首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Enteric fermentation in livestock is an important source of anthropogenic methane emission. India, with its large livestock population, is estimated to contribute 10.8 Tg of methane annually from this source. An evaluation of various methane mitigation options indicate that some of the available technologies like, diet supplementation with feed additive and molasses urea product are highly cost effective in reducing enteric methane emissions. The gross cost of methane abatement from use of feed additive monensin premix ranges from €0.6 to €1.8/ton CO2 equivalent, for buffaloes and indigenous cows, respectively. The gross cost of enteric methane mitigation from supplementing molasses urea products and dietary manipulation through increased concentrate feeding is much higher. But, as the monetary value of the increased milk production on application of these technologies was higher than the annual cost of reduction strategy for buffaloes and crossbred cows, the net costs of the former mitigation option was negative for buffaloes (€-28.1/ton CO2) and of the latter for crossbred cows (€-7.0/ton CO2,). The availability of cost-effective technologies suggest that the methane mitigation projects under CDM, can be planned in the Indian dairy sector to the mutual benefit of countries with emission targets and India. The vast dairy animal population of India and resulting methane emissions provide good opportunity these countries to buy reasonable quantum of emission credits from projects in India. Such projects will work to the benefit to India by providing a tool for technology transfer to increase animal productivity and attract capital that assists in more prosperous and environmental friendly milk production in the country.  相似文献   

2.
The concept of joint implementation as a way to implement climate change mitigation projects in another country has been controversial ever since its inception. Developing countries have raised numerous issues at the project-specific technical level and broader concerns having to do with equity and burden sharing. This paper summarizes the findings of studies for Brazil, India, Mexico and South Africa, four countries that have large greenhouse gas emissions and are heavily engaged in the debate on climate change projects under the Kyoto Protocol. The studies examine potential or current projects/programs to determine whether eight technical concerns about joint implementation can be adequately addressed. They conclude that about half the concerns were minor or well managed by project developers, but concerns about additionality of funds, host country institutions and guarantees of performance (including the issues of baselines and possible leakage) need much more effort to be adequately addressed. All the papers agree on the need to develop institutional arrangements for approving and monitoring such projects in each of the countries represented. The case studies illustrate that these projects have the potential to bring new technology, investment, employment and ancillary socioeconomic and environmental benefits to developing countries. These benefits are consistent with the goal of sustainable development in the four study countries. At a policy level, the studies' authors note that in their view, the Annex I countries should consider limits on the use of jointly implemented projects as a way to get credits against their own emissions at home, and stress the importance of industrialized countries developing new technologies that will benefit all countries. The authors also observe that if all countries accepted caps on their emissions (with a longer time period allowed for developing countries to do so) project-based GHG mitigation would be significantly facilitated by the improved private investment climate.  相似文献   

3.
我国煤矿低浓度瓦斯排放及利用现状分析   总被引:11,自引:0,他引:11  
通过对我国煤矿低浓度瓦斯排放及利用现状的调研与分析,总结和发现煤矿抽放瓦斯及风排瓦斯排放的规律与特点,以更好地选择适宜的技术及政策措施,实现煤矿瓦斯低浓度瓦斯资源化利用以及达到“以用促抽、以抽促采、抽(放)风(排)并用”的目标。  相似文献   

4.
The objectives of this research are to assess the greenhouse gas mitigation potential of carbon policies applied to the ruminant livestock sector [inclusive of the major ruminant species—cattle (Bos Taurus and Bos indicus), sheep (Ovis aries), and goats (Capra hircus)]—with particular emphasis on understanding the adjustment challenges posed by such policies. We show that market-based mitigation policies can greatly amplify the mitigation potential identified in marginal abatement cost studies by harnessing powerful market forces such as product substitution and trade. We estimate that a carbon tax of US$20 per metric ton of carbon dioxide (CO2) equivalent emissions could mitigate 626 metric megatons of CO2 equivalent ruminant emissions per year (MtCO2-eq year?1). This policy would also incentivize a restructuring of cattle production, increasing the share of cattle meat coming from the multiproduct dairy sector compared to more emission intensive, single purpose beef sector. The mitigation potential from this simple policy represents an upper bound because it causes ruminant-based food production to fall and is therefore likely to be politically unpopular. In the spirit of the Paris Agreement (UNFCCC 2015), which expresses the ambition of reducing agricultural emissions while protecting food production, we assess a carbon policy that applies both a carbon tax and a subsidy to producers to manage the tradeoff between food production and mitigation. The policy maintains ruminant production and consumption levels in all regions, but for a much lower global emission reduction of 185 MtCO2-eq year?1. This research provides policymakers with a quantitative basis for designing policies that attempt to trade off mitigation effectiveness with producer and consumer welfare.  相似文献   

5.
The aim of this paper is to assess how policy goals in relation to the promotion of green growth, energy security, pollution control and greenhouse gas (GHG) emissions reductions have been aligned in policies that have been implemented in selected countries during the last decades as a basis for discussing how a multi objective policy paradigm can contribute to future climate change mitigation. The paper includes country case studies from Brazil, Canada, China, the European Union (EU), India, Japan, Mexico, Nigeria, South Africa, South Korea and the United States covering renewable energy options, industry, transportation, the residential sector and cross-sectoral policies. These countries and regions together contribute more than two thirds of global GHG emissions. The paper finds that policies that are nationally driven and that have multiple objectives, including climate-change mitigation, have been widely applied for decades in both developing countries and industrialised countries. Many of these policies have a long history, and adjustments have taken place based on experience and cost effectiveness concerns. Various energy and climate-change policy goals have worked together in these countries, and in practice a mix of policies reflecting specific priorities and contexts have been pursued. In this way, climate-change mitigation has been aligned with other policy objectives and integrated into broader policy packages, though in many cases specific attention has not been given to the achievement of large GHG emission reductions. Based on these experiences with policy implementation, the paper highlights a number of key coordination and design issues that are pertinent to the successful joint implementation of several energy and climate-change policy goals.  相似文献   

6.
Full accounting of the greenhouse gas budget in the forestry of China   总被引:1,自引:0,他引:1  
Forest management to increase carbon (C) sinks and reduce C emissions and forest resource utilization to store C and substitute for fossil fuel have been identified as attractive mitigation strategies. However, the greenhouse gas (GHG) budget of carbon pools and sinks in China are not fully understood, and the forestry net C sink must be determined. The objective of this study was to analyze potential forest management mitigation strategies by evaluating the GHG emissions from forest management and resource utilization and clarify the forestry net C sink, and its driving factors in China via constructing C accounting and net mitigation of forestry methodology. The results indicated that the GHG emissions under forest management and resource utilization were 17.7 Tg Ce/year and offset 8.5% of biomass and products C sink and GHG mitigation from substitution effects from 2000 to 2014, resulting in a net C sink of 189.8 Tg Ce/year. Forest resource utilization contributed the most to the national forestry GHG emissions, whereas the main driving factor underlying regional GHG emissions varied. Afforestation dominated the GHG emissions in the southwest and northwest, whereas resource utilization contributed the most to GHG emissions in the north, northeast, east, and south. Furthermore, decreased wood production, improved product use efficiency, and forests developed for bioenergy represented important mitigation strategies and should be targeted implementation in different regions. Our study provided a forestry C accounting in China and indicated that simulations of these activities could provide novel insights for mitigation strategies and have implications for forest management in other countries.  相似文献   

7.
在当今能源紧缺和环境污染严重的前提下,煤层气作为一类非常规天然气,越来越受到人们的重视。传统观点认为煤层甲烷多由高温热解产生,但是根据甲烷的同位素特征来判断,世界很多地方(包括我国鄂尔多斯、淮南等地)的煤层气多属生物成因或者生物和热成因混合。同时,越来越多的生物学证据也表明种类多样的产甲烷相关微生物广泛存在于煤层伴生地层水中或者煤层样品中。这也说明生物成因的煤层气仍然在不断地产生,这也为利用生物方法促进煤层气产生和利用提供了良好的契机。本文将介绍产甲烷微生物种群构成与功能、产气途径、影响产气速率的因素,探讨我国微生物强化产煤层气并实现产业化的应用前景。  相似文献   

8.
A recent assessment of agricultural greenhouse gas (GHG) emissions has demonstrated significant potential for mitigation, but suggests that the full mitigation will not be realized due to significant barriers to implementation. In this paper, we explore the constraints and barriers to implementation important for GHG mitigation in agriculture. We also examine how climate and non-climate policy in different regions of the world has affected agricultural GHG emissions in the recent past, and how it may affect emissions and mitigation implementation in the future. We examine the links between mitigation and adaptation and drives for sustainable development and the potential for agricultural GHG mitigation in the future.We describe how some countries have initiated climate and non-climate policies believed to have direct effects or synergistic effects on mitigating GHG emissions from agriculture. Global sharing of innovative technologies for efficient use of land resources and agricultural chemicals, to eliminate poverty and malnutrition, will significantly mitigate GHG emissions from agriculture.Previous studies have shown that as less than 30% of the total biophysical potential for agricultural GHG mitigation might be achieved by 2030, due to price- and non-price-related barriers to implementation. The challenge for successful agricultural GHG mitigation will be to remove these barriers by implementing creative policies. Identifying policies that provide benefits for climate, as well as for aspects of economic, social and environmental sustainability, will be critical for ensuring that effective GHG mitigation options are widely implemented in the future.  相似文献   

9.
Taking the European Union (EU) as a case study, we simulate the application of non-uniform national mitigation targets to achieve a sectoral reduction in agricultural non-carbon dioxide (CO2) greenhouse gas (GHG) emissions. Scenario results show substantial impacts on EU agricultural production, in particular, the livestock sector. Significant increases in imports and decreases in exports result in rather moderate domestic consumption impacts but induce production increases in non-EU countries that are associated with considerable emission leakage effects. The results underline four major challenges for the general integration of agriculture into national and global climate change mitigation policy frameworks and strategies, as they strengthen requests for (1) a targeted but flexible implementation of mitigation obligations at national and global level and (2) the need for a wider consideration of technological mitigation options. The results also indicate that a globally effective reduction in agricultural emissions requires (3) multilateral commitments for agriculture to limit emission leakage and may have to (4) consider options that tackle the reduction in GHG emissions from the consumption side.  相似文献   

10.
陈春赐  吕永龙  贺桂珍 《环境科学》2022,43(11):4905-4913
为实现碳达峰碳中和目标,中国正致力于推动能源低碳化转型,这促进能源由煤炭向油气资源的转变.因此,中国石油和天然气系统(油气系统)的甲烷(CH4)排放日益受到关注.逸散排放包括设备泄漏、排空和火炬燃烧,涉及油气资源的开发、生产、运输、储存和分配等过程.但目前油气系统CH4逸散排放缺乏统一的核算方法,逸散排放量亦未被纳入国家温室气体清单统计之中.基于相关方法,评估了1980~2020年中国油气系统的CH4逸散排放.结果表明,油气系统的CH4逸散排放随着油气资源的生产和消费增长而快速增加,由1980年不足60万t增长至2020年的超过260万t.石油系统和天然气系统在2020年的CH4逸散排放分别达到约60万t和200万t,是1980年的1.38倍和16.6倍.油气系统的CH4逸散主要源于天然气生产、石油生产、天然气分配、天然气运输和储存,分别占总排放的41%、20%、18%和13%.天然气管道是主要的逸散设施.相比于常规油气资源开发,非常规油气资源开发的排放强度更高.研究完善了CH4逸散排放清单,可为CH4减排提供重要科学数据支持.  相似文献   

11.
The Clean Development Mechanism (CDM) of the Kyoto Protocol provides Annex-I (industrialized) countries with an incentive to invest in emission reduction projects in non-Annex-I (developing) countries to achieve a reduction in CO2 emissions at lowest cost that also promotes sustainable development in the host country. Biomass gasification projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development. However, there is only one biomass gasifier project registered under the CDM so far. In this study, an attempt has been made to assess the economic potential of biomass gasifier-based projects under CDM in India. The preliminary estimates based on this study indicate that there is a vast theoretical potential of CO2 mitigation by the use of biomass gasification projects in India.The results indicate that in India around 74 million tonne agricultural residues as a biomass feedstock can be used for energy applications on an annual basis. In terms of the plant capacity the potential of biomass gasification projects could reach 31 GW that can generate more than 67 TWh electricity annually. The annual CER potential of biomass gasification projects in India could theoretically reach 58 million tonnes. Under more realistic assumptions about diffusion of biomass gasification projects based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 0.4–1.0 million and 1.0–3.0 million by 2020. The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of biomass gasification projects is not likely to reach its maximum estimated potential in another 50 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced.  相似文献   

12.
我国"九五"期间环评火电项目SO2控制分析   总被引:2,自引:2,他引:0  
从我国"九五"期间新建、改建、扩建的83个燃煤火电项目的环境影响评价报告书中取得相关数据,采取实证研究的办法,对这些项目的SO2控制情况进行分析.结果表明:这83个项目中有87%的计划装机容量使用含硫量小于1%的低硫煤;大于31%的计划装机容量采取了脱硫措施.从国家鼓励的增产不增污的效果来看,自1997年起,区域内实现增产不增污的项目比例较高,达到60%以上,2000年达到了100%.同时,火电厂内实现增产不增污的项目比例也逐年上升.可以看出"九五"期间提出的有关新建火电厂的SO2控制政策在环境影响评价这一阶段得到了很好的执行.提出在今后的SO2控制政策设计中要注意浓度控制和总量控制的政策协调性.   相似文献   

13.
This paper employs a review of the technical literature to estimate the potential decrease in greenhouse gas (GHG) emissions that could be achieved by increasing the application of gas engines in China in three sectors: urban public transport vehicle; shipping; and thermal power plants. China’s gas engine development strategies and three types of gas resource are discussed in the study, which indicates that gas engines could decrease GHG emissions by 520 megatonnes (Mt) of carbon dioxide equivalent (CO2e) by 2020. This would account for 9.7 % of the government’s target for decreasing GHG emissions and is dominated by methane recovery from the use of coal mine gas (CMG) and landfill gas (LFG) for power generation. In the public urban transport vehicle and shipping sectors the low price of natural gas and the increasing demand for the control of harmful emissions could spur the rapid uptake of gas engine vehicles. However, the development of CMG- and LFG-fuelled power plants has been limited by the unwillingness of local enterprises to invest in high-performance gas engine generators and the associated infrastructure. Therefore, further compulsory policies that promote CMG use and LFG recovery should be implemented. Moreover, strict regulations on limiting methane leakage during the production and distribution of gas fuels are urgently needed in China to prevent leakage causing GHG emissions and largely negating the climate benefits of fuel substitution. Strategies for increasing the application of gas engines, promoting gas resources and recovering methane in China are instrumental in global GHG mitigation strategies.  相似文献   

14.
The clean development mechanism (CDM) is a flexible mechanism under the Kyoto Protocol, which makes it possible for developed countries to offset their emissions of greenhouse gases through investing in climate change mitigation projects in developing countries. When the mitigation benefit of a CDM project is quantified, measurable uncertainties arise that can be minimised using established statistical methods. In addition, some unmeasurable uncertainties arise, such as the rebound effect of demand-side energy efficiency projects. Many project types related to land use, land-use change and forestry (LULUCF) have been excluded from the CDM in part because of the high degree of statistical uncertainty in measurements of the carbon sink and risk of non-permanence. However, recent discussions within the United Nations Framework Convention on Climate Change (UNFCCC) have opened up for the possibility of including more LULUCF activities in the future. In the light of this discussion, we highlight different aspects of uncertainties in LULUCF projects (e.g. the risk of non-permanence and the size of the carbon sink) in relation to other CDM project categories such as renewables and demand-side energy efficiency. We quantify the uncertainties, compare the magnitudes of the uncertainties in different project categories and conclude that uncertainties could be just as significant in CDM project categories such as renewables as in LULUCF projects. The CDM is a useful way of including and engaging developing countries in climate change mitigation and could be a good source of financial support for LULUCF mitigation activities. Given their enormous mitigation potential, we argue that additional LULUCF activities should be included in the CDM and other future climate policy instruments. Furthermore, we note that Nationally Appropriate Mitigation Actions (NAMAs) are currently being submitted to the UNFCCC by developing countries. Unfortunately, the under-representation of LULUCF in comparison to its potential is evident in the NAMAs submitted so far, just as it has been in the CDM. Capacity building under the CDM may influence NAMAs and there is a risk of transferring the view on uncertainties to NAMAs.  相似文献   

15.
Public policies are promoting biofuels as an alternative to fossil fuel consumption in order to mitigate greenhouse gas (GHG) emissions. However, the mitigation benefit can be at least partially compromised by emissions occurring during feedstock production. One of the key sources of GHG emissions from biofuel feedstock production, as well as conventional crops, is soil nitrous oxide (N2O), which is largely driven by nitrogen (N) management. Our objective was to determine how much GHG emissions could be reduced by encouraging alternative N management practices through application of nitrification inhibitors and a cap on N fertilization. We used the US Renewable Fuel Standards (RFS2) as the basis for a case study to evaluate technical and economic drivers influencing the N management mitigation strategies. We estimated soil N2O emissions using the DayCent ecosystem model and applied the US Forest and Agricultural Sector Optimization Model with Greenhouse Gases (FASOMGHG) to project GHG emissions for the agricultural sector, as influenced by biofuel scenarios and N management options. Relative to the current RSF2 policy with no N management interventions, results show decreases in N2O emissions ranging from 3 to 4 % for the agricultural sector (5.5–6.5 million metric tonnes CO2?eq.?year?1; 1 million metric tonnes is equivalent to a Teragram) in response to a cap that reduces N fertilizer application and even larger reductions with application of nitrification inhibitors, ranging from 9 to 10 % (15.5–16.6 million tonnes CO2?eq.?year?1). The results demonstrate that climate and energy policies promoting biofuel production could consider options to manage the N cycle with alternative fertilization practices for the agricultural sector and likely enhance the mitigation of GHG emissions associated with biofuels.  相似文献   

16.
Agriculture contributes significantly to the anthropogenic emissions of non-CO2 greenhouse gases methane and nitrous oxide. In this paper, a review is presented of the agriculture related sources of methane and nitrous oxide, and of the main strategies for mitigation. The rumen is the most important source of methane production, especially in cattle husbandry. Less, but still substantial, amounts of methane are produced from cattle manures. In pig and poultry husbandry, most methane originates from manures. The main sources of nitrous oxide are: nitrogen fertilisers, land applied animal manure, and urine deposited by grazing animals. Most effective mitigation strategies for methane comprise a source approach, i.e. changing animals’ diets towards greater efficiencies. Methane emissions, however, can also be effectively reduced by optimal use of the gas produced from manures, e.g. for energy production. Frequent and complete manure removal from animal housing, combined with on-farm biogas production is an example of an integrated on-farm solution. Reduced fertiliser nitrogen input, optimal fertiliser form, adding nitrification inhibitors, land drainage management, and reduced land compaction by restricted grazing are the best ways to mitigate nitrous oxide emissions from farm land, whereas, management of bedding material and solid manure reduce nitrous oxide emissions from housing and storage. Other than for methane, mitigation measures for nitrous oxide interact with other important environmental issues, like reduction of nitrate leaching and ammonia emission. Mitigation strategies for reduction of the greenhouse gases should also minimize pollution swapping.  相似文献   

17.
There is much optimism that the 2015 Conference of the Parties of the United Nations Framework Convention will yield an agreement on mitigation of climate change, to become effective in 2020. In this context, Bahrain represents a developing country with insufficient data to assess mitigation opportunities: its per capita carbon emissions rank among the world’s highest, yet there has been no research on the reduction potential of its rapidly growing transport sector. We examine this reduction potential and the costs of various mitigation measures and, further, explore barriers and the view of policymakers and experts. Potential benefits of combined mitigation scenarios are also identified based on their acceptability. We adopt a modified participatory method to develop the scenarios, using the long-range energy alternative planning (LEAP) modelling system, and find that an integrated policy approach can deliver a 23 % reduction in carbon dioxide emissions, costing 108 United States dollars per avoided metric tonne, with politically acceptable scenarios. Better performance, however, would require less acceptable approaches. These findings are significant for decision-making in Bahrain and other Gulf Cooperation Council countries; national target preparation and the setting of fuel economy standards should be begun promptly. We offer lessons to other developing countries on the timely regulation of technical specifications and numbers of passenger vehicles. Participatory approaches to the assessment of mitigation measures can advance environmentally effective, economically feasible and politically acceptable scenarios. The global community can use these results to provide necessary technical and financial assistance to developing countries.  相似文献   

18.
2015年中国地区大气甲烷排放估计及空间分布   总被引:5,自引:0,他引:5  
CH4是仅次于CO2的重要温室气体,也是重要的化学活性气体.定量估算我国甲烷的排放量及分析其空间分布特征,对于控制温室气体排放,减缓温室效应具有重要意义.本文以2015年中国官方统计年鉴资料为基础,利用IPCC排放清单指南、国内外排放因子研究结果及动力学模型方法,从能源活动(煤炭开采和油气系统)、农业活动(反刍动物、稻田排放和秸秆露天燃烧)、自然源排放(自然湿地和植被排放)、废弃物处理(固体废弃物、工业污水和生活污水)和人工湿地等几个主要方面,对中国地区的CH4排放进行定量估计.结果表明:中国地区2015年CH4排放总量为61.59 Tg,其中以农业活动和能源活动为主要排放源,排放量分别达到20.42 Tg和20.39 Tg,占总排放量比例分别约为33.2%和33.1%.CH4自然源考虑了植被和自然湿地排放,排放量为11.77 Tg,占比为19.1%;废弃物处理产生的CH4排放量为8.64 Tg,占比为14.0%;人工湿地排放量为0.37 Tg,占比为0.6%.从空间分布来看,CH4排放具有较明显的不均匀性,大值区主要集中在华北、西南及东南地区,而西北地区的排放量则相对较低,主要与各地的资源环境、人口密度和经济情况密切相关.  相似文献   

19.
REDD+ (reducing emissions from deforestation and forest degradation and related forest activities) is a climate change mitigation mechanism currently being negotiated under the United Nations Framework Convention on Climate Change (UNFCCC). It calls for developed countries to financially support developing countries for their actions to reduce forest-sector carbon emissions. In this paper, we undertake a meta-analysis of the links, if any, between multiple and diverse drivers of deforestation operating at different levels and the benefits accruing from and being shared through REDD+ projects. We do so by assessing the nature of this link in (a) scholarly analysis, through an in-depth analysis of the posited relationship between drivers and REDD+ benefit-sharing, as examined in the peer-reviewed literature; and (b) in policy practice, through analysing how this link is being conceptualised and operationalised, if at all, in REDD+ project design documents. Our meta-analysis suggests that while some local, direct drivers and a few regional indirect drivers of deforestation and forest degradation are being targeted by specific REDD+ interventions and associated benefit-sharing mechanisms at the project-level, most national and international indirect drivers are not. We conclude that the growing academic analyses of REDD+ projects do not (as yet) advance viable theories of change, i.e. there is currently little focus on how REDD+ benefits could play a transformative role in catalysing action on drivers.  相似文献   

20.
温室效应和全球变暖已经引起了世界各国的普遍关注,减少二氧化碳等温室气体的排放已成为大势所趋。开发和利用煤层气不仅可避免资源的浪费,还可减少温室气体排放、改善大气环境。本文结合重庆市松藻矿区蝶层气开发利用情况,分析评价了松藻矿区煤层气利用对温室气体减排的贡献。结果表明,煤层气利用具有显著的环境效益和经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号