首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
德意志联邦共和国每年约向大气排放一亿五千七百万吨的废气,废气中含有二氧化硫、二氧化氮、一氧化碳、尘埃、有机与无机化合物等,这些废气来自工业、交通部门和生活用燃料的燃烧。西德政府对不同部门的废气采取  相似文献   

2.
针对二甲醚平面预混火焰,实验研究了燃料当量比和燃料流量对燃烧过程中甲醛产生和排放特性的影响.实验结果表明,甲醛是二甲醚燃烧过程一个重要的中间产物,在火焰面中大量生成,但其中大部分甲醛迅速被氧化消耗;二甲醚燃烧过程中甲醛的生成受燃料当量比和火焰温度影响明显,欠氧(燃料当量比φ<1)预混合燃烧的甲醛生成显著高于富氧(φ<1)燃烧;燃料当量比一定时,随着燃料流量增加,火焰中的甲醛浓度升高.  相似文献   

3.
燃烧过程颗粒物的形成及我国燃烧源分析   总被引:4,自引:0,他引:4  
燃料燃烧会排放一次颗粒物和二次颗粒物,一次颗粒物中亚微米粒子主要是由于无机矿物质经蒸发-成核-凝结-凝并的途径形成的;超微米颗粒的产生不同于亚微米颗粒的形成,是由于破碎机理.二次颗粒物是由气态前驱体在大气中转化而成的.我国燃烧源主要是煤燃烧、燃油机动车和农村生活燃料等.深入认识颗粒物的形成及燃烧源的特征对有效控制颗粒物的排放是很有帮助的.  相似文献   

4.
燃料燃烧会排放一次颗粒物和二次颗粒物,一次颗粒物中亚微米粒子主要是由于无机矿物质经蒸发-成核-凝结-凝并的途径形成的;超微米颗粒的产生不同于亚微米颗粒的形成,是由于破碎机理.二次颗粒物是由气态前驱体在大气中转化而成的.我国燃烧源主要是煤燃烧、燃油机动车和农村生活燃料等.深入认识颗粒物的形成及燃烧源的特征对有效控制颗粒物的排放是很有帮助的.  相似文献   

5.
燃煤炉中燃料不完全燃烧产生烟尘,在燃烧室上部空间加入二次风助燃,可消除黑烟,提高热效率。  相似文献   

6.
分析燃油锅炉运行中NOx产生的机理,探讨影响其生成的因素,研究抑制其生成和排放的燃烧技术低氧燃烧、掺水燃烧、空气分级燃烧和废气循环燃烧等.结合实验研究结果,重点分析空气分级燃烧和废气循环燃烧对油燃烧中燃料氮转化和氮氧化物生成的影响,并介绍一种新型低氮氧化物排放的燃油技术--预蒸发燃烧技术.  相似文献   

7.
分析燃油锅炉运行中NOx产生的机理,探讨影响其生成的因素,研究抑制其生成和排放的燃烧技术:低氧燃烧、掺水燃烧、空气分级燃烧和废气循环燃烧等。结合实验研究结果,重点分析空气分级燃烧和废气循环燃烧对油燃烧中燃料氮转化和氮氧化物生成的影响,并介绍一种新型低氮氧化物排放的燃油技术——预蒸发燃烧技术。  相似文献   

8.
一、序言 大气气溶胶中常含有大量的含碳化合物,其中主要是有机碳化物、无素碳(石墨化碳、炭黑等)及碳酸盐.元素碳主要是由于化石燃料不完全燃烧所产生,有机碳则包括污染源直接排放的一次有机磷化物(Cp)和碳氢化合物通过光化学反应等途径生成的二次有机碳化物(Cs),碳酸盐多存在于大粒子中,这些大粒子主要来源于  相似文献   

9.
《环境污染与防治》2006,28(5):328-328
美国每年大约有2100000t地毯边角进行填埋处置,占全国总垃圾填埋空间的1%。show工业公司设法利用地毯废料发电供应地毯生产厂家。发电厂投资1000万美元,燃料是每年16000t地毯废料,加上6000t锯末,是该公司生产木质地板时产生的。其供电量相当于可使该公司每年节约250万美元的燃料费。由于地毯废料燃烧性能不好,新工艺流程由西门子建筑技术公司开发,先将边角废料粉碎,送气化炉产生合成气,再经二道污染控制程序后送电厂燃烧发电。环保专家评论说,这是解决地毯废料填埋向题比较可行的办法。  相似文献   

10.
由于现有的碳氢化合物和气体燃料可能枯竭,而矿物燃料燃烧产生的二氧化碳又造成了难以控制的空气污染,未来世界似乎无可避免地会需要可再生燃料。可再生燃料最直接的来源自然是年复一年不断生长着的植物本身。有些植物可以直接形成碳氢化合物,这是十分经济的。再过十多年,利用植物捕获太阳光并将其转变为稳定的化学形式的机理人们将会设计出各种合成设备并用其从事与植物本身完全相同的工作。  相似文献   

11.
利用热重分析仪对添加了不同比例混合含氯塑料经微波低温脱氯后的脱氯半焦制备而成的固体衍生燃料(SRF)的燃烧特性及热反应动力学进行了实验研究,考察了脱氯半焦不同添加比例制备的SRF的着火点、燃尽温度、最大燃烧速率、燃尽特征指数和综合燃烧指数等燃烧特征参数。并用Coats-Redfern积分法对其进行了燃烧动力学分析,确定了燃烧动力学方程,求出了反应活化能和指前因子。结果表明:随着脱氯半焦的添加比例从5%增加至20%,TG曲线向低温区移动,着火点降低,燃尽温度降低,燃尽性能提升,综合燃烧特性指数S均高于不添加脱氯半焦的燃料,综合燃烧性能更好;当脱氯半焦添加比例为10%,综合燃烧特征参数最佳;在第三燃烧阶段,添加了脱氯半焦的燃料的活化能显著低于未添加脱氯半焦的燃料,指前因子降低了4~5个数量级。混合含氯废塑料,经过微波低温脱氯处理形成半焦作为添加剂制备SRF,不仅降低了SRF燃烧过程中氯化氢的产生量,同时提高了燃料的燃烧性能,是含氯塑料废弃物利用的一种新的方向和途径。  相似文献   

12.
咋一接触这个问题,感到稀奇的同时,也难以理解。经过苏珊·特朗博雷教授载文的解释,道理也就清楚了,现摘录于下。他说:碳燃料通常以一种还原态的形式存在,也就是说,碳原子大多数都附着在氢原子上。在燃烧时,碳被氧化,即与空气中的氧原子结合,生成CO2。由于氧原子比氢原子重得多,所以燃料释放出来的产物,比原来燃烧的燃料要重。例如汽油燃烧,而汽油的主要成分之一是正辛烷。  相似文献   

13.
利用热重分析仪对生活垃圾与煤混合试样的燃烧特性及热反应动力学进行了实验研究,考察了不同配比混合试样的着火温度、燃尽温度、最大燃烧速率及最大燃烧速率温度等燃烧特征参数,并用Coats-Redfern积分法对其进行了燃烧动力学分析,确定了燃烧动力学方程,求出了反应活化能Ea及指前因子A。实验结果表明:生活垃圾与煤混合燃烧时均保持各自的燃烧特性;混合燃料中随着生活垃圾掺量的增加,热重曲线向低温区转移,燃尽点逐渐降低,综合燃烧特性指数明显增大,生活垃圾能改善煤的燃烧性能;生活垃圾及其与煤混合燃烧出现两个燃烧阶段,分别遵循二级和一级反应机理,煤燃烧只出现一个燃烧阶段,遵循一级反应机理;混合燃料燃烧反应活化能Ea与指前因子A存在动力学补偿效应。  相似文献   

14.
为了考察燃料燃烧过程中重金属的迁移转化规律,对污泥、煤与木屑及其混合物在不同温度下氧气中燃烧灰渣中的重金属元素进行分析。结果表明,燃料中重金属在高温燃烧时表现出不同的挥发特性,大部分元素随着温度的升高挥发率增加,其中Cd、Pb和Zn元素挥发性较强,Cr、Cu和Ni挥发性较弱。污泥与木屑混合燃烧灰渣仍以污泥灰为主,重金属含量与污泥灰相近,污泥中混入煤后使灰中大部分重金属含量有所降低。燃烧过程会改变重金属存在形态,污泥与煤原料中以酸溶态和可还原态存在的重金属含量较高,具有较强的生物有效性和迁移性,而燃烧灰渣中酸溶态和可还原态含量显著下降,混合燃烧灰渣中除As外的其他重金属几乎全部以残渣态存在,其含量达到90%以上,焚烧过程有效降低了燃料灰渣中重金属的生物毒性。  相似文献   

15.
本文对燃煤手烧炉烟气生成特征进行了分析和研究 ,对燃烧过程二氧化硫、一氧化碳及一氧化氮等有害气体的生成规律和浓度值进行了测定和分析  相似文献   

16.
一、引言近数十年来,很多地区的降水酸度明显增加,其主要原因是由于燃烧化石燃料产生了硫和氮的氧化物,形成了呈酸性的大气污染物气溶胶。这些气溶胶粒子和其它物质会以各种方式改变降水的 pH 值,如二氧化硫、硫化氢能局部改变降水的化学性质。氮的氧化物可以转  相似文献   

17.
来自韩国的三星电子旗下的Electro—Mechanics近日成功研制了一种使用水作为“燃料”的微型燃料电池和氢气发电机。使用该装置可以使手机电池中的特殊金属和水产生化学反应,从而释放出发电所用的氢气。释放的氢气在发电机内同空气中的氧气发生燃烧,产生3W的电力,足够应付手机产品的使用需要,能为使用者提供平均使用状况下连续10h的手机电量,比一般的充电电池的电量续航能力高出了2倍左右。  相似文献   

18.
燃煤手烧炉有害气体生成特征研究   总被引:4,自引:1,他引:4  
本文对燃煤手烧炉烟气生成特征进行了分析和研究,对燃烧过程二氧化硫、一氧化碳及一氧化氮等有害气体的生成规律和浓度值进行了测定和分析。  相似文献   

19.
为了研究RDF掺混入煤粉内进行燃烧时对煤粉产生的影响,利用热重分析,采用分布活化能模型(DAEM)对RDF与煤粉混合试样的燃烧特性及其反应动力学参数进行了实验研究。结果表明:随着RDF在煤粉中的掺混比例的增大,燃烧反应的进行过程中热能与气氛条件的分配比煤粉单独燃烧更加合理;在400~550℃与650~750℃范围之间,RDF的掺入对于煤粉的燃烧反应起到了一定的促进作用,在550~650℃之间则起抑制作用;通过精确的动力学计算以及合理的RDF与煤粉协同作用分析可知,当RDF在煤粉中的掺混比例为50%时,RDF对煤粉燃烧促进作用最佳,且能保证较高的燃料替代率。  相似文献   

20.
叙述了用动态测试柜方法测定甲醇、轻烃等民用燃料的排污量。引进排放系数和排放强度作为排污量的分析指标。测试结果表明,醇基燃料点火引燃和关火后的甲醇排放强度比正常燃烧状况大4 ̄5倍;醇基燃料污染比轻烃燃料严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号