首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two-dimensional distribution of flow patterns and their dynamic change due to microbial activity were investigated in naturally fractured chalk cores. Long-term biodegradation experiments were conducted in two cores ( approximately 20 cm diameter, 31 and 44 cm long), intersected by a natural fracture. 2,4,6-tribromophenol (TBP) was used as a model contaminant and as the sole carbon source for aerobic microbial activity. The transmissivity of the fractures was continuously reduced due to biomass accumulation in the fracture concurrent with TBP biodegradation. From multi-tracer experiments conducted prior to and following the microbial activity, it was found that biomass accumulation causes redistribution of the preferential flow channels. Zones of slow flow near the fracture inlet were clogged, thus further diverting the flow through zones of fast flow, which were also partially clogged. Quantitative evaluation of biodegradation and bacterial counts supported the results of the multi-tracer tests, indicating that most of the bacterial activity occurs close to the inlet. The changing flow patterns, which control the nutrient supply, resulted in variations in the concentrations of the chemical constituents (TBP, bromide and oxygen), used as indicators of biodegradation.  相似文献   

2.
The initial step in the analysis of contaminant transport in fractured rock requires the consideration of groundwater velocity. Practical methods for estimating the average linear groundwater velocity (vˉ) in fractured rock require determination of hydraulic apertures which are commonly calculated by applying the cubic law using transmissivity (T) values and the number of hydraulically active fractures in the test interval. High-resolution, constant-head step injection testing of cored boreholes in a 100 m thick fractured dolostone aquifer was conducted using inflatable packers to isolate specific test intervals from the rest of the borehole. The steps in each test interval were gradually increased from very low to much higher injection rates. At smaller injection rates, the flow rate vs. applied pressure graph projects through the origin and indicates Darcian flow; non Darcian flow is evident at higher injection rates. Non-Darcian flow results in significantly lower calculated T values, which translates to smaller hydraulic aperture values. Further error in the calculated hydraulic aperture stems from uncertainty in the number of hydraulically active fractures in each test interval. This estimate can be inferred from borehole image and core logs, however, all of the fractures identified are not necessarily hydraulically active. This study proposes a method based on Reynolds number calculations aimed at improving confidence in the selection of the number of active fractures in each test interval.  相似文献   

3.
In fractured rocks with a porous rock matrix such as granites, radionuclides will flow with the water in the fracture network. The nuclides will diffuse in and out the rock matrix where they can sorb and be considerably retarded compared to the water velocity. A water parcel entering the network will mix and split at the fracture intersections and parts of the original parcel will traverse a multitude of different fractures. The flowrates, velocities, sizes and apertures of the fractures can vary widely. Normally one must solve the transport equations for every fracture and use the effluent concentration as inlet condition to the next fracture and so on. It is shown that under some weakly simplified conditions it suffices to determine one single parameter group containing information on the flow wetted surface that a water parcel contacts along the entire path. It is also shown how this can be obtained. Then, solving the transport equations only once for time and location along the path gives the concentration and nuclide flux of every nuclide in the chain everywhere along a path. The same solution actually is valid for every path in the network. This dramatically reduces the computation effort. The same approach can be used for models based on streamtubes.  相似文献   

4.
A multi-borehole radial tracer test has been conducted in the confined Chalk aquifer of E. Yorkshire, UK. Three different tracer dyes were injected into three injection boreholes and a central borehole, 25 m from the injection boreholes, was pumped at 330 m(3)/d for 8 days. The breakthrough curves show that initial breakthrough and peak times were fairly similar for all dyes but that recoveries varied markedly from 9 to 57%. The breakthrough curves show a steep rise to a peak and long tail, typical of dual porosity aquifers. The breakthrough curves were simulated using a 1D dual porosity model. Model input parameters were constrained to acceptable ranges determined from estimations of matrix porosity and diffusion coefficient, fracture spacing, initial breakthrough times and bulk transmissivity of the aquifer. The model gave equivalent hydraulic apertures for fractures in the range 363-384 microm, dispersivities of 1 to 5 m and matrix block sizes of 6 to 9 cm. Modelling suggests that matrix block size is the primary controlling parameter for solute transport in the aquifer, particularly for recovery. The observed breakthrough curves suggest results from single injection-borehole tracer tests in the Chalk may give initial breakthrough and peak times reasonably representative of the aquifer but that recovery is highly variable and sensitive to injection and abstraction borehole location. Consideration of aquifer heterogeneity suggests that high recoveries may be indicative of a high flow pathway adjacent, but not necessarily connected, to the injection and abstraction boreholes whereas low recoveries may indicate more distributed flow through many fractures of similar aperture.  相似文献   

5.
Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has occurred in the sulphate reduction zone. Benzene degradation may be associated with denitrification since increased benzene delta13C is associated with increased delta15N in residual nitrate. Re-supply of electron acceptors by diffusion from the matrix into fractures and dispersive mixing is an important constraint on degradation rates and natural attenuation capacity in this dual-porosity aquifer.  相似文献   

6.
A series of field and laboratory experiments were conducted to study the mechanisms of particle detachment and transport from fractures in vadose chalk. Experiments of intermittent flow events along fracture surfaces were carried out in the laboratory. In the field, water was percolated from land surface via a discrete fracture into a compartmental sampler installed inside a horizontal corehole located I m below the surface. The mass, size distribution, and composition of the particles drained from the fracture voids were examined along with flow rates and salt dissolution. Two boreholes penetrating the underlying saturated zone were sampled and analyzed for colloidal concentration and composition. Most of the particle and solute release at the drained effluents occurred during the first several hours of flow, but erratic pulses of particles were still observed after long periods of time. Most of the detached particles had a mean diameter of >2 microm, while the mobile colloidal phase in the groundwater had a mean diameter of approximately 1 microm. Mineralogical composition of the groundwater colloids and the particles detached from the upper vadose fracture were similar. Laboratory observations demonstrated the importance of the existence of a coating layer, made of weathered particles and salts, on particle detachment. The results of this study suggest that: (1) particle detachment causes flow-rate variability in the unsaturated fracture; (2) the mechanisms of particle detachment and salt dissolution within the fracture are linked: and (3) although most of the detached particles are large and likely to accumulate inside fractures, some colloidal particles also eroded from the fracture void and are likely to be transported to the groundwater.  相似文献   

7.
This study investigates the mechanisms controlling the distribution of 3-bromo-2,2-bis(bromomethyl)propanol (TBNPA) and 2,2-bis(bromomethyl)propan-1,3-diol (DBNPG) in a fractured chalk aquitard. An extensive monitoring program showed a systematic decrease in the TBNPA/DBNPG ratio with distance from the contamination source. Sorption of TBNPA on the white and/or gray chalks comprising the aquitard is approximately one order of magnitude greater than that of DBNPG. This results in more efficient removal of TBNPA from the fracture into the porous matrix and thus decreases the TBNPA/DBNPG ratio in the fracture water. Mathematical modeling of solute transport in the fracture domain illustrates the probable importance of sorption in controlling the spatial variation in TBNPA and DBNPG ratio.  相似文献   

8.
Effects of nitrogen and oxygen on biofilter performance   总被引:2,自引:0,他引:2  
Three laboratory-scale biofilters packed with inert material were used to study the nitrogen and oxygen requirements for biofiltration of methanol. Mixtures of methanol with inorganic nitrogen (NH3 or NO3) at nitrogen-to-carbon (N:C) ratios ranging from 0.015 to 0.4 were employed to reveal nitrogen effects on biofiltration. In the oxygen study, mixtures of air and oxygen at different oxygen contents were used. At low nitrogen levels, the removal rate increased with increasing N:C ratio for both NH3 and NO3. However, at high concentrations, NH3 had an inhibitory effect on biodegradation while the removal rate reached a plateau at high NO3 concentrations. Biofiltration with 63% oxygen in the inlet gas stream increased the maximum removal rate from 120 to 145 g/m3/hr after 3 days in comparison with biofiltration with air. However, a further increase in oxygen content up to 80% did not lead to a further improvement in biofilter performance, suggesting that both oxygen and biofilm thickness can be the relevant factors limiting biofilter performance and creating the plateau in removal rates at high loadings.  相似文献   

9.
The vertical diffusion of NaI solution from a horizontal fracture into and within the surrounding matrix was tracked and quantified over time using an artificially fractured chalk core (30x5 cm) and a second-generation X-ray computed tomography (CT) scanner. The different tracer-penetration distances imaged in the matrix above and below the horizontal fracture are indicative of a greater tracer mass penetrating into the lower matrix. The enhanced transport in the matrix below the fracture was related to the Rayleigh-Darcy instability induced by the density differences between the heavier tracer solution in the fracture (1.038) and the distilled water that had initially resided in the matrix. Our observations suggest that below the fracture, the tracer is propagated by an advection-diffusion process that is characterized by both higher rates and higher concentrations relative to its propagation by diffusion above the fracture. The experimental results suggest that the prediction of contaminant migration in a rock intersected by both vertical and horizontal (e.g. along bedding planes) fractures is difficult because of density effects that result in different solute-penetration rates.  相似文献   

10.
In situ chemical oxidation (ISCO) employing permanganate is an emerging technology that has been successful at enhancing mass removal from DNAPL source zones in unconsolidated media at the pilot-scale. The focus of this study was to evaluate the applicability of flushing a permanganate solution across two single vertical fractures in a laboratory environment to remove free phase DNAPL. The fracture experiments were designed to represent a portion of a larger fractured aquifer system impacted by a near-surface DNAPL spill over a shallow fractured rock aquifer. Each fracture was characterized by hydraulic and tracer tests, and the aperture field for one of the fractures was mapped using a co-ordinate measurement machine. Following DNAPL emplacement, a series of water and permanganate flushes were performed. To support observations from the fracture experiments, a set of batch experiments was conducted. The data from both fracture experiments showed that the post-oxidation effluent concentration was not impacted by the oxidant flush; however, changes in the aperture distribution, flow field, and flow rate were observed. These changes resulted in a significant decrease to the mass loading from the fractures, and were attributed to the build-up of oxidation by-products (manganese oxides and carbon dioxide) within the fracture which was corroborated by the batch experiment data and visual examination of the walls of one fracture. These results provide insight into the potential impact that a permanganate solution and oxidation by-products can have on the aperture distribution within a fracture and on DNAPL mass transfer rates. A permanganate flush or injection completed within a fractured rock aquifer may lead to the development of an insoluble product adjacent to the DNAPL which results in the reduction or complete elimination of advective regions near the DNAPL and reduces mass transfer rates. This outcome would have significant implications on the plume generating potential of the remaining DNAPL.  相似文献   

11.
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2–3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.  相似文献   

12.
Chu L  Wang J  Dong J  Liu H  Sun X 《Chemosphere》2012,86(4):409-414
In this study the treatment of coking wastewater was investigated by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Particular attention was paid to the effect of initial pH, dosage of H2O2 and to improvement in biodegradation. The results showed that higher COD and total phenol removal rates were achieved with a decrease in initial pH and an increase in H2O2 dosage. At an initial pH of less than 6.5 and H2O2 concentration of 0.3 M, COD removal reached 44-50% and approximately 95% of total phenol removal was achieved at a reaction time of 1 h. The oxygen uptake rate of the effluent measured at a reaction time of 1 h increased by approximately 65% compared to that of the raw coking wastewater. This indicated that biodegradation of the coking wastewater was significantly improved. Several organic compounds, including bifuran, quinoline, resorcinol and benzofuranol were removed completely as determined by GC-MS analysis. The advanced Fenton oxidation process is an effective pretreatment method for the removal of organic pollutants from coking wastewater. This process increases biodegradation, and may be combined with a classical biological process to achieve effluent of high quality.  相似文献   

13.
This study is aimed at exploring strategies for mineralization of refractory compounds in distillery effluent by anaerobic biodegradation/ozonation/aerobic biodegradation. Treatment of distillery spent-wash used in this research by anaerobic-aerobic biodegradation resulted in overall COD removal of 70.8%. Ozonation of the anaerobically treated distillery spent-wash was carried out as-is (phase I experiments) and after pH reduction and removal of inorganic carbon (phase II experiments). Introduction of the ozonation step resulted in an increase in overall chemical oxygen demand (COD) removal, with the highest COD removals of greater than 95% obtained when an ozone dose of approximately 5.3 mg ozone absorbed/mg initial total organic carbon was used. The COD removal during phase II experiments was slightly superior compared with phase I experiments at similar ozone doses. Moreover, efficiency of ozone absorption from the gas phase into distillery spent-wash aliquots was considerably enhanced during phase II experiments.  相似文献   

14.
Effects of pore volume-transmissivity correlation on transport phenomena   总被引:2,自引:0,他引:2  
The relevant velocity that describes transport phenomena in a porous medium is the pore velocity. For this reason, one needs not only to describe the variability of transmissivity, which fully determines the Darcy velocity field for given source terms and boundary conditions, but also any variability of the pore volume. We demonstrate that hydraulically equivalent media with exactly the same transmissivity field can produce dramatic differences in the displacement of a solute if they have different pore volume distributions. In particular, we demonstrate that correlation between pore volume and transmissivity leads to a much smoother and more homogeneous solute distribution. This was observed in a laboratory experiment performed in artificial fractures made of two plexiglass plates into which a space-dependent aperture distribution was milled. Using visualization by a light transmission technique, we observe that the solute behaviour is much smoother and more regular after the fractures are filled with glass powder, which plays the role of a homogeneous fault gouge material. This is due to a perfect correlation between pore volume and transmissivity that causes pore velocity to be not directly dependent on the transmissivity, but only indirectly through the hydraulic gradient, which is a much smoother function due to the diffusive behaviour of the flow equation acting as a filter. This smoothing property of the pore volume-transmissivity correlation is also supported by numerical simulations of tracer tests in a dipole flow field. Three different conceptual models are used: an empty fracture, a rough-walled fracture filled with a homogeneous material and a parallel-plate fracture with a heterogeneous fault gouge. All three models are hydraulically equivalent, yet they have a different pore volume distribution. Even if piezometric heads and specific flow rates are exactly the same at any point of the domain, the transport process differs dramatically. These differences make it important to discriminate in situ among different conceptual models in order to simulate correctly the transport phenomena. For this reason, we study the solute breakthrough and recovery curves at the extraction wells. Our numerical case studies show that discrimination on the basis of such data might be impossible except under very favourable conditions, i.e. the integral scale of the transmissivity field has to be known and small compared to the dipole size. If the latter conditions are satisfied, discrimination between the rough-walled fracture filled with a homogeneous material and the other two models becomes possible, whereas the parallel-plate fracture with a heterogeneous fault gouge and the empty fracture still show identifiability problems. The latter may be solved by inspection of aperture and pressure testing.  相似文献   

15.
The treatment of waste air containing phenol vapors in biotrickling filter   总被引:2,自引:0,他引:2  
Moussavi G  Mohseni M 《Chemosphere》2008,72(11):1649-1654
This research aimed at investigating the biodegradation of phenol contaminated-air streams in biotrickling filter. The effect of inlet concentration (200-1000 ppmv) and empty bed contact time (EBCT) (15-60 s) were investigated under steady state, transient and shock loading, and shutdown periods. Upon rapid start up operation, inlet phenol concentrations of up to 1000 ppmv did not significantly affect the performance of the biotrickling filter at EBCT of 60 s, so that removal efficiency was well greater than 99%. In addition, the EBCT as low as 30 s did not have detrimental effects on the efficiency of the bioreactor and phenol removal was greater than 99%. Decreasing the EBCT to 15s reduced the removal efficiency to around 92%. The maximum elimination capacity obtained in the biotrickling filter was 642 g(phenol) m(-3) h(-1), where the removal efficiency was only 57%. Results from the transient loading experiments revealed that the biotrickling filter could effectively handle the variations of the inlet loads without the phenol removal capacity being significantly affected.  相似文献   

16.
In the Negev desert, Israel, a chemical industrial complex is located over fractured Eocene chalk formations where transfer of water and solutes between fracture voids and matrix pores affects migration of contaminants in the fractures due to diffusion into the chalk matrix. This study tests sorption and sorption competition between contaminants in the chalk matrix to make it possible to evaluate the potential for contaminant attenuation during transport in fractures. Single solute sorption isotherms on chalk matrix material for five common contaminants (m-xylene, ametryn, 1,2-dichloroethane, phenanthrene, and 2,4,6-tribromophenol) were found to be nonlinear, as confirmed in plots of Kd versus initial solution concentration. Over the studied concentration ranges, m-xylene Kd varied by more than a factor of 100, ametryn Kd by a factor of 4, 1,2-dichloroethane Kd by more than a factor of 3, phenanthrene Kd by about a factor of 2, and 2,4,6-tribromophenol Kd by a factor of 10. It was earlier found that sorption is to the organic matter component of the chalk matrix and not to the mineral phases (Chemosphere 44 (2001) 1121). Nonlinear sorption isotherms indicate that there is at least some finite sorption domain. Bi-solute competition experiments with 2,4,6-tribromophenol as the competitor were designed to explore the nature of the finite sorption domain. All of the isotherms in the bi-solute experiments are more linear than in the single solute experiments, as confirmed by smaller variations in Kd as a function of initial solution concentration. For both m-xylene and ametryn, there is a small nonlinear component or domain that was apparently not susceptible to competition by 2,4,6-tribromophenol. The nonlinear sorption domain(s) is best expressed at low solution concentrations. Inert-solvent-normalized single and bi-solute sorption isotherms demonstrate that ametryn undergoes specific force interactions with the chalk sorbent. The volume percent of phenanthrene sorbed at the liquid solubility limit is calculated to be 13% v:v in both the single and bi-solute experiments. This value exceeds what may be reasonably interpreted as partitioning of phenanthrene into organic matter, despite the relative linearity of the phenanthrene sorption isotherm (compared with other compounds) in both single and bi-solute systems.  相似文献   

17.
An in situ test method to measure the aerobic biodegradation rates of hydrocarbons in contaminated soil is presented. The test method provides an initial assessment of bioventing as a remediation technology for hydrocarbon-contaminated soil. The in situ respiration test consists of ventilating the contaminated soil of the unsatiirated zone with air and periodically monitoring the depletion of oxygen (O2) and production of carbon dioxide (CO2) over time after the air is turned off. The test is simple to implement and generally takes about four to five days to complete. The test was applied at eight hydrocarbon-contaminated sites of different geological and climatic conditions. These sites were contaminated with petroleum products or petroleum fuels, except for two sites where the contaminants were primarily polycyclic aromatic hydrocarbons. Oxygen utilization rates for the eight sites ranged from 0.02 to 0.99 percent O2/hour. Estimated biodegradation rates ranged from 0.4 to 19 mg/kg of soil/day. These rates were similar to the biodegradation rates obtained from field and pilot studies using mass balance methods. Estimated biodegradation rates based on O2 utilization were generally more reliable (especially for alkaline soils) than rates based on CO2 production. CO2 produced from microbial respiration was probably converted to carbonate under alkaline conditions.  相似文献   

18.
A novel process for removal of nitrogen oxides (NOx) from flue gases with iron filings reduction following complex absorption in iron-ethylenediaminetetraacetic acid aqueous solution is proposed. The reaction mechanism involved in the process is discussed briefly. The parameters influencing the process, including the concentration of ferrous chelates, initial pH, amount of iron filings, temperature, flow rate of the flue gas, and inlet nitric oxide concentration and oxygen content of the flue gas, are researched in detail. The optimal NOx removal conditions are established. The regeneration and circular utilization of the absorption solution also is studied.  相似文献   

19.
在好氧条件下,对利用生物滴滤塔(bio-trickling filter,BTF)反硝化净化废气中NOx的过程进行了理论模型探讨,并用实验结果进行了验证。在分析NOx在BTF内传质以及生物降解过程的基础上,建立了NOx在气相和生物膜相的质量守恒方程,结合Fick定律和好氧条件下的Monod微生物反应动力学方程,最终得到了NOx在BTF中"吸附-微生物降解"过程的动力学方程。模型计算值与实验结果表明,BTF中好氧反硝化过程为一级反应过程,利用该模型可以较好地模拟进口浓度、停留时间等因素对出口浓度的影响,对实际应用具有指导意义。  相似文献   

20.
A mesoscale (21 m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3 mx4 m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten alpha parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum-based modeling of unsaturated flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly on discrete fracture patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号