, Fe, Ba, Na, Mg, K, Mn, Ca, Cu), (V, Pb, Cd, Cr, Ni, Zn), and 4 major ions (SO4 2-, NO3 -, Cl-), (NH4 +) using ICP-AES, GFAAS, HPLC and UV/VIS Spectrophotometer,respectively. In general, concentrations of the metals measured inUluda aerosols were lower than those in Bursa. The concentrations of crustal elements were higher in summer than winter, while anthropogenic elements had higher concentrations in winter than summer. Most of the mass of crustal elements was concentrated in the coarse mode while the mass of the heavy metals was concentrated in the fine mode. Factor analysis revealed four factors with sources including crustal, industrial and combustion. Back trajectory calculations were used to determine long range contributions. These calculations showed that contributions were mostly from European countries, former Soviet Union countries, Black Sea and North Africa.  相似文献   

18.
Acidithiobacillus ferrooxidans, as chemolithotrophic aerobic bacterium, can obtain energy by oxidation of ferrous ions (Fe2+) to ferric ions (Fe3+) and use molecular oxygen (O2) as terminal electron acceptor. In this study, the effects of dissolved oxygen (DO) levels in culture medium on cell growth and copper extraction from waste printed circuit boards (PCBs) were investigated in A. ferrooxidans. The whole culture period was divided into two stages of cell growth and copper extraction. At the former stage, relatively lower DO level was adopted to satisfy bacterial growth while avoiding excessive Fe2+ oxidation. At the later stage, higher DO was used to promote copper extraction. Moreover, shift time of DO from lower to higher level was determined via simulating Gauss function. By controlling DO at 10 % for initial 64 h and switching to 20 % afterwards and with 18 g/l PCBs addition at 64 h, final copper recovery reached 94.1 %, increased by 37.6 and 48.3 % compared to constant DO of 10 and 20 % operations. More importantly, copper leaching periods were shortened from 108 to 60 h. It was suggested that application of DO-shifted strategy to enhancing copper extraction from PCBs with reduced leaching periods is being feasible.  相似文献   

19.
The substance class of inert organic-chemical stressors (IOCS) describes organic-chemical (macro-) molecules, which demonstrate a high level of persistence upon entry in the ecosystem, and whose degradation is limited. These synthetically produced organic-chemical macromolecules, which are often derived from the polymerization of different monomers, are, in the form of plastics, indispensable in the everyday world. They enter the environmental compartments and cause great damage due to primary (industry, cosmetic, washing of textile), and secondary (degradation) entry. If these particles get into aquatic systems, this has fatal consequences for the ecosystem such as the death of marine animals, or bioaccumulation. Wastewater treatment plants are reaching their limits and require innovative ideas for the sustainable removal of microplastic. This article examines a new approach to the removal of polymers from aquatic systems (lab scale) by using sol–gel induced agglomeration reactions to form larger particle agglomerates. These enlarged agglomerates can be separated much more easily from the wastewater, since they float on the water surface. Separation systems, e.g. sand trap can easily be used. A further advantage is that the agglomeration can be carried out completely independently of the type, size, and amount of the trace substance concentration as well as of the external influences (pH value, temperature, pressure). Thus, this new type of particle separation can not only be used in sewage treatment plants, but can also be transferred to decentralized systems (e.g. implementation in industrial processes).

Graphical Abstract

  相似文献   

20.
Epoxy resin and polyetheretherketone (PEEK) resin were decomposed into their monomers such as phenol, cresols, and their analogues by thermal treatment in sub- and supercritical water in a 10-ml tubing bomb reactor. The addition of basic compounds such as Na2CO3 was effective in promoting the decomposition reaction of the resins. In the reaction of epoxy resin, the yield of identified products reached 10% for the reaction at 703K over 1h. In the reaction of PEEK resin, the total yield of phenol and dibenzofuran reached 88% for the reaction at 703K over 3h. Chemical participation of water in the decomposition reaction was confirmed by the reaction of dinaphthylether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号