首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Birnessite not only oxidizes arsenite into arsenate but also interacts with organic matter in various ways. However, effects of organic matter on interaction between As and birnessite remain unclear. This study investigated effects of citrate and EDTA (3.12 and 2.05 mM, respectively) on oxidation of As(III) (1.07 mM) and adsorption of As(V) (0.67 mM) on birnessite (5.19 mM as Mn) at near-neutral pH. We found that As(V) adsorption on birnessite was enhanced by citrate and EDTA, which resulted from the increase in active adsorption sites via dissolution of birnessite. In comparison with citrate batches, more As was adsorbed on birnessite in EDTA batches, where dissolved Mn was mainly presented as Mn(III)-EDTA complex. Citrate or EDTA-induced dissolution of birnessite did not decrease the As(III) oxidation rate in the initial stage where As(III) oxidation rate was rapid. Afterwards, As(III) oxidation was conspicuously suppressed in citrate-amended batches, which was mainly attributed to the decrease in adsorption sites by adsorption of citrate/Mn(II)-citrate complex. This suppression was enhanced by the increase in concentrations of dissolved Mn(II). Citrate inhibited As adsorption after As(III) oxidation due to the strong competitive adsorption of citrate/Mn(II)-citrate complex. However, the As(III) oxidation rate was increased in EDTA-amended batches in the late stage, which mainly derived from the increase in the active sites via birnessite dissolution. The strong complexation ability of EDTA led to formation of Mn(III)-EDTA complex. Arsenic adsorption was not affected due to the limited competitive adsorption of the complex on the solid. This work reveals the critical role of low molecular weight organic acids in geochemical behaviors of As and Mn in aqueous environment.

  相似文献   

2.
In situ chemical oxidation (ISCO) schemes using MnO4- have been effective in destroying chlorinated organic solvents dissolved in ground water. Laboratory experiments and field pilot tests reveal that the precipitation of Mn oxide, one of the reaction products, causes a reduction of permeability, which can lead to flow bypassing and inefficiency of the scheme. Without a solution to this problem of plugging, it is difficult to remove DNAPL from the subsurface completely. In a companion paper, we showed with batch experiments that Mn oxide can be dissolved rapidly with certain organic acids. This study utilizes 2-D flow-tank experiments to examine the possibility of nearly complete DNAPL removal by ISCO with MnO4-, when organic acids are used to remove Mn oxide. The experiments were conducted in a small 2-D glass flow tank containing a lenticular silica-sand medium. Blue-dyed trichloroethylene (TCE) provided residual, the perched and pooled DNAPL. KMnO4 at 200 mg/l was flushed through the DNAPL horizontally. Once plugging reduced permeability and prevented further delivery of the oxidant, citric or oxalic acids were pumped into the flow tank to dissolve the Mn oxide precipitates. Organic ligands removed the Mn oxide precipitates relatively quickly, and permitted another cycle of MnO4- flooding. Cycles of MnO4-/acid flooding continued until all of the visible DNAPL was removed. The experiments were monitored with chemical analysis and visualization. A mass-balance calculation indicated that by the end of the experiments, all the DNAPL was removed. The results show also how heterogeneity adds complexity to initial redistribution of DNAPL, and to the efficiency of the chemical flooding.  相似文献   

3.
The chemical oxidation of trichloroethene dense non-aqueous phase liquid by permanganate was studied in an aqueous system using micro-reaction/extraction vessels in a novel approach. Experiments were conducted at ambient temperature ( approximately 20 degrees C) under static and mixed conditions to evaluate the rate of TCE(DNAPL) dissolution as a function of permanganate concentration. Chemical oxidation by permanganate was shown to increase the rate of TCE(DNAPL) dissolution under static conditions and decrease the rate of dissolution under mixed conditions. The apparent inconsistency in results appears to result from the local deposition of a film at the DNAPL interface composed of manganese oxide solids as discovered through visual observation with the aid of a Goniometer. Data from interfacial deposition experiments suggest that the film formed rapidly and reached maturation within approximately 2 h with little or no growth occurring thereafter. A conceptual model of the reaction and mass transfer processes occurring at the DNAPL interface was proposed based on the experimental results.  相似文献   

4.
In-situ oxidation of dense nonaqueous-phase liquids (DNAPLs) by strong oxidants such as potassium permanganate (KMnO4) has been proposed as a possible DNAPL remediation strategy. In this study, we investigated the effects of in-situ trichloroethene (TCE) oxidation by KMnO4 on porous medium hydraulic properties. In particular, we wanted to determine the overall effects of concurrent solid phase (MnO2) precipitation, gas (CO2) evolution and TCE dissolution resulting from the oxidation reaction on the porous medium's aqueous-phase relative permeability, krw. Three TCE removal experiments were conducted in a 95-cm long, 5.1-cm i.d. glass column, which was homogeneously packed with well-characterized 30/40-mesh silica sand. TCE was emplaced in the sand-pack in residual, entrapped form through a sequence of water/TCE imbibition and drainage steps. The column was then flushed under constant aqueous flux conditions for up to 104 h with either deionized water (reference experiment), deionized water containing 5 mM KMnO4 or deionized water containing 5 mM KMnO4 and 300 mM Na2HPO4. Aqueous-phase relative permeabilities were computed from measured flow rates and measurements of aqueous-phase pressure head, h obtained using pressure transducers connected to tensiometers distributed along the column length. A dual-energy gamma radiation system was used to monitor changes in fluid saturation that occurred during each experiment. In addition, column effluent samples were collected for chemical analyses. Dissolution of TCE during deionized water flushing led to an increase in krw by approximately 22% and a local reduction in h. On the other hand, vigorous CO2 gas production and precipitation of MnO2 was visually observed during flushing with deionized water that contained 5 mM KMnO4. As a consequence, krw declined by approximately 96% and h increased locally by more than 1000 cm H2O during the first 24 h of the experiment, causing sand-pack ruptures and pump failure. Conversely, less CO2 gas production and MnO2 precipitation was visually observed during flushing with deionized water that contained 5 mM KMnO4 and 300 mM Na2HPO4. Consequently, only small increases in h (< 15 cm H2O) were observed in this experiment due to a reduction in krw of approximately 53%. While we must attribute changes in h due to variations in krw to our specific experimental design (constant aqueous flux, one-dimensional flow experiments), these experiments nevertheless confirm that successful application of in situ chemical oxidation of TCE requires consideration of detrimental processes such as MnO2 precipitation and CO2 gas formation. In addition, our results indicate that utilization of a buffered oxidant solution may improve the effectiveness of in-situ oxidation of TCE by KMnO4 in otherwise weakly buffered porous media.  相似文献   

5.
Experiments were conducted to assess the effect of seven organic acids [succinic, tartaric, malic, malonic, oxalic, citric, ethylene-diaminetetraacetic (EDTA)] over a concentration range of two orders of magnitude (0.001-0.10 M) on the abiotic desorption of weathered p,p'-DDE and the extraction of polyvalent inorganic ions from soil. At 0.05 M all organic acids significantly increased contaminant desorption by 19-80%. Organic acids also increased the aqueous concentration of eight inorganic constituents extracted from soil, with at least a six-fold increase in the release of Al, Fe, Mn, and P at 0.001 M. Zucchini seedlings grown for 28 d in soil containing weathered p,p'-DDE (300 ng/g, dry weight) were periodically amended with distilled water, citric or oxalic acids (0.01 M). Plants receiving water removed 1.7% of the p,p'-DDE from the soil. Seedlings amended with citric or oxalic acids removed 2.1 and 1.9% of the contaminant, respectively, and contained up to 66% more contaminant in the shoot system than unamended vegetation. A second crop of untreated (distilled water) zucchini in the same soil removed more contaminant than the first crop (2.5%), although the addition of organic acids did not further enhance contaminant uptake. The data indicate that the addition of low molecular weight organic acids causes the partial dissolution of the soil structure through the chelation of inorganic structural ions, potentially enhancing bioavailability and having implications for the phytoremediation of persistent organic pollutants in soil.  相似文献   

6.
In this work the effect of organic reducing reagents, namely, ascorbic acid, oxalic acid and L-cysteine on dissolution of commercial TiO(2) has been investigated. Kinetic studies showed that a maximum of about 45% of TiO(2) was dissolved by ascorbic acid in 4h when oxide:acid molar ratio was kept at 1:2. The dissolution of TiO(2) increased with increase in ascorbic acid and oxalic acid concentration up to 0.15M in 4h (corresponding to molar ratio of oxide to acid of 1:3) and further addition did not affect the dissolution. Nearly 45% TiO(2) dissolution was obtained with ascorbic acid alone while oxalic acid yielded 40% dissolution. When oxalic acid was added along with ascorbic acid in equi-molar concentrations, dissolution of TiO(2) was enhanced to 60% in 2.5h but when cysteine was added to ascorbic acid the dissolution was about 50% in just 1h.  相似文献   

7.
Liang C  Bruell CJ  Marley MC  Sperry KL 《Chemosphere》2004,55(9):1225-1233
In situ chemical oxidation (ISCO) is a technique used to remediate contaminated soil and groundwater systems. It has been postulated that sodium persulfate (Na2S2O8) can be activated by transition metal ions such as ferrous ion (Fe2+) to produce a powerful oxidant known as the sulfate free radical (SO4-*) with a redox potential of 2.6 V, which can potentially destroy organic contaminants. In this laboratory study persulfate oxidation of dissolved trichloroethylene (TCE) was investigated in aqueous and soil slurry systems under a variety of experimental conditions. A chelating agent (i.e., citric acid) was used in attempt to manipulate the quantity of ferrous ion in solution by providing an appropriate chelate/Fe2+ molar ratio. In an aqueous system a chelate/Fe2+ molar ratio of 1/5 (e.g., S2O8(2)-/chelate/Fe2+/TCE ratio of 20/2/10/1) was found to be the lowest acceptable ratio to maintain sufficient quantities of Fe2+ activator in solution resulting in nearly complete TCE destruction after only 20 min. The availability of Fe2+ appeared to be controlled by adjusting the molar ratio of chelate/Fe2+. In general, high levels of chelated ferrous ion concentrations resulted in faster TCE degradation and more persulfate decomposition. However, if initial ferrous ion contents are relatively low, sufficient quantities of chelate must be provided to ensure the chelation of a greater percentage of the limited ferrous ion present. Citric acid chelated ferrous ion appeared effective for TCE degradation within soil slurries but required longer reaction times. Additionally, the use of citric acid without the addition of supplemental Fe2+ in soil slurries, where the citric acid apparently extracted native metals from the soil, appeared to be somewhat effective at enhancing persulfate oxidation of TCE over extended reaction times. A comparison of different chelating agents revealed that citric acid was the most effective.  相似文献   

8.
Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite> or =cryptomelane>todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb(2+), Cu(2+), Co(2+), Cd(2+) and Zn(2+), while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb(2+) among the tested heavy metals. Hydration tendency (pK(1)) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn(2+) varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0)>cryptomelane (422.6)>todorokite (59.7)>hausmannite (36.6).  相似文献   

9.
Desorption of copper and cadmium from soils enhanced by organic acids   总被引:2,自引:0,他引:2  
Yuan S  Xi Z  Jiang Y  Wan J  Wu C  Zheng Z  Lu X 《Chemosphere》2007,68(7):1289-1297
The adsorption/desorption behavior of copper and cadmium on soils was investigated in this study. The adsorption isotherm of copper and cadmium conformed to Langmuir equation better than Freundlich equation. The effect of ionic strength, pH, and organic acid, including ethylenediamine tetraacetic disodium acid salt (EDTA), citric acid, oxalic acid and tartaric acid, on the desorption of copper and cadmium was studied. The desorption of copper and cadmium increased with the increase of ionic strength, while the desorption decreased with the rise of pH. The desorption of copper and cadmium enhanced by organic acids was influenced by pH. EDTA showed excellent enhancement on the desorption of both copper and cadmium; citric acid demonstrated great enhancement on the desorption of copper but negligible enhancement on the desorption of cadmium; oxalic acid enhanced the desorption of copper only at pH around 6.4 and enhanced the desorption of cadmium in the pH range from 6.4 to 10.7; tartaric acid slightly enhanced the desorption of copper but negligibly enhanced the desorption of cadmium. The desorption mechanism in the presence of organic acids were explained as the competition of complexation, adsorption and precipitation. The net effect determined the desorption efficiency. This study provided guidance for the selection of organic acids to enhance the electrokinetic (EK) remediation of copper and cadmium from contaminated soils.  相似文献   

10.

This work demonstrates the impact of hydroxylamine hydrochloride (HAH) addition on enhancing the degradation of trichloroethene (TCE) by the citric acid (CA)-chelated Fe(II)-catalyzed percarbonate (SPC) system. The results of a series of batch-reactor experiments show that TCE removal with HAH addition was increased from approximately 57 to 79% for a CA concentration of 0.1 mM and from 89 to 99.6% for a 0.5 mM concentration. Free-radical probe tests elucidated the existence of hydroxyl radical (HO) and superoxide anion radical (O2 •-) in both CA/Fe(II)/SPC and HAH/CA/Fe(II)/SPC systems. However, higher removal rates of radical probe compounds were observed in the HAH/CA/Fe(II)/SPC system, indicating that HAH addition enhanced the generation of both free radicals. In addition, increased contribution of O2 •- in the HAH/CA/Fe(II)/SPC system compared to the CA/Fe(II)/SPC system was verified by free-radical scavengers tests. Complete TCE dechlorination was confirmed based on the total mass balance of the released Cl species. Lower concentrations of formic acid were produced in the later stages of the reaction for the HAH/CA/Fe(II)/SPC system, suggesting that HAH addition favors complete TCE mineralization. Studies of the impact of selected groundwater matrix constituents indicate that TCE removal in the HAH/CA/Fe(II)/SPC system is slightly affected by initial solution pH, with higher removal rates under acidic and near neutral conditions. Although HCO3 was observed to have an adverse impact on TCE removal for the HAH/CA/Fe(II)/SPC system, the addition of HAH reduced its inhibitory effect compared to the CA/Fe(II)/SPC system. Finally, TCE removal in actual groundwater was much significant with the addition of HAH to the CA/Fe(II)/SPC system. The study results indicate that HAH amendment has potential to enhance effective remediation of TCE-contaminated groundwater.

  相似文献   

11.
Lan Y  Li C  Mao J  Sun J 《Chemosphere》2008,71(4):781-787
The influence of clay minerals on the reduction of Cr6+ by citric acid was investigated at pH values 4.0, 4.5 and 5.0 at 25 degrees C. The results indicate that montmorillonite and illite greatly accelerate the reduction reactions at pH 4.0 and 4.5, but their effects are dramatically reduced at pH 5.0. The role of clay minerals in accelerating the reactions is in the order: illite>montmorillonite>kaolinite, which has a positive correlation with the amount of Mn2+ adsorbed on the surfaces of these minerals. With light, Fe(3+) also significantly increases reaction rates. Ethylenediaminetetraacetic acid (EDTA) greatly suppresses the acceleration of the reduction reactions by these minerals, indicating that EDTA competes with citric acid for Mn2+. Thus, the formation of complexes between Mn(2+) and citric acid could be a prerequisite for the acceleration of the reductions of Cr6+ by clay minerals. In addition, there is no relationship between the specific surface area of clay minerals and the reduction rate of Cr6+ by citric acid.  相似文献   

12.
The effect of chromium (Cr) stress on the changes of rhizosphere pH, organic acid exudation, and Cr accumulation in plants was studied using two rice genotypes differing in grain Cr accumulation. The results showed that rhizosphere pH increased with increasing level of Cr in the culture solution and with an extended time of Cr exposure. Among the six organic acids examined in this experiment, oxalic and malic acid contents were relatively higher, and had a significant positive correlation with the rhizosphere pH, indicating that they play an important role in changing rhizosphere pH. The Cr content in roots was significantly higher than that in stems and leaves. Cr accumulation in plants was significantly and positively correlated with rhizosphere pH, and the exudation of oxalic, malic and citric acids, suggesting that an increase in rhizosphere pH, and exudation of oxalic, malic and citric acid enhances Cr accumulation in rice plants.  相似文献   

13.
植物修复有许多优点,但当用于重金属含量较高的土壤时,通常修复效率较低。研究了添加外源柠檬酸、草酸、苹果酸对镉超积累植物小飞扬草(Euphorbia thymifolia L.)富集Cd的影响,以及3种外源有机酸对土壤pH、Cd形态及小飞扬草根系生理生化特性的影响,探讨利用有机酸强化小飞扬草修复镉污染土壤的可能性及其作用机制。结果表明,土壤Cd含量为247 mg/kg时,种植15 d后,3种有机酸均提高了小飞扬草根和地上部Cd含量,强化效果:草酸>柠檬酸>苹果酸,10 mmol/kg草酸的加入使小飞扬草地上部分Cd含量达最大值77.21 mg/kg,比对照组提高87.72%。加入有机酸使土壤pH从7.65下降至6.01~7.45,BCR三步提取法分析土壤Cd形态结果表明,酸溶态Cd含量增加,残渣态Cd含量减小。加入20 mmol/kg苹果酸降低了根系的活力和ATP酶活性,根细胞膜透性与对照组无显著性差异,而加入5、10和20 mmol/kg的柠檬酸、草酸和5、10 mmol/kg的苹果酸均显著增加了小飞扬草根系的活力和ATP酶活性,减小了根细胞膜透性。说明添加3种外源有机酸能强化小飞扬草修复Cd污染土壤,利用外源有机酸很有可能成为提高重金属污染土壤植物修复效率的有效途径。  相似文献   

14.
采用振荡活化方法,探究44种有机酸对碳酸镉的活化差异及其机理,评价活化能力较强的5种有机酸对低浓度Cd污灌菜园土的活化效应。结果表明:低分子有机酸、酚酸及氨基酸对碳酸镉的活化能力存在明显差异;低分子有机酸活化能力总体较强,其中草酸、柠檬酸活化率达7.48%、7.06%。等摩尔浓度有机酸活化效果计算表明:柠檬酸的活化效果最大,活化量为22.73 mg·L-1,其次是苹果酸和顺乌头酸,分别为14.55和12.75 mg·L-1,酚酸的活化效果不明显,氨基酸中除天冬氨酸、组氨酸和谷氨酸活化效果较强,其余无明显效果。研究表明在等摩尔浓度时,柠檬酸活化碳酸镉主要机制为官能团的螯合作用,而草酸主要为酸溶作用;活化碳酸镉能力较强的柠檬酸对污灌菜园土低浓度Cd的活化最强,对镉的活化量达到食品安全风险水平。  相似文献   

15.
Wu LH  Luo YM  Christie P  Wong MH 《Chemosphere》2003,50(6):819-822
A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations.  相似文献   

16.
选择3种常用的土壤重金属稳定介质针铁矿、蒙脱石和生物炭,首先通过吸附实验使其对Cd达到吸附平衡(8、16和4 h),并通过氯化镁洗脱获得稳定结合的Cd(2.52、0.93和1.04 mg·g-1)。随后分别用柠檬酸、苹果酸、马来酸、酒石酸、草酸、琥珀酸6种常见的植物根际低分子有机酸进行结合态Cd活化实验,测定活化率和活化量,对比活化效果。结果表明,6种低分子有机酸对针铁矿、蒙脱石、生物炭中结合态Cd的活化效果随浓度的增加而增加,其中柠檬酸的活化作用最大,其次为草酸,其余4种酸的活化效果差异不显著。柠檬酸随浓度增加,其对Cd活化率的线性增长率最高,在针铁矿、蒙脱石、生物炭中分别为1.74%、4.71%、2.12%。在250 μmol·L-1时,柠檬酸对针铁矿、蒙脱石、生物炭3种材料中Cd的活化率分别达到4.2%、11.0%、5.6%。对比研究表明,针铁矿吸附Cd效率高且稳定,蒙脱石吸附Cd效率低且易于被低分子有机酸活化。  相似文献   

17.
Dairy manure, acidified using organic acids (acetic, oxalic, and citric acid) were treated with microwave enhanced advanced oxidation process (MW/H2O2-AOP). The effect of a mixture of oxalic acid and commonly used mineral acids (sulfuric and hydrochloric acid) on MW/H2O2-AOP was also examined. Substantial amounts of phosphorus were released under MW/H2O2-AOP, regardless of organic acid or mineral acid used. All three organic acids were good acidifying reagents; however, only oxalic acid could remove free calcium ion in the solution, and improve settleability of dairy manure. The MW/H2O2-AOP and calcium removal process could be combined into a single-stage process, which could release phosphate, solubilize solids and remove calcium from dairy manure at the same time. A mixture of oxalic acid and mineral acid produced the maximum volume of clear supernatant and had an ideal molar ratio of calcium to magnesium for effective struvite (magnesium ammonium phosphate) crystallization process. A single-stage MW/H2O2-AOP would simplify the process and reduce mineral acid consumption compared to a two-stage operation. The results of a pilot scale study demonstrate that MW/H2O2-AOP is effective in treating manure and recovering resource from dairy farms.  相似文献   

18.
Chemical oxidation of cable insulating oil contaminated soil   总被引:2,自引:0,他引:2  
Xu J  Pancras T  Grotenhuis T 《Chemosphere》2011,84(2):272-277
Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical oxidation leads to partial removal of highly contaminated soil, therefore chemical oxidation was investigated and optimized aiming at a subsequent bioremediation treatment. Chemical oxidation of cable oil was studied with liquid H2O2 and solid CaO2 as well as permanganate at pH 1.8, 3.0 and 7.5. Liquid H2O2 most effectively removed cable oil at pH 7.5 (24%). At pH 7.5 poor oil removal of below 5% was observed with solid CaO2 and permanganate within 2 d contact time, whereas 18% and 29% was removed at pH 1.8, respectively. A prolonged contact time of 7 d showed an increased oil removal for permanganate to 19%, such improvement was not observed for CaO2.Liquid H2O2 treatment at pH 7.5 was most effective with a low acid use and was best fit to a subsequent bioremediation treatment. To further optimize in situ chemical oxidation with subsequent bioremediation the effect of the addition of the iron catalyst and a stepwise liquid H2O2 addition was performed. Optimization led to a maximum of 46% cable oil removal with 1469 mM of H2O2, and 6.98 mM Fe(II) chelated with citric acid (H2O2:FeSO4 = 210:1 (mol mol−1). The optimum delivery method was a one step addition of the iron catalyst followed by step wise addition of H2O2.  相似文献   

19.
The catalytic activity and selectivity of manganese zirconia mixed oxides were evaluated for the oxidation of two common chlorinated pollutants found in waste streams, namely 1,2-dichloroethane (DCE) and trichloroethylene (TCE). Mixed oxides with varying Mn-Zr content were prepared by coprecipitation via nitrates, and subsequent calcination at 600 degrees C for 4 h in air. These catalysts were characterised by means of several techniques such as atomic emission spectrometry, N2 adsorption-desorption, powder X-ray diffraction, temperature-programmed desorption of ammonia, pyridine adsorption followed by diffuse reflectance infrared spectroscopy and temperature-programmed reduction with hydrogen. The active catalytic behaviour of Mn-Zr mixed oxides was ascribed to a substantial surface acidity combined with readily accessible active oxygen species. Hence, the mixed oxide with 40 mol% manganese content was found to be an optimum catalyst for the combustion of both chlorocarbons with a T50 value around 305 and 315 degrees C for DCE and TCE oxidation, respectively. The major oxidation products were carbon dioxide, hydrogen chloride and chlorine. It was observed that the formation of both CO2 and Cl2 was promoted with Mn loading.  相似文献   

20.
Bajda T 《Chemosphere》2011,83(11):1493-1501
Due to its relatively low solubility, mimetite Pb5(AsO4)3Cl may control Pb and As(V) solution levels at a low value in contaminated soils. The time-dependent dissolution of mimetite by low-molecular-weight organic acids (LMWOAs) such as acetic, lactic, citric, and ethylene diamine tetra-acetic acid (EDTA) was determined. At pH 3.5, the presence of citric acid or EDTA significantly increases the solubility of mimetite while acetic or lactic acids show little effect. The effect of all organic anions on the dissolution of mimetite increased with the increase in solution pH. The rate of mimetite dissolution depended on the kind and concentration of organic solvents in the sequence rEDTA > rlactate > racetate > rcitrate. Soluble Pb and As(V) released in LMWOAs and EDTA were higher than the WHO guideline value for these elements in drinking water (10 μg As(V) L−1, 10 μg Pb L−1). This suggests that soil organic acids in rhizosphere can potentially liberate Pb and As(V) from mimetite in contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号