首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anemonia viridis (Forskäl) were collected from south-west Scotland and south-west England in October 1988. When exposed to 0.05 and 0.2mg 1–1 copper in sea water, anemones did not take up the metal in proportion to external concentrations. Results suggested thatA. viridis regulated copper by expelling symbiotic algae (or zooxanthellae) which were shown to accumulate copper. The use of aposymbiotic (non-zooxanthellate) anemones in similar metal-uptake experiments indicated that other mechanisms may also be involved in metal regulation. Mucus was produced byA. viridis when the anemone was exposed to copper, and it is proposed that mucus may be involved in the regulation process. The implication of this work on the use of coelenterates as biological indicators of environmental metal levels is discussed.  相似文献   

2.
Echinoderms are major predators of anemones in temperate ecosystems. The fate of two algae, zooxanthellae and zoochlorellae, after their host anemone (Anthopleura elegantissima Brandt) was consumed by the leather star Dermasterias imbricata Grube was determined in experiments conducted in July and August 2004. Productivity, photosynthetic pigments, and mitotic index (percent of cells dividing) were used as indicators of algal health; algae released after leather stars consumed their host were compared with algae freshly isolated from anemones. Two types of waste products contained algae: pellets resulting from extraoral digestion, and feces. Zooxanthellae and zoochlorellae isolated from these waste products were photosynthetic, although to different extents. For algae from feces and pellets, light-saturated photosynthetic rates (P max) were 85 and 13%, respectively, of P max of freshly isolated zooxanthellae; and were 20 and 46%, respectively, for zoochlorellae. The photosynthetic pigments and mitotic index (percent of dividing cells) were not altered by the feeding activities of the leather star. These results show that algae released by seastar predation on their hosts remain viable, and are hence available for establishing symbioses in A. elegantissima and other potential hosts.  相似文献   

3.
R. Diesel 《Marine Biology》1986,91(4):481-489
The ecology of the spider crab Inachus phalangium (Fabricius, 1775) (Decapoda: Maiidae) was studied in the field. I. phalangium inhabits the sublittoral on the sea anemone Anemonia sulcata Pennant. From July 1981 to April 1984 in the Mediterranean (Banyuls sur Mer, southern France) more than 3000 anemones were examined and ca 1800 I. phalangium were found on them. The population dynamics' generation cycles, reproductive activities and the dynamics of the sex ratio were investigated. The density of juveniles (crabs before the pubertal moult) on anemones changed in a yearly cycle from low in the first six months to very high in the second six months. The first occasional young crabs of a generation appeared in March/April (3rd and 4th decapodite stages) on the anemones. Their density increased enormously in the following months. The generation grew gradually on the anemones and moulted into puberty in September-January. Density of adults (crabs after the pubertal moult) on anemones changed in a yearly cycle from low to high from the summer to winter months. A new adult generation was recruited every autumn through the pubertal moult and disappeared in the following summer. Female reproductive activity continued throughout the year. Females carried several broods in succession, but the frequency of breeding females fluctuated on a yearly cycle. The highest percentage of egg-carrying females, i.e. the peak of the reproductive season, lay in the first half of the year. The maximal life span of a generation, from the hatching of the first larvae to the disappearance of the last adults, lasted 1.5 to 2 years. Males moulted into puberty ca one month later than females. The moulting distribution of adult males had roughly the same course as in females. An adult male generation diet out about one to two months before the female generation. Life expectancy was therefore 14 to 17 months for females and 12 to 15 months for males. The sex ratio of juveniles shortly before the pubertal moult was balanced. The sex ratio of adults shifted from 1:1 at the beginning of the reproductive period to ca 1:9 in favour of females at its end.  相似文献   

4.
Cnidarians which contain symbiotic algae are constantly faced with the challenges of a changing photic regime and a hyperoxic environment. Zooxanthellae (Symbiodinium sp.) from the sea anemone Aiptasia pallida (Verrill), collected and cultured at Bermuda Biological Station in 1986, exhibit a suite of compensatory responses to changes in irradiance, ultraviolet radiation (UV), and to the toxicity resulting from their interaction with photosynthetically produced oxygen. Superoxide dismutase (SOD) and catalase inactivate superoxide radicals (O2 -) and hydrogen peroxide (H2O2), which are mediators of oxygen toxicity, show an increase in specific activity with irradiance and in response to UV, both in cultured zooxanthellae (CZ) and freshly isolated zooxanthellae (FIZ) from acclimated anemones. CZ and FIZ exposed to environmentally realistic UV levels show a 30 to 40% increase in SOD activities compared with zooxanthellae exposed to similar irradiances without UV. CZ consistently show higher activities of both SOD and catalase compared to FIZ. Both CZ and FIZ exhibit changes in chlorophyll content and in the relationship between photosynthesis and irradiance which suggest photoadaptive changes in CO2-fixing enzymes, the photosynthetic-electron transport system, or in photosynthetic unit size (PSU). UV has a greater effect on the photosynthetic capacity (P max) of FIZ when compared to CZ acclimated at an equivalent irradiance with or without a UV component. UV also enhances the photoinhibition observed at high irradiance in both CZ and FIZ. Differences in enzyme activity between CZ and FIZ suggest an important role for the host in the protection of zooxanthellae against the direct effects of environmentally realistic UV while the photosynthetic performance of zooxanthellae in situ may not be as well protected.  相似文献   

5.
Exposure of the temperate sea anemone Anemonia viridis Forskål to increased seawater temperature (from 16 to 26°C) reduced the lysosomal latency of coelenterate tissues. Lysosomes in the mesenterial filaments of anemones were destabilised by increased temperature, with greater destabilisation in heat-shocked symbiotic anemones than in heat-shocked aposymbiotic anemones in the early stages of the experiment. Lysosomal enzyme activity in zooxanthellae from heat-shocked symbiotic anemones was associated with the algal membranes and the cytoplasm of degenerate algal cells. While the relationship between host coelenterate and symbiotic alga may confer many benefits under normal conditions, comparison of the responses of symbiotic and aposymbiotic anemones to heat shock suggests that there may be disadvantages for symbiotic anemones under stress.  相似文献   

6.
Under the general heading of symbiosis, defined originally to mean a living together of two dissimilar species, exist the sub-categories of mutualism (where both partners benefit), commensalism (where one partner benefits and the other is neutral) and parasitism (where one partner benefits and the other is harmed). The sea anemone-fish (mainly of the genus Amphiprion) symbiosis has generally been considered to benefit only the fish, and thus has been called commensal in nature. Recent field and laboratory observations, however, suggest that this symbiosis more closely approaches mutualism in which both partners benefit to some degree. The fishes benefit by receiving protection from predators among the nematocyst-laden tentacles of the sea anemone host, perhaps by receiving some form of tactile stimulation, by being less susceptible to various diseases and by feeding on anemone tissue, prey, waste material and perhaps crustacean symbionts. The sea anemones benefit by receiving protection from various predators, removal of necrotic tissue, perhaps some form of tactile stimulation, removal of inorganic and organic material from on and around the anemone, possible removal of anemone parasites, and by being provided food by some species of Amphiprion.  相似文献   

7.
The temperate sea anemoneAnemonia viridis (Forskäl) contained about 11% lipid on a dry weight basis when maintained at light levels of about 10µE m–2 s–1 and a temperature of 10°C. Aposymbiotic forms of the anemone had similar lipid levels. These values are very low compared with tropical symbiotic Anthozoa in which lipid levels constitute up to 50% of dry weight. In symbioticA. viridis, <6% of total lipid consisted of the storage lipids, wax esters and triglycerides. Most of the triglyceride was stored in the animal tissues rather than the zooxanthellae. Zooxanthellae contained only small amounts of wax esters. An analysis was made of the wax ester, triglyceride and fatty acid composition of symbiotic anemones, isolated zooxanthellae and aposymbiotic anemones. Wax ester composition was similar in symbiotic and aposymbiotic forms. However, triglyceride composition differed. In particular trimyristin (C42) was found only within the symbiotic association. Fatty acids showed a high degree of unsaturation, and acids with both even and odd numbers of carbon atoms were found. The most abundant fatty acid was 16:0 in all samples, except for the total lipids from zooxanthellae in which the major fatty acid wastrans-18:1.  相似文献   

8.
Tentacles of the sea anemone, Nematostella vectensis, are covered with hair bundles. Hair bundles were deflected by water jets to test whether they are mechanoreceptors. Electrophysiological recordings confirm that deflections of hair bundles induce transients in membrane current. In a different species of anemone, hair bundle mechanoreceptors are known to change shape and responsiveness according to the activity of chemoreceptors that bind prey-derived compounds including N-acetylated sugars. In Nematostella, hair bundles significantly elongate upon exposure to NANA, an N-acetylated sugar. Based on a bioassay in which discharged nematocysts are counted in gelatin-coated test probes touched to tentacles, we find that NANA shifts vibration dependent discharge of basitrich nematocysts to lower frequencies overlapping those produced during swimming by known prey including planktonic crustaceans. Furthermore, we find for the first time that vibration detection extends at least 2.5 cm beyond the tentacle tips. Thus, Nematostella likely employs its hair bundles to detect swimming movements of nearby prey.  相似文献   

9.
Nutrient sufficiency of zooxanthellae in the sea anemone Aiptasia pallida cultured in low nutrient seawater depends on the availability of particulate food to the host. Zooxanthellae in anemones unfed for 20 to 30 d exhibited the following characteristics of nutrient deficiency: cell division rates decreased; chlorophyll a content gradually decreased from 2 to <1 pg cell–1; and C:N ratios increased from 7.5 to 16. Over a 3-mo period, algal populations in unfed anemones gradually decreased, indicating that zooxanthellae were lost faster than they were replaced by division. The mitotic index of zooxanthellae in unfed anemones was stimulated either by feeding the host or by the addition of inorganic N and P to the medium. Whether algae are nutrient-limited in hosts under field conditions has not been examined fully; however, C:N ratios in zooxanthellae from field-collected hosts are slightly higher (9.4 vs 7.5) than in hosts fed to repletion in laboratory cultures. This observation might indicate N limitation in the field.  相似文献   

10.
The temperate sea anemone Anthopleura elegantissima is facultatively symbiotic with unicellular algae. Symbiotic A. elegantissima can supplement heterotrophic feeding with excess photosynthate from their algal partners, while asymbiotic individuals must rely solely on heterotrophy. A. elegantissima individuals were collected from Swirl Rocks, Washington (48°25′6″ N, 122°50′58″ W) in July 2010, and prey capture and feeding characteristics were measured to determine whether asymbiotic individuals are more efficient predators. Feeding abilities were then measured again after a 3-week exposure to full sunlight or shaded conditions. Freshly collected asymbiotic anemones had larger nematocysts, but symbiotic individuals showed greater nematocyte sensitivity. Sunlight enhanced digestion and reduced cnida density in all anemones regardless of symbiotic state. Results suggest that the phototropic potential of A. elegantissima, as influenced by symbiotic condition, has little effect on heterotrophic capacity. The anemones appear to maximize heterotrophic energy input independent of the presence or identity of their algal symbionts.  相似文献   

11.
This paper considers the potential role of the crinoid Leptometra phalangium as an indicator of highly productive areas along the shelf break that can sustain large biomasses of benthopelagic fish and recruits. The structure of fish assemblages in the central Mediterranean Sea (central-western coast of Italy), analysed on the basis of surveys carried out in summer and autumn from 1997 to 2001, revealed the presence of a well-defined group of species on the shelf break. This area, occurring at a depth of between 120 and 170 m, is characterised by detritic organogenic sediments colonised by the crinoid L. phalangium, a suspension-feeding macro-epibenthic species confined in the Mediterranean to the shelf-break area. Its abundance in the studied area can reach 12–15 ind. m–2. A total of 121 species belonging to 66 families of demersal organisms (crustacean decapods and stomatopods, cephalopods, selaceens and teleosteens) were caught at shelf-break stations from September to October. The species which typified the assemblage were the fishes Trisopterus minutus capelanus, Merluccius merluccius, Glossanodon leioglossus, Argentina sphyraena, Capros aper, Macroramphos scolopax and Lepidotrigla cavillone, the crustacean decapod Parapenaeus longirostris and the cephalopods Illex coindetii and Todaropsis eblanae. Detritic shelf-break stations showed a higher abundance of demersal organisms than stations distributed on muddy bottoms in the same depth range (100–200 m). Such differences appeared to be significant in September–October, when a clear increase in benthopelagic zooplanktivorus species, such as Glossanodon leioglossus, Trachurus trachurus, Trachurus picturatus, was found. The length structure of species occurring on the shelf break showed that for some of them the selection of this area is related to specific phases of their life cycle. Significant highest abundance of recruits and juveniles was observed for Merluccius merluccius, Helicolenus dactylopterus, Phycis blennoides, Parapenaeus longirostris and Capros aper in at least one of the two seasons. Similarly, an increased abundance of spawners of red mullet Mullus barbatus and four-spotted megrim Lepidorhombus boscii was observed on the shelf break. Results of this study may have important consequences for management of fish stocks and assemblages in the central Mediterranean. The co-occurrence of high densities of L. phalangium and benthopelagic fish, occurring mainly with juveniles and spawners, strongly indicates a potential role of L. phalangium as an indicator of highly productive areas around the shelf break. Such areas appear to play a major role in the production of some of the most abundant and commercially important fish species, such as the Mediterranean hake and red mullet.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

12.
Elucidating the causes of post-recruitment mortality is a vital step toward understanding the population dynamics of coral reef fishes. Predation is often considered to be the primary proximate cause of mortality. It has, however, proven difficult to discern the relative contributions of predation and other processes, such as competition for food, shelter, or mates, to patterns of mortality. To determine which other processes might be important drivers of mortality patterns, factors related to mortality in the clown anemonefish Amphiprion percula (Lacepède, 1802) were examined. Patterns of mortality will not be driven by predation in A. percula, because these fish are well protected from predators by their close association with sea anemones. Mortality rates were based on the disappearance of known individuals from a population of 201, in 57 groups, during a 1-year field study (in 1997), in Madang Lagoon, Papua New Guinea. Mortality rate of A. percula was low (14% per annum) compared to other coral reef fish, probably due to the protection from predators afforded by the anemone. Six factors (reef, depth, anemone diameter, number of individuals, density, and standard length) showed no association with the probability of mortality (P>0.05). Rank was the only factor associated with the probability of mortality (P<0.03); low-rank individuals (ranks 4–6) suffered a higher mortality rate than high-rank individuals (ranks 1–3) (P<0.01). The most likely explanation for this pattern was that competition for rank, amongst individuals within an anemone, resulted in some individuals evicting their subordinates. Individuals probably competed for rank because it conferred access to reproduction, and not because it conferred access to food or shelter. Such competition for reproduction will be intense whenever some individuals obtain a greater share of reproduction than others do, and it may be an important process influencing the dynamics of coral reef fish populations.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Communicated by J.P. Grassle, New Brunswick  相似文献   

13.
Sodium cyanide (NaCN) was used to partially uncouple respiration and photosynthesis in the symbiotic sea anemone Condylactis gigantea. NaCN significantly increased the ratio of gross photosynthesis to respiration in both intact tentacles and isolated zooxanthellae (Symbiodinium microadriaticum), increased carbon translocation from 17.7±3.5% of total fixed in controls to 43.5±5.8%, and doubled the amount of photosynthetically fixed carbon accumulating in the coelenterate host over that in controls. Only 2% of the non-particulate radioactivity recovered in the host tissue was 14C-glycerol when uninhibited symbiotic tentacles were incubated in 14C-bicarbonate for 1 h. At 10-5 M NaCN, approximately 25% of the host nonparticulate radioactivity was recovered as 14C-glycerol, the absolute concentration of glycerol in the host tissue was three times higher than in controls, and 14C-glycerol was found in the medium. While glycerol has been proposed to play a major role in the translocation of photosynthetically fixed carbon from zooxanthellae to their coelenterate hosts, its concentration has never been measured in the animal and algal components of the symbiosis. The isolated zooxanthellae contained 3.62±0.33 mM glycerol, 26x the 0.141±0.02 mM found in the anemone. Aposymbiotic anemone tissue contained 0.169±0.06 mM glycerol. The rate of glycerol mineralization was not saturated even when exogenous glycerol levels were 70x internal concentrations. These data show that respiration and photosynthesis in symbiotic associations may be partially uncoupled by NaCN, and that this uncoupling allows the verification of the translocation and rapid catabolism of glycerol within the host.  相似文献   

14.
15.
Dissolved amino acids (3H-phenylalanine, 3H-proline) were accumulated and incorporated into proteins and glycoproteins by sea anemones. On objects (glass rods, pipe cleaners or filter paper) which had touched labelled anemones, tritiated substances could be detected. The mucus of labelled anemones was analysed by disc-electrophoresis. Tritium activity was found in the bands (stained by amino black). Anemone fishes adapted to labelled anemones had 4 times more tritium activity on their surface than control fishes. Most radioactivity was found on those regions which made closest contact with the anemones. The mucus of anemone fishes adapted to labelled anemones was also analysed by disc-electrophoresis. The analysis revealed protein-containing fractions in which 3H-amino acids were incorporated. The pattern of tritium activity in disc-electropherograms from labelled anemones corresponds to that of fishes adapted to those anemones. Anemones produce specific substances which influence the discharge of their nematocytes. These substances have special functions in the normal behaviour of the anemones. The substances provide protection against self-nettling and prevent the discharge of nematocytes into nearby objects which the tentacles continuously contact. The production of these substances by anemones is completely separate from the association with anemone fishes. The fishes thus simply exploit a mechanism existing independently in the anemones. Therefore, it is possible to form, in an aquarium, unnatural associations between anemone fishes and anemone species which never live in association with fishes in their natural biotope. On the basis of previous information, as well as on these new data, it is possible to develop a model which explains the control of nematocyte discharge: Substances with inhibitory qualities (protecting substances) are produced by the anemones themselves, and de-sensitize the sensory inputs of the anemones (nematocytes and sensory cells). Sensitization takes place as soon as the anemones come into contact with “stimulating substances”. This happens if anemones are touched by food objects or by anemone fishes which have been previously isolated from anemones. The surfaces of these fishes are not impregnated with protecting substances. Adapted anemone fishes, neighbouring anemones of the same species and other “adapted” objects are coated with the inhibitory substances and thus do not induce nematocyte discharge.  相似文献   

16.
Many tropical cnidarians living in shallow water contain a class of ultraviolet-A (UV-A, 320 to 400 nm) and ultraviolet-B (UV-B, 280 to 320 nm) absorbing compounds known as mycosporine-like amino acids (MAAs). These compounds may provide protection from the deleterious effects of solar UV radiation. Using a novel application of reverse-phase high performance liquid chromatography, we find that the temperate sea anemoneAnthopleura elegantissima (collected in 1988 from Bodega Bay, California, and in 1991 from Santa Barbara, California) contains four major MAAs: shinorine, porphyra-334, and two new compounds, mycosporine-taurine and mycosporine-2 glycine. Analysis of zooxanthellate (containing zooxanthellae) and naturally apozooxanthellate (lacking zooxanthellae) specimens acclimated in the presence and absence of UV for 28 d in the spring of 1988 suggests that this anemone, unlike some other anthozoans, does not regulate the concentration of its MAAs in response to UV radiation. The presence of similar concentration of MAAs in apozooxanthellate and zooxanthellate specimens indicates that symbiosis with algae is not required for these compounds to be present in the anemone. The total concentration of MAAs in the zooxanthellae is only about 12% of that in their host's tissues.  相似文献   

17.
Carbon budgets were modelled for temperate anthozoan-dinoflagellate symbioses involving the sea anemones Cereus pedunculatus (Pennant), Anthopleura ballii (Cocks) and Anemonia viridis (Forskäl), and the zoanthid Isozoanthus sulcatus (Gosse). Irradiance regimes experienced at 1.5 and 9 m on sunny and cloudy days in summer were assumed. Photosynthetic capacity (P max gross) and efficiency () were considerably higher in I. sulcatus than in the other Anthozoa. P max gross and also differed in A. viridis from different localities. At 1.5 m on sunny days, zooxanthellae would require 1.80 to 5.89% of the carbon fixed in photosyn-thesis for respiration and growth, and translocate the remainder (94.11 to 98.20%) to the host. Productivity would decrease with increasing depth and cloud cover, resulting in a decrease in the potential availability of carbon for translocation. At 9 m on cloudy days, 37.82 to 87.84% of the carbon fixed in photosynthesis would be required for zooxanthella respiration and growth in C. pedunculatus, Anthopleura ballii and Anemonia viridis, leaving just 12.16 to 62.18% for translocation; the translocation rate would still exceed 95% in I. sulcatus. The potential contribution of zooxanthellae to the host's daily respiratory carbon requirements (CZAR) would be 72.6 and 72.1% in Anthopleura ballii and C. pedunculatus, respectively, at 1.5 m on sunny days, and would decrease to just 2.1 and 0.7%, respectively, at 9 m on cloudy days. These Anthozoa therefore require a heterotrophic source of carbon to survive. The CZAR in Anemonia viridis from different locations would be 140.6 to 142.9% at 1.5 m on sunny days, but would be <100% under the other assumed irradiance regimes. The CZAR in I. sulcatus would be 181.5% at 1.5 m on sunny days, and would only be <100% when at 9 m on cloudy days. Under favourable conditions, A. viridis and I. sulcatus are potentially autotrophic and may have surplus carbon available (15.69 to 43.89% of the gross photosynthetic production) for tissue biosynthesis, reproduction and storage. However, when field conditions are considered on an annual basis, the general need for heterotrophically-derived carbon in temperate Anthozoa is suggested.  相似文献   

18.
When aseptically-cultured sea anemones, Aiptasia pulchella, were incubated with 14C-labelled glucose, aspartate and glutamate, radioactivity was incorporated into animal protein. Radioactivity was recovered from all amino acids in the protein hydrolysates of A. pulchella bearing the symbiotic alga Symbiodinium sp., and from all but seven of the amino acids in A. pulchella experimentally deprived of their algae. These data suggest that these seven amino acids (histidine, isoleucine, leucine, lysine, phenylalanine, tyrosine and valine) may be synthesized by the symbiotic algae and translocated to the sea anemone's tissues; and that methionine and threonine, two amino acids traditionally considered as dietary essentials for animals, are synthesized by A. pulchella. Essential amino acid translocation from the symbiotic algae to the animal host is a core element in symbiotic nitrogen-recycling. Its nutritional value to the animal host is considered in the context of the amino acid biosynthetic capacity of the host. Received: 26 October 1998 / Accepted: 28 June 1999  相似文献   

19.
Throughout its geographic range, the temperate-zone anemone Anthopleura elegantissima is the host of one or both of two distinctively different symbiotic microalgae: a dinoflagellate Symbiodinium (zooxanthellae, ZX) and a chlorophyte (zoochlorellae, ZC). Given the broad vertical intertidal and latitudinal range of this anemone, we investigated the role of temperature in determining whether A. elegantissima supports one algal symbiont over the other and whether temperature regulates the observed distributions of natural populations of ZX and ZC. Temperature appears to be a key factor in regulating both the photophysiology and metabolism of this algal–cnidarian association. In anemones containing ZX, neither algal densities nor chlorophyll content varied with temperature (6–24 °C); in contrast, anemones with ZC displayed reduced densities and chlorophyll content at the highest temperature treatment (24 °C). Both ZX and ZC photosynthetic rates were directly related to temperature, as were anemone respiration rates. The higher photosynthetic rates, maintenance of a stable algal density and chlorophyll content, and higher potential contribution of algal carbon toward animal respiration (CZAR) suggest that the ZX are the more viable symbiont as temperature increases, but we suggest alternative reasons why ZC are preserved in this symbiotic association. Elevated temperatures reduce ZC densities and chlorophyll, suggesting that higher temperatures affect this relationship in a negative fashion, presumably due to a higher cost of maintaining ZC by the association; alternatively, these costs may be affiliated with the deterioration of the ZC themselves. These results suggest that temperature may be one of the most significant environmental parameters that sets the intertidal microhabitat and latitudinal distribution patterns of the two algal taxa observed in the field. Received: 2 November 1998 / Accepted: 25 October 2000  相似文献   

20.
Carbonic anhydrase (CA, EC 4.2.1.1) activity was detected in 22 species of tropical cnidarians which contain endosymbiotic dinoflagellates (=zooxanthellae). CA activity was 2 to 3 times higher in animal tissue than in algae and ca. 29 times higher in zooxanthellate than azooxanthellate species. It was also higher in the zooxanthellate tentacle tissue than in the azooxanthellate column tissue of the anemone Condylactis gigantea. CA was therefore significantly related to the presence of endosymbiotic algae. Further results indicated that CA functions in the photosynthetic carbon metabolism of zooxanthellate cnidarians as evidenced by (1) low CA activity in shade-adapted and deep water colonies compared to the more productive shallow water, light-adapted colonies of the coral Stylophora pistillata, and (2) the 56 to 85% reduction in photosynthetic carbon assimilation by zooxanthellae in situ in the presence of Diamox, an inhibitor of CA. Although CA has been proposed to function in calcification, its association with zooxanthellae and photosynthetic activity in both calcifying and non-calcifying associations suggests a role in photosynthetic metabolism of algal/cnidarian symbioses. It is proposed that CA acts as a CO2 supply mechanism by releasing CO2 from bicarbonate, and enabling zooxanthellae to maintain high rates of photosynthesis in their intracellular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号