首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The Bear Brook Watershed in Maine (BBWM), USA is a paired watershed study with chemical manipulation of one watershed (West Bear = WB) while the other watershed (East Bear = EB) serves as a reference. Characterization of hydrology and chemical fluxes occurred in 1987–1989 and demonstrated the similarity of the ca. 10 ha adjacent forested watersheds. From 1989–2010, we have added 1,800 eq (NH4)2SO4 ha???1 y???1 to WB. EB runoff has slowly acidified even as atmospheric deposition of SO $_{4}^{2-}$ has declined. EB acidification included decreasing pH, base cation concentrations, and alkalinity, and increasing inorganic Al concentration, as SO $_{4}^{2-}$ declined. Organic Al increased. WB has acidified more rapidly, including a 6-year period of increasing leaching of base cations, followed by a long-term decline of base cations, although still elevated over pretreatment values, as base saturation declined in the soils. Sulfate in WB has not increased to a new steady state because of increased anion adsorption accompanying soil acidification. Dissolved Al has increased dramatically in WB; increased export of particulate Al and P has accompanied the acidification in both watersheds, WB more than EB. Nitrogen retention in EB increased after 3 years of study, as did many watersheds in the northeastern USA. Nitrogen retention in WB still remains at over 80%, in spite of 20+ years of N addition. The 20-year chemical treatment with continuous measurements of critical variables in both watersheds has enabled the identification of decadal-scale processes, including ecosystem response to declining SO $_{4}^{-2}$ in ambient precipitation in EB and evolving mechanisms of treatment response in WB. The study has demonstrated soil mechanisms buffering pH, declines in soil base saturation, altered P biogeochemistry, unexpected mechanisms of storage of S, and continuous high retention of treatment N.  相似文献   

2.
A synoptic survey of 719 lakes representing an estimated 10,393 lakes in mountainous areas of the western United States was conducted in autumn 1985. Nearly two-thirds of the study lakes were located in wilderness areas or national parks and were sampled by ground access. The results of a comparability study of 45 wilderness lakes accessed by helicopter and ground crews indicated that the data were generally indistinguishable, making it possible to use data from lakes sampled by ground crews without modification. Wilderness lakes had lower acid neutralizing capacity (ANC), base cations, sulfate, and dissolved organic carbon than nonwilderness lakes throughout the West. The highest estimated number (849) and percentage (42.1) of low ANC (50 eq L-1) wilderness lakes were located in California; the lowest number (66) was located in the Southern Rockies. The Sierra Nevada contained an estimated 808 low ANC lakes, representing the largest subpopulation of low ANC lakes associated with an individual mountain range in the West. Wilderness lakes in selected geographic areas of the Rocky Mountains generally contained higher concentrations of major ions than lakes in the far West and the concentrations generally increased from the Northern to the Southern Rockies. Comparison of wilderness lakes in the West with lakes in the Adirondack Park, New York, and the Boundary Waters Canoe Area/Voyagers National Park in Northeastern Minnesota showed that western lakes are highly sensitive resources that currently exhibit little evidence of anthropogenic acidification. Although wilderness lakes do not exhibit symptoms of chronic acidification, short-term depression of pH and ANC from snowmelt and thunderstorms occur and episodic acidification influenced by anthropogenic sources cannot be discounted on the basis of this survey.Contribution from Fourth World Wilderness Congress-Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

3.
Models based on chemical survey data and geochemical assumptions were calibrated for areas where rates of acidification are known, then used to predict the declines in alkalinity and pH of lakes in the eastern and midwestern U.S.A. These results were combined with known acid tolerances of different taxonomic groups to estimate the extent of damage caused by acid rain to biological assemblages.An average of over 50% of the species in some taxonomic groups have probably been eliminated from lakes in the Adirondacks, Poconos-Catskills and southern New England. Moderate damage to biotic communities was predicted for lakes in central New England, and north-central Wisconsin. Damage predicted in Maine, upper Michigan, northeastern Minnesota and the remainder of the upper Great Lakes region was slight. Crustaceans, molluscs, leeches and insects were among the most severely affected groups. Among fishes, species of minnows (Cyprindae) were depleted in the most heavily acidified regions, with some declines in salmonid and centrarchid species.Predicted damage to individual lakes in all areas was highly variable. In areas receiving highly acidic deposition, 100% of the species in acid-sensitive taxonomic groups were eliminated in some lakes, while damage to other lakes was predicted to be slight.Estimated damage varied from lake to lake within each subregion, based on chemical characteristics. The most heavily damaged lakes in the Adirondacks and Pocono-Catskills have probably lost all species of molluscs, leeches and crustaceans. On the other hand, lakes of the Midwest showed either slight increases or decreases in the richness of predicted biotic communities.The possible ranges of original sulfate concentrations in lakes and the proportion of sulfuric acid in precipitation that liberated base cations from catchments were confined to relatively narrow limits by the model.Contribution from Fourth World Wilderness Congress-Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

4.
Research during the last five years has provided evidence that there is a long-term influence of air pollutants on forest ecosystems also in the southern parts of North Europe. High loads of acidity, sulphur and nitrogen affect soil conditions, trees as well as other organisms.In South and West Sweden changes in soil acidity (pH) have been registered during the last 60 years. The changes not only occur in the humus layer, but also in the lower part of the mineral soil. These latter changes cannot be explained without the action of strong acids originating from anthropogenic air pollution.Losses of elements like magnesium, calcium and potassium occur and phosphorus become less available to plants. An increased demand for plant mutrients is a consequence of the increased fall-out of nitrogen compounds. Nutrient imbalances of trees seem to be the result. Increased sensitivity to frost and drought as well as insects and pathogens is expected.The increased soil acidity and the eutrophication of soils caused by the continued input of nitrogen contributes to changes in plant communities.If we assume that there are no changes in deposition, land-use and management of the forests in SW Sweden, the better forest soils (brown forest soils) will have a continued acidification of humus and mineral soil layers resulting in high levels of aluminium and low levels of calcium. This will create a critical situation for roots and mycorrhiza. Soils that are already acid may not become more acidified, but will still be subject to losses of essential elements.Critical deposition levels or loads of acids (hydrogen ions) and nitrogen rendering no further deterioration of soils and leaching have been set to 0.1–0.2 keq·ha-1yr-1 for S Scandinavia (present level 1 keq·ha-1yr-1). For nitrogen the critical load is 10–20 kg N ha-1yr-1 (present range 10–25 kg ha-1yr-1).Contribution from Fourth World Wilderness Congress — Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

5.
The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg(-1) of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated.  相似文献   

6.
Acidic deposition leads to the acidification of waters and accelerated leaching and depletion of soil base cations. The Bear Brook Watershed in Maine has used whole-watershed chemical manipulations to study the effects of elevated N and S on forest ecosystem function on a decadal time scale. The objectives of this study were to define the chemical and physical characteristics of soils in both the reference and treated watersheds after 17 years of treatment and assess evidence of change in soil chemistry by comparing soil studies in 1998 and 2006. Results from 1998 confirmed depletion of soil base cation pools and decreased pH due to elevated N and S within the treated watershed. However, between 1998 and 2006, during a period of declining SO $_{4}^{\,\,2-}$ deposition and continued whole-watershed experimental acidification on the treated watershed, there was little evidence of continued soil exchangeable base cation concentration depletion or recovery. The addition of a pulse of litterfall and accelerating mineralization from a severe ice storm in 1998 may have had significant effects on forest floor nutrient pools and cycling between 1998 and 2006. Our findings suggest that mineralization of additional litter inputs from the ice storm may have obscured temporal trends in soil chemistry. The physical data presented also demonstrate the importance of coarse fragments in the architecture of these soils. This study underscores the importance of long-term, quantitative soil monitoring in determining the trajectories of change in forest soils and ecosystem processes over time.  相似文献   

7.
Studies of toxicological and ecological effects of acidification on aquatic birds in Europe and North America are reviewed. Heavy metals are deposited by acid emissions, which also increase solubility and mobility of heavy metals in soil and water. Aluminium is leached from soil and mobilized from lake sediments under acid conditions; it removes susceptible fish and invertebrate species and contaminates remaining invertebrates. It is not highly toxic to birds, but may interfere with their regulation of calcium and phosphorus. Mercury is concentrated as methylmercury in fish tissues, and tends to be biomagnified in aquatic food chains. Experimental studies have demonstrated negative effects on reproduction of birds, and wild Common Loons Gavia immer breed less successfully in territories contaminated by mercury.The clearest demonstrable effect of acidification on aquatic birds is the disruption of their food chains. The loss of invertebrates and fish affects both the food-webs and the predators and competitors of aquatic birds. Cyprinid fish are important food resources for fish-eating birds, in Europe as well as North America, and are particularly sensitive to acidification. Fish-eating waterfowl in Ontario are scarcer, and breed less successfully, in areas of high acidic deposition. Experimental studies of imprinted young Black Duck Anas rubripes showed that they grew more slowly on acidic lakes, apparently due to competition from acid-tolerant fish for a reduced invertebrate resource. Negative effects of acidified habitats on growth and reproduction, again through depletion of the food-web, have also been demonstrated in field studies of Tree Swallows Tachycineta bicolor and European Dippers Cinclus cinclus.Contribution from Fourth World Wilderness Congress-Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

8.
The use of a combination of electrokinetic remediation and phytoremediation to decontaminate two metal-polluted soils has been demonstrated in laboratory-scale reactors. One soil was heavily contaminated with copper, the other with cadmium and arsenic (2500 g g-1 Cu; 300-400 g g-1 Cd and 230 g g-1 As, respectively). Test reactors with twoseparated chambers, each with a capacity of 5.25 kg soil, wereconstructed, then the respective chambers were filled with eithera mixture of the polluted soil and a control topsoil (75:25) ortopsoil alone. Reactors were sown with perennial ryegrass (Lolium perenne cv Elka) and a constant voltage of 30 V was applied continually across the soils in each reactor. Soil sampling took place at the start and the end of the test run, whilst plant foliage was sampled after approximately 3 weeks (both reactors) 6 weeks (Cd soil reactor only) and at the conclusion of each test run (98 days Cu soil, 80 days Cd soil). Soil and plant metal concentrations were measured, together withsoil pH. Results showed that in both soils there was a significant re-distribution of metals from anode to cathode in the test reactors, coupled with an enhancement of plant Cu uptakein the cathode region for the Cu soil. Patterns of plant Cd uptake were less clear cut and were not as clearly related to theredistribution of Cd measured in the soil. There was significant acidification of soil at the anode in each test reactor, but soilpH in other parts of the reactor changed little during the courseof the experiment. Plant growth was affected at the anode, but was not affected in other parts of the reactor. There was no visual evidence of metal toxicity in the ryegrass in either polluted soil. Some effects on soil fungi were apparent, with a stimulation of Fusarium infection of ryegrass in the cathode region of all reactors and the appearance of sporophoresof Coprinus in the same location. It is concluded that the combination of the two techniques represents a very promising approach to the decontamination of metal polluted soils that nowrequires validation in field conditions.  相似文献   

9.
This study was conducted to determine the response of stream water DOC and organic acidity to increased inputs of ammonium sulfate to a whole catchment. Precipitation, throughfall, soil solutions (from Spodosols) and stream waters were characterized for DOC concentrations and fractions (hydrophobic acids and neutrals, hydrophilic acids, bases, and neutrals) in both the control (East Bear) and the treatment (West Bear) catchments of Bear Brook Watershed, Maine (BBWM), a northern hardwood forest. In all solutions except precipitation, DOC was composed primarily of organic acids, with hydrophobic acids dominating (> 60% of DOC) in forest floor leachates (5000 mol C L-1), and a balance of hydrophobic and hydrophilic acids in deep B horizons and stream waters ( 150 mol C L-1). Stream waters had higher concentrations of DOC during storm or snowmelt events (high discharge), often reaching 300 to 400 mol C L-1. Forest floor leachate C was rapidly attenuated by the mineral soils under all flow conditions, indicating how important mineral soil sorption of DOC was in reducing the loss of C via surface water from BBWM. No differences occurred between control and treatment streams for concentration or composition of DOC due to treatment from 1989 through 1994. In 1995, West Bear Brook had much lower concentrations of DOC than East Bear for the first time. However, this occurred during a year of record low runoff, suggesting that hydrology may have affected export of C. Average annual export of DOC from the catchments was similar (1000 to 2000 mol C ha-1 yr-1). Organic anions in streamwaters increased slightly during high flow events (e.g., East Bear had means of 15 and 19 eq L-1 organic anions during base flow and high discharge in 1995). Treatment of West Bear caused a decrease in organic anions, both in concentration and contribution to overall anion composition (organic anions during high discharge as a percentage of total anions decreased from about 8 to 4% for 1987-89 and 1993-95 samples, respectively). This was probably due to decreased solution pH (greater protonation of organics) and higher concentrations of inorganic anions. Overall, there were no clear, detectable changes in stream water DOC, with only minor changes in organic anions, as a result of treatment with ammonium sulfate.  相似文献   

10.
Large-scale exposure of acid sulfate soils during a hydrological drought in the Lower Lakes of South Australia resulted in acidification of surface water in several locations. Our aim was to describe the techniques used to monitor, assess and manage these acidification events using a field and laboratory dataset (n?=?1,208) of acidic to circum-neutral pH water samples. The median pH of the acidified (pH?<?6.5) samples was 3.8. Significant (p?<?0.05) increases in soluble metals (Al, Co, Mn, Ni and Zn above guidelines for ecosystem protection), SO4 (from pyrite oxidation), Si (from aluminosilicate dissolution) and Ca (from carbonate dissolution and limestone addition), were observed under the acidic conditions. The log of the soluble metal concentrations, acidity and SO4/Cl ratio increased linearly with pH. The pH, alkalinity and acidity measurements were used to inform aerial limestone dosing events to neutralise acidic water. Field measurements correlated strongly with laboratory measurements for pH, alkalinity and conductivity (r 2?≥?0.97) but only moderately with acidity (r 2?=?0.54), which could be due to difficulties in determining the indicator-based field titration endpoint. Laboratory measured acidity correlated well with calculated acidity (r 2?=?0.87, acidity present as AlIII?>>?H+?≈?MnII?>?FeII/III) but was about 20 % higher on average. Geochemical speciation calculations and XRD measurements indicated that solid phase minerals (schwertmannite and jarosite for Fe and jurbanite for Al) were likely controlling dissolved metal concentrations and influencing measured acidity between pH 2 and 5.  相似文献   

11.
A major tool used in the assessment of anthropic atmospheric effects on aquatic and terrestrial ecosystems is biogeochemical nutrient cycling and budgets. However, to be most effective such study should be done in an ecosystem context. Also some assessment of natural variation in factors affecting nutrient cycling must be in place before trends, often subtle and long-term, attributable to man can be statistically quantified. The input and output balance of chemical species in watershed ecosystems is considerably influenced by ecosystem succession. It is hypothesized that during primary ecosystem succession chemical element output is initially relatively high due to rapid acidification and lack of plant uptake. Outputs decline during the period of high ecosystem productivity and biomass accumulation, and they again rise during late successional stages to approximate inputs from precipitation weathering, and aerosol capture. Glacier Bay provides a unique opportunity to quantify many mechanisms responsible for variation in nutrient cycles without the need for site manipulation. This is especially true for quantifying the rate and magnitude of natural acidification in ecosystems. The park has a spectrum of watersheds differing in stage of primary and secondary succession following deglaciation. These sites are not now subjected to or altered by anthropic atmospheric inputs. The objectives of this research were (1) determine the rate of soil chemical change which occurs following deglaciation, (2) relate soil acidification to presence of organic matter, soil NO inf3 sup- , and total N, (3) estimate the downward movement of ionic species within the soil profiles with increasing acidification from advancing plant succession, and (4) determine if such processes and ionic movements might be reflected in watershed stream ionic outputs. We studied five watersheds ranging from 40–350 years since deglaciation. Soil samples were collected and lysimeters installed in seven vegetation successional stages following deglaciation. An anion of ecological importance and a common air contaminant is NO inf3 sup- , and its discharge in streamflow from early successional ecosystems was found to be high. The terrestrial biota in such systems was dominated by Alnus sinuata, a major nitrogen fixer. Stream discharge of NO inf3 sup- suggested that early successional ecosystem N fixation exceeded biotic uptake. This was confirmed by examining NO inf3 sup- in soil extractions and lysimeters. This process was particularly evident beneath >20-year old Alnus (forty years since deglaciation). concurrent with increased NO inf3 sup- concentrations below the rooting zone was increased H+ which increased 100x during 25 years of primary succession. This natural acidification from a mobile NO inf3 sup- ion resulted in an pronounced increase in soil base cation leaching and mobilization of aluminium in the soil profile. The magnitude and short time required for such acidification greatly exceeded anything projected or modeled for systems impacted by anthropic inputs. Stream SO inf4 sup2- concentrations also were high relative to precipitation inputs suggesting mineralization of sulfur within the ecosystem and/or poor soil adsorption of SO inf4 sup2- . This is an important finding in such ecosystems where cation nutrient ion levels are often very low. Should atmospheric inputs of SO inf4 sup2- increase additional loss of cations appears imminent. These data suggest that most early successional ecosystems at Glacier Bay would be sensitive to anthropic inputs of both NO inf3 sup- and SO inf4 sup2- . This is unusual in other ecosystems where many conserve ionic NO inf3 sup- inputs, and older systems have considerable SO inf4 sup2- adsorption capacity. The effect of any increased atmospheric inputs of these ions would be accelerated cation leaching and ecosystem acidification.Contribution from Fourth World Wilderness Congress—Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

12.
Aquatic acidification by deposition of airborne pollutants emerged as an environmental issue in southeastern Canada during the 1970s. Drawing information from the extensive research and monitoring programs, a sequence of issue assessments demonstrated the necessity of reducing the anthropogenic emissions of acidifying pollutants, particularly sulphur dioxide (SO2). The 1991 Canada-U.S. Air Quality Agreement (AQA) was negotiated to reduce North American SO2 emissions by 40% relative to 1980 levels by 2010, and at present, both countries have reduced emissions beyond their AQA commitment. In response to reduced SO2 emissions, atmospheric deposition of sulphate (SO4 2–) and SO4 2– concentrations in many lakes have declined, particularly in south-central Ontario and southern Québec. Sulphate deposition still exceeds aquatic critical loads throughout southeastern Canada however. Increasing pH or alkalinity (commonly deemed recovery) has been observed in only some lakes. Several biogeochemical factors have intervened to modify the lake chemistry response to reduced SO4 2– input, notably release of stored SO4 2– from wetlands following periods of drought and reduction in the export of base cations from terrestrial soils. Three examples from Ontario are presented to illustrate these responses. Significant increases in pH and alkalinity have been observed in many lakes in the Sudbury area of Ontario due to the large reductions in local SO2 emissions; early-stage biological recovery is evident in these lakes. An integrated assessment model predicts that AQA emission reductions will not be sufficient to promote widespread chemical or biological recovery of Canadian lakes. Monitoring and modeling are mutually supporting assessment activities and both must continue.  相似文献   

13.
This paper describes the application of an optimisation model for calculating cost-effective abatement strategies for the reduction of acidification in Europe while taking into account the dynamic character of soil acidification in a number of countries. Environmental constraints are defined in terms of soil quality indicators, e.g., pH, base saturation or the aluminium ion concentration in the soil solution within an optimisation model for transboundary air pollution.We present a case study for Ireland and the United Kingdom. Our results indicate that reduction of sulphur dioxide emission is more cost-effective than that of nitrogen oxides or ammonia. The reduction percentages for sulphur dioxide are highest, for two reasons: (i) marginal sulphur dioxide reduction costs are relatively low compared to marginal reduction costs of nitrogen oxides and ammonia and (ii) sulphur dioxide reduction is more effective in reducing acidification in physical terms than nitrogen oxides or ammonia abatement. Our dynamic analysis shows that a (fast) improvement of soil quality requires high emission reduction levels. These reduction levels are often higher than reduction levels that are typically deduced from the static critical loads approach. Once soil quality targets are reached, in our model, less stringent emission reductions are required to maintain the soil quality at a constant and good target level. Static critical load approaches that ignore dynamic aspects therefore may underestimate the emission reductions needed to achieve predefined soil quality targets.  相似文献   

14.
The Bear Brook Watershed Manipulation project in Maine is a paired calibrated watershed study funded by the U. S. EPA. The research program is evaluating whole ecosystem response to elevated inputs of acidifying chemicals. The project consists of a 2.5 year calibration period (1987-1989), nine years of chemical additions of (NH4)2SO4 (15N- and 34S-enriched for several years) to West Bear watershed (1989-1998), followed by a recovery period. The other watershed, East Bear, serves as a reference. Dosing is in six equal treatments/yr of 1800 eq SO4 and NH4/ha/yr, a 200% increase over 1988 loading (wet plus dry) for SO4 and 300% for N (wet NO3 + NH4). The experimental and reference watersheds are forested with mixed hard- and softwoods, and have thin acidic soils, areas of 10.2 and 10.7 ha, and relief of 210 m. Thin till of variable composition is underlain by metasedimentary pelitic rocks and calc-silicate gneiss intruded by granite dikes and sills. For the period 1987-1995, precipitation averaged 1.4 m/yr, had a mean pH of 4.5, with SO4, NO3, and NH4 concentrations of 26, 14, and 7 eq/L, respectively. The nearly perrenial streams draining each watershed have discharges ranging from 0 (East Bear stops flowing for one to two months per year) to 150 L/sec. Prior to manipulation, East Bear and West Bear had a volume weighted annual mean pH of approximately 5.4, alkalinity = 0 to 4 eq/L, total base cations = 184 eq/L (sea-salt corrected = 118 eq/L), and SO4 = 100 to 111 eq/L. Nitrate ranged from 0 to 30 eq/L with an annual mean of 6 to 25 eq/L; dissolved organic carbon (DOC) ranged from 1 to 7 mg/L but was typically less than 3. Episodic acidification occurred at high discharge and was caused by dilution of cations, slightly increased DOC, significantly higher NO3, and the sea-salt effect. Depressions in pH were accompanied by increases in inorganic Al. The West Bear catchment responded to the chemical additions with increased export of base cations, Al, SO4, NO3, and decreased pH, ANC, and DOC. Silica remained relatively constant. Neutralization of the acidifying chemicals occurred dominantly by cation desorption and mobilization of Al.  相似文献   

15.
Biosolids from the WWTP of Thessaloniki were examined for the leaching of phosphorus (as ), nitrogen (as and ), and organic matter (as TOC and COD), using two tests: (1) a pH static leaching test and (2) a characterization test, relating contaminant release to the liquid to solid (L/S) ratio. Moreover, a Microtox toxicity test was conducted, to examine the pH dependency of the toxicity of the sludge leachate on the Vibrio fischeri bacterium. Maximum phosphorus release was observed at pH < 3 and at pH > 10. Ammonium nitrogen exhibited maximum leachability at near neutral pH conditions, while nitrate nitrogen exhibited a mild increase in the leachate, as the leachant pH increased from 2 to 12. Both TOC and COD exhibited an increase in the leachate concentration, as the leachant pH was increased from 2 to 12. Ecotoxicological analysis showed that maximum toxicity occurred at very low and very high pH-conditions. As liquid-to-solid ratio increased, the leachate concentration (in mg/l) of all parameters studied decreased. The results of the study were used to conduct a release assessment estimate for the case of Thessaloniki.  相似文献   

16.
This work investigated the effect of soil aquifer treatment (SAT) operation on the fluorescence characteristics of dissolved organic matter (DOM) fractions in soils through laboratory-scale soil columns with a 2-year operation. The resin adsorption technique (with XAD-8 and XAD-4 resins) was employed to characterize the dissolved organic matter in soils into five fractions, i.e., hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The synchronous fluorescence spectra revealed the presence of soluble microbial byproduct- and humic acid-like components and polycyclic aromatic compounds in DOM in soils, and SAT operation resulted in the enrichment of these fluorescent materials in all DOM fractions in the surface soil (0–12.5 cm). More importantly, the quantitative method of fluorescence regional integration was used in the analysis of excitation–emission matrix (EEM) spectra of DOM fractions in soils. The cumulative EEM volume (Φ T, n ) results showed that SAT operation led to the enrichment of more fluorescent components in HPO-A and TPI-A, as well as the dominance of less fluorescent components in HPO-N, TPI-N, and HPI in the bottom soil (75–150 cm). Total Φ T, n values, which were calculated as $ {\Phi_{{T,n}}} \times {\mathrm{DOC}} $ , suggested an accumulation of fluorescent organic matter in the upper 75 cm of soil as a consequence of SAT operation. The distribution of volumetric fluorescence among five regions (i.e., P i, n ) results revealed that SAT caused the increased content of humic-like fluorophores as well as the decreased content of protein-like fluorophores in both HPO-A and TPI-A in soils.  相似文献   

17.
On percolating water equivalent to 1,156 mm of rainfall, spiromesifen formulation did not leach out of 25-cm long columns, and 62.7 % of this was recovered in 5–10-cm soil depth. In columns treated with the analytical grade, 52.40 % of the recovered spiromesifen was confined to 0–5-cm soil depth, with 0.04 % in leachate fraction, suggesting high adsorption in soil. Results revealed that percolating 400 mL of water, residues of enol metabolite of spiromesifen was detected up to 20–25-cm soil layer, with 23.50 % residues of spiromesifen in this layer and 1.73 % in the leachate fraction indicating that metabolite is more mobile as compared to the parent compound. Results suggested a significant reduction in leaching losses of enol metabolite in amended soil columns with 5 % nano clay, farmyard manure (FYM), and vermicompost. No enol spiromesifen was recovered in the leachate in columns amended with nano clay, vermicompost, and FYM; however, 85.30, 70.5, and 65.40 %, respectively, was recovered from 0–5 cm-soil depth of column after percolating water equivalent to 1,156 mm of rainfall. Spiromesifen formulation is less mobile in sandy loam soil than analytical grade spiromesifen. The metabolite, enol spiromesifen, is relatively more mobile than the parent compound and may leach into groundwater. The study suggested that amendments were very effective in reducing the downward mobility of enol metabolite in soil column. Further, it resulted in greater retention of enol metabolite in the amendment application zone.  相似文献   

18.
Eighteen sites impacted by abandoned mine drainage (AMD) in Pennsylvania were sampled and measured for pH, acidity, alkalinity, metal ions, and sulfate. This study compared the accuracy of four acidity calculation methods with measured hot peroxide acidity and identified the most accurate calculation method for each site as a function of pH and sulfate concentration. Method E1 was the sum of proton and acidity based on total metal concentrations; method E2 added alkalinity; method E3 also accounted for aluminum speciation and temperature effects; and method E4 accounted for sulfate speciation. To evaluate errors between measured and predicted acidity, the Nash-Sutcliffe efficiency (NSE), the coefficient of determination (R 2), and the root mean square error to standard deviation ratio (RSR) methods were applied. The error evaluation results show that E1, E2, E3, and E4 sites were most accurate at 0, 9, 4, and 5 of the sites, respectively. Sites where E2 was most accurate had pH greater than 4.0 and less than 400 mg/L of sulfate. Sites where E3 was most accurate had pH greater than 4.0 and sulfate greater than 400 mg/L with two exceptions. Sites where E4 was most accurate had pH less than 4.0 and more than 400 mg/L sulfate with one exception. The results indicate that acidity in AMD-affected streams can be accurately predicted by using pH, alkalinity, sulfate, Fe(II), Mn(II), and Al(III) concentrations in one or more of the identified equations, and that the appropriate equation for prediction can be selected based on pH and sulfate concentration.  相似文献   

19.
The pollutants that are discharged from roads and traffic have attracted much attention recently. Nonetheless, most studies have mainly focused on highways and seldom on railways. In this study, soil samples were selected at the embankment and perpendicularly at different distances (2, 5, 10, 20, 30, 50, 60, 70, 80, 100, and 150 m) from the embankment bottom of the QinghaiTibet railway. Furthermore, soils were selected at four soil depths (5, 10, 20, and 30 cm) of each sample at the flat. The enrichment of nine heavy metals (V, Cr, Co, Ni, Cu, Zn, Rb, Cd, and Pb) in soils along the DelhiUlan section of the QinghaiTibet railway was studied. The results indicated that the mean concentrations of Cr, Ni, Cu, Zn, Pb, and Cd were highest at the embankment. The Cu concentrations in soils decreased by an S-curve-shaped function with increasing distance from the embankment, while Cd, Pb, and Zn decreased by inverse functions (p?<?0.0001). The concentrations of other studied metal did not show significant changes with increasing distance. After performing a statistical analysis, Pb, Cd, and Zn in soils were considered to be influenced by railway operations. However, the influence was weak and only spanned less than 5 m from the bottom of the embankment horizontally and 10 cm from the surface vertically. The mean concentrations of heavy metals in soils along the DelhiUlan section of the QinghaiTibet railway were considered lower compared with those along other railways.  相似文献   

20.
The attenuation of arsenic in groundwater near alkaline coal fly ash disposal facilities was evaluated by determining the uptake of arsenic from ash leachates by surrounding alkaline soils. Ten different alkaline soils near a retired coal fly ash impoundment were used in this study with pH ranging from 7.6 to 9.0, while representative coal fly ash samples from two different locations in the coal fly ash impoundment were used to produce two alkaline ash leachates with pH 7.4 and 8.2. The arsenic found in the ash leachates was present as arsenate [As(V)]. Adsorption isotherm experiments were carried out to determine the adsorption parameters required for predicting the uptake of arsenic from the ash leachates. For all soils and leachates, the adsorption of arsenic followed the Langmuir and Freundlich equations, indicative of the favorable adsorption of arsenic from leachates onto all soils. The uptake of arsenic was evaluated as a function of ash leachate characteristics and the soil components. The uptake of arsenic from alkaline ash leachates, which occurred mainly as calcium hydrogen arsenate, increased with increasing clay fraction of soil and with increasing soil organic matter of the alkaline soils. Appreciable uptake of arsenic from alkaline ash leachates with different pH and arsenic concentration was observed for the alkaline soils, thus attenuating the contamination of groundwater downstream of the retired coal fly ash impoundment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号