首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities were determined in rat tissues after dermal exposure to pesticides. Two experiments were conducted in male SD rats, 190–210 g body weight. Acephate (ACP), methamidophos (MAP) and nicotine (NIC) were dissolved either individually or together in 0.25 mL of 50% ethanol, which contained: AP=12.6 or MAP 1.3 or NIC= 9.6 mg; EXP 1 ‐ individual pesticide exposure; 64 rats, 16/group; EXP 2 ‐ mixture of AP+MAP+NIC at levels of IX, 2X, 3X; 48 rats, 12/group; 0.25 mL of solution or ethanol (Controls) was applied to 25 mm2 area of shaved skin 3 times a week. Half the rats were terminated after 4 weeks and the rest after 4 weeks of stopping exposure. Single pesticides decreased erythrocyte (RBC) SOD by 17 % after exposure and in the NIC group after post exposure (P#0.05). Increasing concentrations of AP+MAP+NIC mixture elevated RBC SOD by 22 % in the 2X and 3X groups and CAT by 13 % in the 3X group (P#0.05); post exposure increased RBC SOD by 2–3 fold and CAT activity by 13 % in all 3 groups. Liver GPX increased by 30–40 % and CAT decreased by 12 % in all exposed and post exposed groups (P#0.05). The results suggest that dermal exposure to mixtures of pesticides can selectively induce SOD, CAT and GPX activities in RBC and liver.  相似文献   

2.
Two experiments were conducted in male Sprague Dawley (SD) rats (175-200 g) to determine changes in the activities of endogenous antioxidants superoxide dismutase (SOD), glutathione peroxidase (GPX), cytochrome P450 (ethoxyresorufin deethylase; EROD) and concentrations of glutathione (GSH) in the blood, liver, and small intestinal mucosa (IM). In both experiments, six rats/group were fed diets based on the AIN-93M diet (Control) or the same modified to contain either 500 mg calcium (Low Ca), 7 mg Zn (Low Zn): 2 mg copper (Low Cu), 60 mg zinc (High Zn) or 12 mg copper (High Cu) in the following combination: Control, LCa/LZn, LCa/LZn/LCu, or HZn/HCu, with and without a pesticide mixture containing acephate, endosulfan, and thiram at 25% LD50 for four or two weeks. Pesticides decreased feed intake and weight gain in all groups by 28%. Erythrocyte SOD was higher than control in the HZn/HCu group and in the LCa/LZn/LCu and HZn/HCu groups with pesticide (P#0.05). Plasma GPX declined by more than 55% in all the groups with and without pesticides compared to the control. The LCa/LZn/LCu and HZn/HCu diets with and without pesticides reduced GPX in the IM by up to 88%, 40%, and 74%, respectively, than the control. Plasma GSH was about 20% higher than the control in most groups with and without pesticides in the diet. Liver and IM GSH were higher than the control in the HZn/HCu group, whereas IM GSH concentrations were lower than the control in the LCa/LZn and LCa/LZn/LCu groups (P#0.05). All three experimental diets with and without pesticides had a significant effect on liver EROD activity (P#0.05). The results indicate that endogenous antioxidants and EROD were independently modified by dietary zinc and copper levels and pesticides.  相似文献   

3.

Two experiments were conducted in male Sprague Dawley (SD) rats (175–200 g) to determine changes in the activities of endogenous antioxidants superoxide dismutase (SOD), glutathione peroxidase (GPX), cytochrome P450 (ethoxyresorufin deethylase; EROD) and concentrations of glutathione (GSH) in the blood, liver, and small intestinal mucosa (IM). In both experiments, six rats/group were fed diets based on the AIN-93M diet (Control) or the same modified to contain either 500 mg calcium (Low Ca), 7 mg Zn (Low Zn): 2 mg copper (Low Cu), 60 mg zinc (High Zn) or 12 mg copper (High Cu) in the following combination: Control, LCa/LZn, LCa/LZn/LCu, or HZn/HCu, with and without a pesticide mixture containing acephate, endosulfan, and thiram at 25% LD50 for four or two weeks. Pesticides decreased feed intake and weight gain in all groups by 28%. Erythrocyte SOD was higher than control in the HZn/HCu group and in the LCa/LZn/LCu and HZn/HCu groups with pesticide (P# 0.05). Plasma GPX declined by more than 55% in all the groups with and without pesticides compared to the control. The LCa/LZn/LCu and HZn/HCu diets with and without pesticides reduced GPX in the IM by up to 88%, 40%, and 74%, respectively, than the control. Plasma GSH was about 20% higher than the control in most groups with and without pesticides in the diet. Liver and IM GSH were higher than the control in the HZn/HCu group, whereas IM GSH concentrations were lower than the control in the LCa/LZn and LCa/LZn/LCu groups (P#0.05). All three experimental diets with and without pesticides had a significant effect on liver EROD activity (P#0.05). The results indicate that endogenous antioxidants and EROD were independently modified by dietary zinc and copper levels and pesticides.  相似文献   

4.
Two experiments were conducted in male SD rats (225-250 g) to determine changes in the activities of endogenous antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and concentrations of glutathione (GSH) in tissues after exposure to low doses of endosulfan and chlorpyrifos using a whole body exposure technique. In both experiments, 6 rats/group were exposed 3 hr/day, 5 days/week for 30 days to: 0 (control), 5, 10, 20, 40 and 60% of LD50 of either pesticide in 50% ethanol; actual concentrations were: endosulfan = 0, 0.5, 1.0, 2.0, 4.0, 6.0 mg/250 g body weight; chlorpyrifos = 0, 1.9, 3.8, 7.6, 15.2, and 22.8 mg/250 g body weight. Endosulfan decreased erythrocyte SOD by 21% in all groups and chlorpyrifos increased SOD by 18% in groups 40 and 60. Liver SOD was 12%-20% lower after endosulfan exposure; lung SOD was altered: endosulfan decreased activity by 21% and 51% and chlorpyrifos by 58 and 75% in the 40 and 60 groups, respectively (P < or = 0.05). Both pesticides increased plasma GPX activity at lower levels and reduced it by 26% and 19% in groups 40 and 60, respectively (P < or = 0.05). Liver GPX increased in the 60 group and lung GPX declined between 20% and 38% after endosulfan exposure. GSH in the liver and lung: endosulfan reduced GSH by about 30% at lower levels and increased by 41% or 70% at higher levels; chlorpyrifos decreased GSH by 28-40% in 20 and 60 groups, respectively (P < or = 0.05). Exposure to low, increasing levels of endosulfan and chlorpyrifos can differentially modify endogenous antioxidants SOD, GPX and GSH, which may lead to the development of oxidative stress in some tissues.  相似文献   

5.
Li M  Hu C  Zhu Q  Chen L  Kong Z  Liu Z 《Chemosphere》2006,62(4):565-572
The metal-induced lipid peroxidation and response of antioxidative enzymes have been investigated in the marine microalga Pavlova viridis to understand the mechanisms of metal resistance in algal cells. We have analyzed superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) activities and glutathione (GSH) contents in microalgal cells grown at different concentrations of copper and zinc. In response to each metal, lipid peroxidation was enhanced with the increase of concentrations, as an indication of the oxidative damage caused by metal concentration assayed in the microalgae cells. Exposure of P. viridis to the two metals caused changes in enzyme activities in a different manner, depending on the metal assayed: after copper treatments, total SOD activity was enhanced, while it was reduced after zinc exposure. Copper and zinc stimulated the activities of CAT and GSH whereas GPX showed a remarkable increase in activity in response to copper treatments and decrease after zinc treatments. These results suggest that an activation of some antioxidant enzymes was enhanced to counteract the oxidative stress induced by the two metals.  相似文献   

6.
7.
Coontail (Ceratophyllum demersum L.) plants when exposed to various concentrations of Pb (1-100microM) for 1-7days, exhibited both phytotoxic and tolerance responses. The specific responses were function of concentration and duration. Plants accumulated 1748mugPbg(-1) dw after 7d which reflected its metal accumulation ability, however most of the metal (1222microgg(-1) dw, 70%) was accumulated after 1d exposure only. The toxic effect and oxidative stress caused by Pb were evident by the reduction in biomass and photosynthetic pigments and increase in malondialddehyde (MDA) content and electrical conductivity with increase in metal concentration and exposure duration. Morphological symptoms of senescence phenomena such as chlorosis and fragmentation of leaves were observed after 7d. The metal tolerance and detoxification strategy adopted by the plant was investigated with reference to antioxidant system and synthesis of phytochelatins. Protein and antioxidant enzymes viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2) showed induction at lower concentration and duration followed by decline. All enzymes except GPX showed maximum activity after 1d. An increase in cysteine, non-protein thiols (NP-SH) and glutathione (GSH) content was observed at moderate exposure conditions followed by decline. Phytochelatins (PC(2) and PC(3)) were synthesized to significant levels at 10 and 50microM Pb with concomitant decrease in GSH levels. Thus production of PCs seems important for the detoxification of metal, however it may lead to depletion of GSH and consequently oxidative stress. Results suggest that plants responded positively to moderate Pb concentrations and accumulated high amount of metal. Due to metal accumulation coupled with detoxification potential, the plant appears to have potential for its use as phytoremediator species in aquatic environments having moderate pollution of Pb.  相似文献   

8.
Pang X  Wang DH  Xing XY  Peng A  Zhang FS  Li CJ 《Chemosphere》2002,47(10):1033-1039
In order to improve the plant ability to resist lead stress, effect of 0.05 mg/l La(NO3)3 on the activities of catalase (CAT), superoxide dismutase (SOD), the level of malondialdehyde (MDA) in wheat seedlings under lead stress was studied. The effect of La3+ on plant growth, chlorophyll content in wheat seedlings after adding 0, 50, 100 mg/l Pb(NO3)3 to the nutrient solution for 12 days was observed. The plants were grown in nutrient solution in a strictly controlled climate growth room. Effects of La3+ (with La treatment) compared with check groups was evidently observed. The activities of SOD and CAT in root were enhanced 0.45–1.69 times and 33.20–77.77% respectively and MDA content was reduced 11.05–27.49% in root after treatments from the second day till the end of the experiment. The activities of SOD and CAT was found to be increased slightly (P<0.05) and MDA content decreased in shoot and root of wheat seedlings by La3+ under lead stress within five days after treatments compared with Pb1 and Pb2 groups. It was assumed that antioxidant enzymes was found to be increased by La(NO3)3, the antioxidant potential of the wheat seedlings to resist lead stress enhanced. It is suggested that La3+ could be used to resist lead stress at the beginning under stress while the stress was not so serious.  相似文献   

9.
The redox cycling of heavy metals as well as their interactions with organic pollutants is a major contributor to the oxidative stress resulting from aquatic pollution. Therefore, in order to evaluate beta-naphthoflavone (BNF), Cu and BNF/Cu-induced oxidative stress with single and subsequent exposures, research was carried out in European eel (Anguilla anguilla L.). Eel gill and kidney oxidative stress biomarker responses such as lipid peroxidation (LPO), glutathione peroxidase (GPX), catalase (CAT), glutathione S-transferase (GST) and total reduced glutathione (GSH) to a single 24 h exposure to two copper concentrations (Cu-1 microM, 2.5 microM) and BNF (2.7 microM) with or without 24 h BNF (2.7 microM) pre-exposure were investigated. Cu exposure alone showed a significant gill GST increase at the lowest concentration and GSH content decrease for the highest concentration. Double BNF exposure in gill demonstrated a significant increase in LPO, CAT, GPX and GST, as well as a decrease in GSH content. However, in sequential BNF/Cu exposures, only the highest Cu concentration exhibited a significant increase in LPO and GSH as well as a decrease in GPX (vs. BNF + CW). In kidney, Cu exposure alone showed a significant CAT and GSH contents decrease for both concentrations, and at highest concentration in GPX; as well as GST increase at the lowest concentration. Double BNF exposure showed a significant increase in LPO and GST. Nevertheless, in sequential BNF/Cu exposures, both concentrations exhibited a significant increase in LPO and decrease in GSH contents. Moreover, LPO was also increased significantly in comparison to BNF+CW and the equivalent Cu exposures without BNF pre-exposure. Concerning GPX, a significant increase was observed at highest Cu concentration. In GST, a significant decrease at the lowest Cu concentration and increase at the highest Cu concentration was observed. Summarizing, a simple copper or BNF exposures have no ability to induce LPO in both gill and kidney. However, double BNF exposure induced LPO in both organs and sequential BNF/Cu exposures potentiated the risk of peroxidative damage occurrence in both organs. BNF/Cu interference on antioxidant responses differs between the studied organs. In gill, antagonistic effects were denoted with probable reflex in terms of peroxidative damage increase. In kidney, BNF pre-exposure prevented CAT and GPX inhibition by copper; though, no advantage of this effect was perceptible as defence against LPO generation. Considering BNF as a surrogate for a PAH and the detected interactions with copper, as well as the likelihood that these effects would be observed in polluted ecosystems, current results demonstrate their relevance to actual ecological exposures contributing to a better knowledge on oxidative stress mechanisms in fish.  相似文献   

10.
In this study, a cohort of farmers from the Mateur region in the North of Tunisia, were interviewed and examined for the biochemical effects of pesticides. We studied their haematological profile, lipid parameters, serum markers of nephrotoxicity and hepatotoxicity. We also evaluated the activities of Butyrylcholinesterase (BChE), Acetylcholinesterase (AChE) and thiolactonase-paroxonase (PON). Moreover, lipid peroxidation and activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were determined. The duration of pesticide use and the farmers’ age were considered in the analysis. Our results revealed significant differences in some haematological parameters, in liver and kidney functions, in the lipidic status of the pesticide-exposed group. We also reported an increase in the index of incidence of cardiovascular risk in farmer populations. A significant decrease in AChE, BChE and PON levels was found among farmers. Lipid peroxidation, however, increased. The activities of SOD and CAT were remarkably elevated in farmer populations. There was a significant relation between changes in biological markers, the duration of pesticide use and the farmers’ age. This study indicates that a long-term exposure to pesticides may play an important role in the development of vascular diseases via metabolic disorders of lipoproteins, lipid peroxidation and oxidative stress, inhibition of BChE and decrease in thiolactonase-PON levels.  相似文献   

11.
The aim of the experiment was to study the influence of acrylamide (ACR) on major antioxidants in the lungs of Swiss mice. The experiment was conducted on male mice that were 8 weeks old. The mice were exposed to ACR at a single dose of 26 µg per animal, which was administered orally. Mice were anesthetized 3, 24, and 48 h after the ACR gavage. Next, histopathological and biochemical analyses of GSH concentration and the activities of SOD, GPx, and CAT were performed in the lungs. Animals exposed to ACR showed demonstrated symptoms of inflammation in lungs, hypertrophy of bronchiolar epithelium, and hyperplasia of alveolar epithelium. GSH concentration was significantly decreased 3 h after ACR gavage, which was followed by a significant increase 48 h after ACR gavage. Similarly, SOD and GPx demonstrated decreased activities 3 h after exposure to ACR, followed by increased activities 48 h after exposure to ACR. CAT activity was significantly increased 24 and 48 h after exposure to ACR. We conclude that oral exposure of mice to ACR results in alterations of lung microstructure, accompanied by the symptoms of redox imbalance.  相似文献   

12.
Qiu RL  Zhao X  Tang YT  Yu FM  Hu PJ 《Chemosphere》2008,74(1):6-12
A hydroponic experiment was carried out to study the effect of cadmium (Cd) on growth, Cd accumulation, lipid peroxidation, reactive oxygen species (ROS) content and antioxidative enzymes in leaves and roots of Arabis paniculata F., a new Cd hyperaccumuator found in China. The results showed that 22-89 microM Cd in solution enhanced the growth of A. paniculata after three weeks, with 21-27% biomass increase compared to the control. Cd concentrations in shoots and roots increased with increasing Cd supply levels, and reached a maximum of 1662 and 8670 mg kg(-1) Cd dry weight at 178 microM Cd treatment, respectively. In roots, 22-89 microM Cd reduced the content of malondialdehyde (MDA), superoxide (O(2)(-1)) and H(2)O(2) as well as the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR). In leaves, the contents of MDA, O(2)(-1) and H(2)O(2) remained unaffected by 22-89 microM Cd, while 178 microM Cd treatment significantly increased the MDA content, 69.5% higher than that of the control; generally, the activities of SOD, catalase (CAT), GPX and APX showed an increasing pattern with increasing Cd supply levels. Our present work concluded that A. paniculata has a great capability of Cd tolerance and accumulation. Moderate Cd treatment (22-89 microM Cd) alleviated the oxidative stress in roots, while higher level of Cd addition (178 microM) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

13.
In recent decades, biodegradation has been considered a promising and eco-friendly way to eliminate organophosphorus pesticides (OPs) from the environment. To enrich current biodegrading-enzyme resources, an alkaline phosphatase (AP3) from Bacillus amyloliquefaciens YP6 was characterized and utilized to test the potential for new applications in the biodegradation of five broad-spectrum OPs. Characterization of AP3 demonstrated that activity was optimal at 40?°C and pH 10.3. The activity of AP3 was enhanced by Mg2+, Ca2+, and Cu2+, and strongly inhibited by Mn2+, EDTA, and L-Cys. Compared to disodium phenyl phosphate, p-nitrophenyl phosphate (pNPP) was more suitable to AP3, and the Vm, Km, kcat, kcat/Km values of AP3 for pNPP were 4,033?U mg?1, 12.2?mmol L?1, 3.3?×?106 s?1, and 2.7?×?108 s?1mol?1L, respectively. Degradation of the five OPs, which included chlorpyrifos, dichlorvos, dipterex, phoxim, and triazophos, was 18.7%, 53.0%, 5.5%, 68.3%, and 96.3%, respectively, after treatment with AP3 for 1?h. After treatment of the OP for 8?h, AP3 activities remained more than 80%, with the exception of phoxim. It can be postulated that AP3 may have a broad OP-degradation ability and could possibly provide excellent potential for biodegradation and bioremediation in polluted ecosystems.  相似文献   

14.
Under laboratory conditions, ecotoxicological effects of chlorpromazine (CPZ) on freshwater goldfish (Carassius auratus) were examined using the toxic culture experiment. The results showed that the median lethal concentration (LC(50)) of CPZ toxic to Carassius auratus in 24, 48 and 96 h was 1.11, 0.43 and 0.32 mg/L, respectively. Thus, CPZ is an extreme toxicant to goldfish. Furthermore, there were significantly positive correlations between the ecotoxicological effects of CPZ and its concentrations, and the toxicity became higher as the exposure time increased. The activity of superoxide dismutase (SOD) and catalase (CAT) in goldfish livers was significantly influenced by CPZ. At the same exposure time, the activity of SOD reduced first, and increased then, whereas the activity of CAT enhanced first and decreased then. At the same exposure levels of CPZ, the activity of SOD and CAT changed similarly, decreased first, then increased and decreased at last. Within the range of exposure concentrations, the changes in the activity of CAT can more easily reflect the oxidation stress in Carassius auratus by CPZ than those of SOD.  相似文献   

15.
16.
17.
Under laboratory conditions, ecotoxicological effects of chlorpromazine (CPZ) on freshwater goldfish (Carassius auratus) were examined using the toxic culture experiment. The results showed that the median lethal concentration (LC50) of CPZ toxic to Carassius auratus in 24, 48 and 96 h was 1.11, 0.43 and 0.32 mg/L, respectively. Thus, CPZ is an extreme toxicant to goldfish. Furthermore, there were significantly positive correlations between the ecotoxicological effects of CPZ and its concentrations, and the toxicity became higher as the exposure time increased. The activity of superoxide dismutase (SOD) and catalase (CAT) in goldfish livers was significantly influenced by CPZ. At the same exposure time, the activity of SOD reduced first, and increased then, whereas the activity of CAT enhanced first and decreased then. At the same exposure levels of CPZ, the activity of SOD and CAT changed similarly, decreased first, then increased and decreased at last. Within the range of exposure concentrations, the changes in the activity of CAT can more easily reflect the oxidation stress in Carassius auratus by CPZ than those of SOD.  相似文献   

18.
A cross-section analytical study was conducted to evaluate the risk of pesticide exposure to those applying the Class II pesticides 2,4-D and paraquat in the paddy-growing areas of Kerian, Perak, Malaysia. It investigated the influence of weather on exposure as well as documented health problems commonly related to pesticide exposure. Potential inhalation and dermal exposure for 140 paddy farmers (handlers of pesticides) were assessed. Results showed that while temperature and humidity affected exposure, windspeed had the strongest impact on pesticide exposure via inhalation. However, the degree of exposure to both herbicides via inhalation was below the permissible exposure limits set by United States National Institute of Occupational Safety and Health (NIOSH). Dermal Exposure Assessment Method (DREAM) readings showed that dermal exposure with manual spraying ranged from moderate to high. With motorized sprayers, however, the level of dermal exposure ranged from low to moderate. Dermal exposure was significantly negatively correlated with the usage of protective clothing. Various types of deleterious health effects were detected among users of manual knapsack sprayers. Long-term spraying activities were positively correlated with increasing levels of the gamma-glutamyl transpeptidase (GGT) liver enzyme. The type of spraying equipment, usage of proper protective clothing and adherence to correct spraying practices were found to be the most important factors influencing the degree of pesticide exposure among those applying pesticides.  相似文献   

19.
A cross-section analytical study was conducted to evaluate the risk of pesticide exposure to those applying the Class II pesticides 2,4-D and paraquat in the paddy-growing areas of Kerian, Perak, Malaysia. It investigated the influence of weather on exposure as well as documented health problems commonly related to pesticide exposure. Potential inhalation and dermal exposure for 140 paddy farmers (handlers of pesticides) were assessed. Results showed that while temperature and humidity affected exposure, windspeed had the strongest impact on pesticide exposure via inhalation. However, the degree of exposure to both herbicides via inhalation was below the permissible exposure limits set by United States National Institute of Occupational Safety and Health (NIOSH). Dermal Exposure Assessment Method (DREAM) readings showed that dermal exposure with manual spraying ranged from moderate to high. With motorized sprayers, however, the level of dermal exposure ranged from low to moderate. Dermal exposure was significantly negatively correlated with the usage of protective clothing. Various types of deleterious health effects were detected among users of manual knapsack sprayers. Long-term spraying activities were positively correlated with increasing levels of the gamma-glutamyl transpeptidase (GGT) liver enzyme. The type of spraying equipment, usage of proper protective clothing and adherence to correct spraying practices were found to be the most important factors influencing the degree of pesticide exposure among those applying pesticides.  相似文献   

20.
The role of Phragmites sp. in phytoremediation of wastewaters containing azo dyes is still, in many ways, at its initial stage of investigation. This plant response to the long-term exposure to a highly conjugated di-azo dye (Direct Red 81, DR81) was assessed using a vertical flow constructed wetland, at pilot scale. A reed bed fed with water was used as control. Changes in photosynthetic pigment content in response to the plant contact with synthetic DR81 effluent highlight Phragmites plasticity. Phragmites leaf enzymatic system responded rapidly to the stress imposed; in general, within 1 day, the up-regulation of foliar reactive oxygen species-scavenging enzymes (especially superoxide dismutase, ascorbate peroxidase (APX), glutathione peroxidase (GPX) and peroxidase) was noticed as plants entered in contact with synthetic DR81 effluent. This prompt activation decreased the endogenous levels of H2O2 and the malonyldialdehyde content beyond reference values. Glutathione S-transferase (GST) activity intensification was not enough to cope with stress imposed by DR81. GPX activity was pivotal for the detoxification pathways after a 24-h exposure. Carotenoid pool was depleted during this shock. After the imposed DR81 stress, plants were harvested. In the next vegetative cycle, Phragmites had already recovered from the chemical stress. Principal component analysis (PCA) highlights the role of GPX, GST, APX, and carotenoids along catalase (CAT) in the detoxification process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号