首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Some wetland plant species are adapted to growing in the areas of higher metal concentrations. Use of such vegetation in remediation of soil and water contaminated with heavy metals is a promising cost-effective alternative to the more established treatment methods. Throughout the year, composite industrial effluents bringing various kinds of heavy metals contaminate our study site, the East Calcutta Wetlands, a Ramsar site at the eastern fringe of Kolkata city (formerly Calcutta), India. In the present study, possible measures for remediation of contaminated soil and water (with elements namely, Ca, Cr, Cu, Pb, Zn, Mn, and Fe) of the ecosystem had been investigated. Ten common regional wetland plant species were selected to study their efficiency and diversity in metal uptake and accumulation. Results showed that Bermuda grass (Cynodon dactylon) had the highest total Cr concentration (6,601 ± 33 mg kg???1 dw). The extent of accumulation of various elements in ten common wetland plants of the study sites was: Pb (4.4?C57 mg kg???1 dw), Cu (6.2?C39 mg kg???1 dw), Zn (59?C364 mg kg???1 dw), Mn (87?C376 mg kg???1 dw), Fe (188?C8,625 mg kg???1 dw), Ca (969?C3,756 mg kg???1 dw), and Cr (27?C660 mg kg???1 dw) indicating an uptake gradient of elements by plants as Ca>Fe>Mn>Cr>Zn>Cu>Pb. The present study indicates the importance of identification and efficiency of metal uptake and accumulation capabilities by plants in relation to their applications in remediation of a contaminated East Calcutta Wetland ecosystem.  相似文献   

2.
The observation from previous surveys, that Urtica dioica plants that had grown in metal contaminated soil in the floodplains of the former Rhine estuary in different habitats, but at comparable total soil metal concentrations, showed significant differences in tissue metal concentrations, led to the hypothesis that variation in other environmental characteristics than soil composition and chemical speciation of metals between habitats is also important in determining uptake and translocation of metals in plants. A field survey indicated that differences in root Cd, Cu and Zn concentrations might partly be explained by variation in speciation of metals in different habitats. However, shoot concentrations showed a different pattern that did not relate to variation in soil metal concentrations. In a habitat experiment Urtica dioica plants were grown in artificially contaminated soil in pots that were placed in the four habitats (grassland, pure reed, mixed reed, osier bed) that were also included in the field survey. After seven weeks the plants showed significant differences in Cu and Zn concentrations in roots and aboveground plant parts and in distribution of the metals in the plants between habitats. It was concluded that variation between habitats in environmental characteristics other than soil composition can explain as much variation in plants as can variation in soil metal concentrations and/or speciation. The implications for assessment of soil metal contamination and uptake by plants are discussed.  相似文献   

3.
Increasing consciousness about future sustainable agriculture and hazard free food production has lead organic farming to be a globally emerging alternative farm practice. We investigated the accumulation of air-borne heavy metals in edible parts of vegetables and in cultivated soil horizon in organic farming system in a low rain fall tropical region of India. The factorial design of whole experiment consisted of six vegetable crops (tomato, egg plant, spinach, amaranthus, carrot and radish) x two treatments (organic farming in open field and organic farming in glasshouse (OFG)) x seven independent harvest of each crop. The results indicated that except for Pb, atmospheric deposition of heavy metals increased consistently on time scale. Concentrations of heavy metals in cultivated soil horizon and in edible parts of open field grown vegetables increased over time and were significantly higher than those recorded in OFG plots. Increased contents of heavy metals in open field altered soil porosity, bulk density, water holding capacity, microbial biomass carbon, substrate-induced respiration, alkaline phosphatase and fluorescein diacetate hydrolytic activities. Vegetable concentrations of heavy metal appeared in the order Zn > Pb > Cu > Ni > Cd and were maximum in leaves (spinach and amaranths) followed by fruits (tomato and egg plant) and minimum in roots (carrot and radish). Multiple regression analysis indicated that the major contribution of most heavy metals to vegetable leaves was from atmosphere. For roots however, soil appeared to be equally important. The study suggests that if the present trend of atmospheric deposition is continued, it will lead to a destabilizing effect on this sustainable agricultural practice and will increase the dietary intake of toxic metals.  相似文献   

4.
The aims of this study were to characterize soils from industrial sites by combining physicochemical, microbiological, and ecotoxicological parameters and to assess the suitability of these assays for evaluation of contaminated sites and ecological risk assessment. The soil samples were taken from long-term contaminated sites containing high amounts of heavy metals (sites 1 and 2) or petroleum hydrocarbons (site 3) located in the upper Silesia Industrial Region in southern Poland. Due to soil heterogeneity, large differences between all investigated parameters were measured. Microbiological properties revealed the presence of high numbers of viable hetrotrophic microorganisms. Soil enzyme activities were considerably reduced or could not be detected in contaminated soils. Activities involved in N turnover (N mineralization and nitrification) were significantly (P?<?0.05) higher in samples from the metal-contaminated sites than in samples from the hydrocarbon-contaminated site, whereas the opposite was observed for phosphatase activity. The Microtox test system appeared to be the most appropriate to detect toxicity and significant differences in toxicity between the three sites. The Ostracodtoxkit test was the most appropriate test system to detect toxicity in the hydrocarbon-contaminated soil samples. Correlation analysis between principal components (obtained from factor analysis) determined for physicochemical, microbiological, and ecotoxicological soil properties demonstrated the impact of total and water-extractable contents of heavy metals on toxicity.  相似文献   

5.
A recently developed method for the determination of arsenic species (arsenite, arsenate, monomethylarsonate, MMAA, and dimethylarsinate, DMAA) has been applied to the study of arsenic speciation in plants. This method uses ion-exchange liquid chromatography coupled on-line to atomic fluorescence spectrometry through continuous hydride generation. Various extraction procedures have been studied in detail using three plant certified reference materials. None of the procedures tested revealed fully satisfying results with all kinds of plant samples; microwave assisted extraction with 0.3 mol dm-3 orthophosphoric acid was found to be the most convenient for dealing with terrestrial plants. Species stability appears good. This method was applied to real world cultivated plant parts. Arsenate appears to predominate in soils, roots and leaves; unidentified species (probably arsenosugars) play an important role (60%) in rice fruits. Carrot was found to be the most contaminated edible plant part, containing 1 mg kg-1 essentially as arsenate species. MMAA was detected in all soils and some plant parts especially shallots at low levels, whereas DMAA was found only in one soil sample and in hot pepper leaves. Arsenite is a minor component of all soils; it is also present in some plant parts at low levels. However, no evident relationships were found between As speciation in the various plant parts and much more detailed studies will be necessary to elucidate As behaviour in plants.  相似文献   

6.
With the development of urbanization and industrialization, soils have become increasingly polluted by heavy metals. Phytoremediation, an emerging cost-effective, nonintrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements, can be potentially used to remediate metal-contaminated sites. In this research, two processes of phytoremediation (phytoextraction and phytostabilization) were surveyed in some plant species around an industrial town in the Hamedan Province in the central-western part of Iran. To this purpose, shoots and roots of the seven plant species and the associated soil samples were collected and analyzed by measuring Pb, Fe, Mn, Cu, and Zn concentrations using ICP-AES and then calculating the biological absorption coefficient, bioconcentration factor, and translocation factor parameters for each element. The obtained results showed that among the collected plants, Salsola soda is the most effective species for phytoextraction and phytostabilization and Cirsium arvense has the potential for phytostabilization of the measured heavy metals.  相似文献   

7.
This study describes the first attempt to validate a Portuguese natural soil (PTRS1) to be used as reference soil for ecotoxicological purposes, aimed to both: (i) obtain ecotoxicological data for the derivation of Soil Screening Values (SSVs) with regional relevance, acting as a substrate to be spiked with ranges of concentrations of the chemicals under evaluation and (ii) act as control and as substrate for the dilution of contaminated soils in ecotoxicological assays performed to evaluate the ecotoxicity of contaminated soils, in tier 2 of risk assessment frameworks, applied to contaminated lands. The PTRS1 is a cambisol from a granitic area integrated in the Central Iberian Zone. After chemical characterization of the soil in terms of pseudo-total metals, PAHs, PCBs and pesticide contents, it was possible to perceive that some metals (Ba, Be, Co, Cr and V) surpass the Dutch Target Values (Dtvs) corrected for the percentage of organic matter and clay of the PTRS1. Nevertheless, these metals displayed total concentrations below the background total concentrations described for Portuguese soils in general. The same was observed for aldrin, endosulfan I, endosulfan II, heptachlor epoxide, and heptachlor; however the Dtvs corrected become negligible. The performance of invertebrate and plant species, commonly used in standard ecotoxicological assays, was not compromised by both soil properties and soil metal contents. The results obtained suggest that the PTRS1 can be used as a natural reference soil in ecotoxicological assays carried out under the scope of ecological risk assessment.  相似文献   

8.
The present study was conducted to determine the heavy metal contamination in soil with accumulation in edible parts of plants and their subsequent changes in biochemical constituents due to wastewater irrigation. Though the wastewater contains low levels of the heavy metals (Fe, Mn, Pb, Cd, and Cr), the soil and plant samples show higher values due to accumulation. The trend of metal accumulation in wastewater-irrigated soil is in the order: Fe > Pb > Mn > Cr > Cd. Of the three species Colocasia esculentum, Brassica nigra, and Raphanus sativus that are grown, the order of total heavy metal accumulation in roots is Raphanus sativus > Colocasia esculentum, while in shoots the order is Brassica nigra > Colocasia esculentumRaphanus sativus. The enrichment factor (EF) of the heavy metals in contaminated soil is in the sequence of Cd (3) > Mn (2.7) > Cr (1.62) > Pb (1.46) > Fe (1.44), while in plants EF varies depending upon the species and plant part. C. esculentum and R. sativus show a higher EF for Cr and Cd. All plants show a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant whereas the TF values for Pb are very low as it is not bioavailable. Results of the biochemical parameters show decrease in total chlorophyll and total amino acid levels in plants and an increase in amounts of soluble sugars, total protein, ascorbic acid, and phenol except B. nigra for protein in plants grown in soil irrigated with wastewater as compared to control site.  相似文献   

9.
The pot experiments were conducted to evaluate the effect of different concentrations of arsenic, chromium and zinc contaminated soils, amended with biosludge and biofertilizer on the growth of Jatropha curcas which is a biodiesel crop. The results further showed that biosludge alone and in combination with biofertilizer significantly improved the survival rates and enhanced the growth of the plant. With the amendments, the plant was able to grow and survive upto 500, 250 and 4,000 mg kg(-1) of As, Cr and Zn contaminated soils, respectively. The results also showed that zinc enhanced the growth of J. curcas more as compared to other metals contaminated soils. The heavy metal accumulation in plant increased with increasing concentrations of heavy metals in soil, where as a significant reduction in the metal uptake in plant was observed, when amended with biosludge and biofertilizer and biosludge alone. It seems that the organic matter present in the biosludge acted as metal chelator thereby reducing the toxicity of metals to the plant. Findings suggest that plantation of J. curcas may be promoted in metal contaminated soils, degraded soils or wasteland suitably after amending with organic waste.  相似文献   

10.
Nickel is a heavy metal which is a stable soil pollutant which is difficult to remediate. An attempt to reduce its impact on the environment can be made by changing its solubility. The right level of hydrogen ions and the content of mineral and organic colloids are crucial in this regard. Therefore, methods to neutralise heavy metals in soil are sought. There are no reports in the literature on the possibility of using minerals in the detoxication of a soil environment contaminated with metals. It is important to fill the gap in research on the effect of zeolites on the microbiological, biochemical and physicochemical properties of soils under pressure from heavy metals. Therefore, a pot experiment was conducted on two soils which examined the effect of various levels of contamination of soil with nickel on the activity of soil enzymes, physical and chemical properties and growth and development of plants. An alleviating effect of zeolite Bio.Zeo.S.01 on the negative impact of nickel on the soil and a plant (oats) was examined. The enzyme activity and the oat yield were found to be significantly and negatively affected by an excess of nickel in the soil, regardless of the soil type. The metal was accumulated more in the oat roots than in the above-ground parts. An addition of zeolite decreased the level of accumulation of nickel in oats grown only on sandy-silty loam. Zeolite Bio.Zeo.S.01 used in the study only slightly alleviated the negative effect of nickel on the biochemical properties of soil. Therefore, its usability in the remediation of soil contaminated with nickel is small.  相似文献   

11.
Mixtures of polycyclic aromatic hydrocarbons (PAHs) and heavy metals are of major concern in contaminated soil. Biodegradation of PAHs in metal-contaminated soils is complicated because metals are toxic and cannot be degraded by biological processes. This investigation considered the effects of Zn and Cu (50, 100, 500 and 1,000 mg/kg) on 14C-phenanthrene biodegradation in soil over 60-day contact time. The presence of Zn at all concentrations and low concentrations of Cu (50 and 100 mg/kg) had no significant effect (p?>?0.05) on the development of phenanthrene catabolism; however, at higher Cu concentrations, the development of phenanthrene catabolism and bacterial cell numbers were significantly reduced (p?<?0.05). This suggests that Cu is more toxic than Zn to soil microbial PAH catabolic activity. Metal/PAH-contaminated soils represent one of the most difficult remedial challenges and insights into PAH biodegradation in the presence of metals is necessary in order to assess the potential for bioremediation.  相似文献   

12.
Emergent plant species growing in Andean natural wetlands have shown efficient phytoremediation capabilities in wetlands polluted by acid mine drainage. However, the types and amounts of heavy metals accumulated by native plant species are not well understood. In this study, we focused on determining heavy metal concentrations and bioaccumulation factors in Calamagrostis ligulata and Juncus imbricatus. Two acid wetlands located above 3,500 m a.s.l. in Ancash, Peru were assessed. Physico-chemical parameters and heavy metals concentrations in control and experimental plant samples were measured in dry and rainy seasons. Results indicated that C. ligulata and J. imbricatus aerial parts accumulated higher amounts of Fe, Zn, As and Al. Also, bioaccumulation factors revealed notable increases in As, Pb and Al, but less so in Cd, Fe and Zn. On the other hand, physico-chemical parameters of water quality (pH, temperature, dissolved oxygen, sulphides) between inflow and outflow of wetlands indicated significant differences in the presence of metals in comparison with their maximum permissible limits. Both emergent plant species showed an accumulation of heavy metals and thus the ability to recovery of water quality in wetland outflows.  相似文献   

13.
The remediation of the Thala Valley landfill, Casey Station, East Antarctica, is part of efforts to clean-up contaminated sites associated with the Australian Antarctic Program. These sites, ranging from abandoned rubbish dumps to fuel spills, are contaminated principally with metals and petroleum hydrocarbons. Remediation success depends on accurate, cost-effective and timely--fit-for-purpose--chemical analysis of soil and water samples from the site, which is required to guide excavation, the in situ or off-site treatment and disposal of contaminated material, and to validate satisfactory remediation. Owing to the remote location of Antarctica, it is necessary to carry out chemical analyses on-site. Waste and soil contaminated with Pb, Zn, Cd, and Cu were excavated from Thala Valley for removal to Australia, treatment and disposal. Analysis of total metal concentrations in soil was performed at Casey Station with a transportable energy dispersive X-ray fluorescence (EDXRF) spectrometer. Soil samples were prepared using a simple size-fractionation method to expedite sample throughput. A method for assessing contaminant mobility in solid waste (toxicity characteristic leaching procedure, TCLP) was also used to characterise soil. Although this was more labour-intensive and time-consuming than the total metals analysis, it was of great utility because leachable metals were often significant determinants in the assessment of contaminated soil. The combined data helped managers during remediation, directing excavation and allowing waste to be classified for treatment and disposal before its return to Australia.  相似文献   

14.
Baseline levels of 43 elements, including major, trace, and rare earth elements (REEs) in several native plant species growing in boreal and alpine areas, are presented. Focus is placed on species metal levels at different soil conditions, temporal variations in plant tissue metal concentrations, and interspecies variation in metal concentrations. Vegetation samples were collected at Sogndal, a pristine site in western Norway, and at Risdalsheia, an acidified site in southernmost Norway. Metal concentrations in the different species sampled in western Norway are compared with relevant literature data from Norway, Finland, and northwest Russia, assumed to represent natural conditions. Except for aluminium (Al) and macronutrients, the levels of metals were generally lower in western Norway than in southern Norway and may be considered close to natural background levels. In southern Norway, the levels of cadmium (Cd) and lead (Pb) in particular appear to be affected by air pollution, either by direct atmospheric supply or through soil acidification. Levels of some elements show considerable variability between as well as within plant species. Calcium (Ca), magnesium (Mg), and potassium (K) are higher in most species at Sogndal compared to Risdalsheia, despite increased extractable concentrations in surface soil in the south, probably attributed to different buffer mechanisms in surface soil. Antagonism on plant uptake is suggested between Ca, Mg, and K on one hand and Al on the other. Tolerance among calcifuges to acid conditions and a particular ability to detoxify or avoid uptake of Al ions are noticeable for Vaccinium vitis-idaea.  相似文献   

15.
As well known, at normal levels, copper and zinc are essential micronutrients for plants, animals, and humans. However, excessive Cu and Zn are toxic and disturb a wide range of biochemical and physiological processes. Using Atomic Absorption Spectrophotometer (AAS; Perkin-Elmer 3030, USA), soil and rice plant (Oryza sativa L.) samples collected from a paddy field in Lechang lead-zinc mine area, Guangdong Province, China were analyzed and their potential ecological impacts to local human and livestock were evaluated. The results showed that the paddy soils were contaminated with Cu and Zn. Both metals in soils had low bio-available fractions for paddy plants, animal and human by three chemically analytical techniques. Generally, were concentrations of copper and zinc root > straw > stalk > grain with hull > grain without hull (i.e. unpolished rice) and in the normal ranges indicating no ecological risk for local livestock and residents. All positive correlation coefficients, however, between heavy metals in rice plant and total, exchangeable (step 1 in Tessier's method established in 1979) and DTPA-extractable fractions in soils were found in this study indicating that elevated heavy metal in soils would increase long-term exposition and possible consequence of ecological hazard through food chains.  相似文献   

16.
The present research study investigates bioremediation potential of biostimulated microbial culture isolated from heavy metals waste disposal contaminated site located at Bhayander (east), Mumbai, India. The physicochemical and microbial characterization including heavy metal contaminants have been studied at waste disposal site. The microorganisms adapted at heavy metal-contaminated environment were isolated, cultured, and biostimulated in minimal salt medium under aerobic conditions in a designed and developed laboratory bioreactor. Heavy metals such as Fe, Cu, and Cd at a selected concentration of 25, 50, and 100?μg/ml were taken in bioreactor wherein biostimulated microbial culture was added for bioremediation of heavy metals under aerobic conditions. The remediation of heavy metals was studied at an interval of 24?h for a period of 21?days. The biostimulated microbial consortium has been found effective for remediation of Cd, Cu, and Fe at higher concentration, i.e., 100?mg/l up to 98.5%, 99.6%, and 100%, respectively. Fe being a micronutrient was remediated completely compared to Cu and Cd. During the bioaccumulation of heavy metals by microorganisms, environmental parameters such as pH, total alkalinity, electronic conductivity, biological oxygen demand, chemical oxygen demand, etc. were monitored and assessed. The pilot scale study would be applicable to remediate heavy metals from waste disposal contaminated site to clean up the environment.  相似文献   

17.
The metal accumulation potential of Bacopa monnieri L. was assessed under simulated laboratory conditions. This study was carried out in mixed metals (Cu, Cd, Pb, Cr, Mn) condition and repeated exposures in artificial contaminated soil. The growing shoots were planted in garden subsoil containing 3, 16, 32, 64, 160 M each of the above metals. After 8 weeks, plants were refeeded to three times higher concentrations of each metal than initially used to assess the maximum accumulating potential of the metals. The accumulation of the metals by the root and shoot was concentration and duration dependent. The metal accumulation was considerably higher in the fine root than in the shoot and showed the following order : Mn > Cr > Cu > Cd > Pb. The plants showed high tolerance to the metals as no visible phytotoxic symptom was produced after 8 weeks. However, as a result of combined metal toxicity, chlorophyll content was reduced by 62% after 12 weeks. The highest metal concentration was lethal to the plant at 16 weeks. In view of their high tolerance, the plants of B. monnieri may be considered for the amelioration of industrially-polluted wetlands experiencing regular flushing of wastewaters.  相似文献   

18.
为研究广东省某矿区开展生态修复多年后下游农田土壤的金属污染状况,选取该矿区下游某村周边农田土壤及灌溉水渠作为研究对象,对该区域采集了40个土壤表层样本和8个水体样本,利用Arcgis软件对农田土壤样品中As、Cu、Cd、Pb、Zn、Mn和Fe2O3的质量分数进行克里金空间插值,解析该区域农田土壤金属的空间分布特征;采用综合污染指数法和潜在生态风险指数法对该区域耕作层土壤中As、Cu、Cd、Pb、Zn和Mn进行风险评价。结果表明,40个土壤样品中As、Cd、Cu、Zn和Pb的超标率分别为77.5%、70%、87.5%、27.5%和67.5%,说明调查区域农田土壤污染属于多金属复合污染,且对农作物的生产和安全产生巨大的威胁。部分土壤样品中As、Pb和Cd含量超过了中国农用地土壤污染风险管制值,需采取严格管控措施。通过分析土壤金属的空间分布,发现土壤金属含量超标点位主要位于灌溉口与受污染河流周边,且含量与离灌溉口距离成反比。结合目前灌溉水样中的金属均未超标的情况,得出该区域农田土壤污染是由该矿区生态环境修复前所产生的含金属灌溉水导致土壤中金属的积累...  相似文献   

19.
The use of a combination of electrokinetic remediation and phytoremediation to decontaminate two metal-polluted soils has been demonstrated in laboratory-scale reactors. One soil was heavily contaminated with copper, the other with cadmium and arsenic (2500 g g-1 Cu; 300-400 g g-1 Cd and 230 g g-1 As, respectively). Test reactors with twoseparated chambers, each with a capacity of 5.25 kg soil, wereconstructed, then the respective chambers were filled with eithera mixture of the polluted soil and a control topsoil (75:25) ortopsoil alone. Reactors were sown with perennial ryegrass (Lolium perenne cv Elka) and a constant voltage of 30 V was applied continually across the soils in each reactor. Soil sampling took place at the start and the end of the test run, whilst plant foliage was sampled after approximately 3 weeks (both reactors) 6 weeks (Cd soil reactor only) and at the conclusion of each test run (98 days Cu soil, 80 days Cd soil). Soil and plant metal concentrations were measured, together withsoil pH. Results showed that in both soils there was a significant re-distribution of metals from anode to cathode in the test reactors, coupled with an enhancement of plant Cu uptakein the cathode region for the Cu soil. Patterns of plant Cd uptake were less clear cut and were not as clearly related to theredistribution of Cd measured in the soil. There was significant acidification of soil at the anode in each test reactor, but soilpH in other parts of the reactor changed little during the courseof the experiment. Plant growth was affected at the anode, but was not affected in other parts of the reactor. There was no visual evidence of metal toxicity in the ryegrass in either polluted soil. Some effects on soil fungi were apparent, with a stimulation of Fusarium infection of ryegrass in the cathode region of all reactors and the appearance of sporophoresof Coprinus in the same location. It is concluded that the combination of the two techniques represents a very promising approach to the decontamination of metal polluted soils that nowrequires validation in field conditions.  相似文献   

20.
High ethyl-benzene and total petroleum hydrocarbons (TPHs) were found in the soil samples and groundwater samples during a site environmental assessment for an old paint factory in the city Changchun, Jilin province of China. The target old paint plant had been in operation for near 30 years by manufacturing resin and house paint. Driving force for this study was to identify potential environmental contamination existing in this paint factory which is located next to a new resident area under construction. The assessment result would be used as baseline environmental data input for remediation plan when the factory site will be changed into potential resident area in near future. The analytical data from the soil samples from different area of the factory which had high exposure to operation showed that solid waster storage area was contaminated with high heavy metals (Cd, Pb, and Zn) and waster paint storage areas were contaminated with ethyl-benzene, xylene and C9-C30 aromatic hydrocarbon solvent. The analytical data from the groundwater samples from different area of the factory showed that resin plant area and waster paint storage areas were contaminated with high concentration of naphthalene, ethyl-benzene and xylene which exceed the reference standard. Remediation action is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号