首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Under laboratory conditions, the scallop Chlamys nobilis and the mussel Perna viridis were exposed to N-sulfocarbamoyl toxins (C2 toxin), a paralytic shellfish toxin (PST), by feeding a local toxic strain of the dinoflagellate Alexandrium tamarense (ATDP) that produced C2 toxin exclusively. The bivalves were subsequently depurated in the field, and their depuration kinetics, biotransformation and toxin distribution were quantified. Depuration was characterized by a rapid loss within the first day, followed by a secondary slower loss of toxins. In the fast depuration phase, scallops detoxified PSTs more quickly than the mussels (depuration rate constants for scallops and mussels were 1.16 day–1 and 0.87 day–1, respectively). In contrast, the mussels detoxified PSTs more quickly than the scallops in the slow depuration phase, and the calculated depuration rate constants (mean+SE) from day 2 to day 13 were 0.063+0.009 day–1 and 0.040+0.019 day–1 for mussels and scallops, respectively. The differences in the appearances of gonyautoxins, GTX2 and GTX3, and their decarbamoyl derivatives, dcGTX2, dcGTX3 and GTX5, which are all derivatives of C2 toxin, indicated active and species-specific biotransformation of the algal toxins in the two bivalves. In both species of bivalves, the non-viscera tissue contained fewer toxins and lower concentrations than the viscera-containing tissue compartment. In scallops, very little toxin was distributed in the adductor muscle. In mussels, most of the PSTs were found in the digestive gland with significant transport of toxins into the digestive gland from other tissues during the course of depuration. The toxin profiles of scallops and mussels differed from each other and from that of the toxic algae fed. A significant fraction of GTX5 was detected in the mussels but not in the scallops. Our study demonstrates a species specificity in the depuration kinetics, biotransformation and tissue distribution of PSTs among different bivalves.Communicated by T. Ikeda, Hakodate  相似文献   

2.
Juvenile Pacific giant lions-paw scallops Nodipecten subnodosus were fed the toxic dinoflagellate Gymnodinium catenatum, a producer of paralytic shellfish poison (PSP), supplied with Isochrysis galbana (a nontoxic microalgae). Short-term (<24 h) experiments were performed to determine clearance and ingestion rates of G. catenatum. Kinetics of PSP was examined in longer-term experiments (>2 days). At high food concentrations, juvenile scallops showed production of pseudofeces, partial shell valve closure, and reduction in feeding. According to HPLC analysis, the only toxins present in the dinoflagellate G. catenatum and in the scallops were the gonyautoxins (GTXs), except in the labial palps and digestive gland, where trace amounts of saxitoxin (STX) were present in scallops. These tissues could play an important role in toxin biotransformation. The ranking of toxin concentration in tissues was: digestive gland > labial palps > intestine > gills > mantle > adductor muscle, where the total contribution of viscera was more than 80% of the total toxin body burden. Juvenile scallops exhibited no apparent detrimental physiological responses during the long-term feeding experiment. The dinoflagellate may contribute nutrients to the scallop, in addition to the microalgae I. galbana. The dinoflagellate may enhance cell uptake and byssus production. Once PSP accumulated during the first 12 days, it was slowly eliminated. The limited capacity for accumulating toxins in the adductor muscle favors domestic marketing of scallops.  相似文献   

3.
The anatomical distributions of sterols and the incorporation of dietary phytosterols into different organs were studied in two populations of sea scallops, Placopecten magellanicus Gmelin, collected in 1989 from Georges Bank (Nova Scotia) and St. Pierre Bank (Newfoundland), respectively. In contrast to the well-established organ-specific lipid classes and fatty-acid compositions usually found in marine animals, the major organs of wild sea scallops (adductor muscle, digestive gland, gonads, gills and mantle) had the same sterol compositions. In order to know if anisomyarian bivalves require a uniform anatomical distribution of sterols, wild scallops were subjected to a microalgal diet containing high concentrations of brassicasterol, -sitosterol and cholesterol. The sterol composition of the scallop adductor muscle was not changed by 6 wk of feeding on the experimental diet. In contrast, the proportions of brassicasterol, -sitosterol and cholesterol in the digestive gland, and of brassicasterol and cholesterol in the male gonad, increased significantly (p<0.05). These results showed that the typical even anatomical distribution of sterols of bivalves can be disrupted by a drastic change in diet and is therefore not subject to strict internal regulation. Furthermore, the P. magellanicus results indicate that, although sea scallops may be capable of sterol biosynthesis, the incorporation of unmodified dietary phytosterols plays an influential role in establishing their sterol composition.ORNL is managed by Martin Marietta Energy Systems for the US Department of Energy, under contract DE-ACOS-8-10R21400  相似文献   

4.
The effects of swimming frequency and water temperature on shell growth, tissue mass, and stored energy reserves of juvenile sea scallops, Placopecten magellanicus Gmelin, were examined in a factorial laboratory experiment spanning six weeks in July and August 1992. Individually tagged scallops of similar initial size (22.5±0.1 mm shell height, n=240) were induced to swim to exhaustion at three different swimming frequencies (every day, twice a week, or not at all) in two different water temperature regimes (4 to 7 or 7 to 13°C). The scallops were fed an ad libitum mixture of cultured microalgae. At the end of the experiment, cumulative increase in shell height, dry weight of soft tissues, condition index of dry adductor muscle (adductor muscle dry weight/soft tissue dry weight x 100) and total carbohydrate content of dry adductor muscle were measured for each scallop. Scallops at the higher temperature had significantly greater shell heights, and were in better metabolic condition as evidenced by significantly higher condition indices and muscle carbohydrate contents. The dry soft tissue weights did not differ significantly from their low temperature counterparts. Swimming frequency had no significant effect on shell height, dry tissue weight, or carbohydrate content, but condition index of the adductor muscle increased significantly with swimming frequency. These results show that not only was there no cumulative cost of swimming in terms of shell growth, total soft tissue weight, or carbohydrate content in young scallops, but that condition of adductor muscle tissue was higher in scallops that swam.  相似文献   

5.
Host tissues and zooxanthellae of the giant clam Tridacna gigas contained glutamine synthetase, with the highest transferase activities present in the gill, followed by the kidney, mantle, zooxanthellae, foot, heart and adductor muscle, in that order. Synthetase activities of glutamine synthetase in host tissues and zooxanthellae were in a similar order, but the differences were not so marked. Host tissues also contained hexokinase, glucose-6-phosphate dehydrogenase and malate dehydrogenase. Highest hexokinase activities were present in the heart, followed, in order, by the gill, mantle, adductor muscle and foot. Highest glucose-6-phosphate dehydrogenase activities were present in the gill, followed by the mantle, heart, adductor muscle and foot. All tissues assayed contained high malate dehydrogenase activities. There was no detectable glutamate dehydrogenase activity. Glutamine synthetase activity in gill and mantle tissue decreased by 1.6% with every 1 cm increase in clam size. Host glutamine synthetase activity decreased by 80% in gill tissue and by 45% in mantle tissue in clams which were maintained for 8 d in continuous darkness. Similar effects were found when clams were kept in light in the presence of elevated ammonia concentrations. It is suggested that both host and symbionts are nitrogen-deficient in small clams and that host glutamine synthetase plays a role in ammonia assimilation by the intact association.  相似文献   

6.
Stimulation of photosynthate excretion from zooxanthellae and free-living algae by tissue homogenate of several bivalves was studied. Mantle tissue homogenate of Tridacna derasa enhanced 10-to 15-fold excretion of photosynthetically fixed carbon from freshly isolated zooxanthellae within 2 h incubation. Maximum carbon excretion was 35 to 45% of the total carbon fixed. This excretion stimulating activity was detected in the homogenates of the mantle, adductor muscle, gill, and kidney. However, no excretion stimulating activity was detected in the haemolymph. The excretion stimulation activity of mantle homogenate, directed against freshly isolated zooxanthellae from T. derasa, was higher in bivalves belonging to the Tridacnidae (T. derasa, T. crocea, T. maxima, T. squamosa, Hippopus hippopus) than in the Cardiidae (Fragum fragum, F. mundum, F. unedo), non-symbiotic bivalves (Mytilus edulis, Meretrix lusoria, Ruditapes philippinarum) or gastropods (Umbonium giganteum, Turbo argyrostoma). The mantle homogenate of T. derasa enhanced photosynthate excretion by free-living algae belonging to the Dinophyceae (Prorocentrum micans, Amphidinium carterae, and Heterocapsa triquetra) but did not enhance its excretion by free-living algae belonging to the Chlorophyceae, Cyanophyceae, Rhodophyceae, Prasinophyceae, and Haptophyceae. T. derase used in this study originated from Belau (Palau). T. crocea, T. squamosa, T. maxima, H. hippopus and F. unedo were collected at Ishigaki Island in Okinawa in 1992. F. mundum and F. fragm were collected at Okinawa Island in 1992.  相似文献   

7.
Induction of triploidy in aquatic organisms has increased worldwide in the last two decades, mostly because triploids have better growth than diploids. According to a physiological hypothesis, partial or total sterility of triploids allows the accumulation of reserves in muscle and other tissues instead of being transferred to the gonad. The present study analyzes lipid, protein, carbohydrate, and fatty acid levels in muscle and gonads of Nodipecten subnodosus triploids and diploids over 18 months from June 2001 to December 2002. An important increase in gonadosomatic index of diploids scallops was observed from May to June 2002 reaching the highest values in August. Such increase was not observed in triploid scallops. Changes in biochemical composition in female gonad were in general related to the accumulation of reserves during gonad development of diploid scallops. This accumulation was lower for triploid scallops, in accordance to their sterility, especially for carbohydrates and acylglycerides. Adductor muscle index as well as protein and carbohydrate levels in muscle increased in both ploidy groups during the reproductive period indicating no mobilization of reserves to sustain gonad development in both ploidy groups. These results partially support the physiological hypothesis on the advantage of triploids: in a rich food locality no mobilization of reserves is needed to sustain gametogenesis. This, together with a possible lower efficiency of energy assimilation at high food concentration for triploids, may be the reason for an apparent lack of superiority of N. subnodosus triploids in terms of adductor muscle growth. Only the levels of particular highly unsaturated fatty acids levels (namely 20:4n-6 and 20:5n-3) in muscle of diploid and triploid decreased during the reproductive period, indicating a possible transfer of selected fatty acids to gonads, even in triploids. The muscle of triploids has a slightly but significantly higher proportion of 22:6n-3 compared to diploids, which can have implications for the nutritional and commercial value of triploid adductor muscle.  相似文献   

8.
In scallops, gametogenesis leads to considerable transfer of energetic reserves from the adductor muscle to the gonads. During an annual cycle, the scallops are exposed to changes in temperature and food availability. As these changes may affect muscle metabolic capacities, we examined whether the properties of the mitochondria in the phasic adductor muscle were modified during the annual cycle of the scallop Euvola (Pecten) ziczac (L. 1758). During our study, temperature and chlorophyll a levels generally showed an inverse relationship: high temperatures and low chlorophyll a levels occurred from mid-April to early June. Lower temperatures and higher chlorophyll a levels were found from January to late March and from mid-June to mid-September. Throughout the annual cycle, the substrate preferences and the pH sensitivity of the isolated muscle mitochondria changed little, whereas the maximal oxidative capacities and respiratory control ratios (RCR) varied considerably. Consistently, the maximal capacities for substrate oxidation were 30 to 80% lower in mitochondria isolated in May than at other times in the year. The RCR values of mitochondrial oxidation of glutamate, glutamine and succinate varied throughout the year with lower values characterizing the mitochondria from scallops harvested in May and in certain cases in August. In May, adductor muscles had lower protein levels than at other times. These data suggest that the requirements of gametogenesis, coupled with␣the high temperatures and low food availability occurring during April and May, led to a mobilization of muscle proteins which concomitantly decreased the oxidative capacity of isolated mitochondria. Received: 29 November 1996 / Accepted: 5 December 1996  相似文献   

9.
The possible effect of Alexandrium spp. containing paralytic shellfish poisoning (PSP) toxins on the hemocytes of oysters was tested experimentally. In one trial, eastern oysters, Crassostrea virginica Gmelin, were exposed to bloom concentrations of the sympatric dinoflagellate, Alexandrium fundyense Balech, alone and in a mixture with a non-toxic diatom, Thalassiosira weissflogii (Grun) Fryxell et Hasle. Subsequently, another experiment exposed Pacific oysters, Crassostrea gigas Thunberg, to a mixed suspension of the sympatric, toxic species Alexandrium catenella (Whedon et Kofoid) Balech, with T. weissflogii. Measurements of numbers of oyster hemocytes, percentages of different cell types, and functions (phagocytosis, reactive oxygen species (ROS) production, and mortality) were made using flow-cytometry. During and after exposure, almost no significant effects of Alexandrium spp. upon hemocyte numbers, morphology, or functions were detected, despite observations of adductor-muscle paralysis in C. virginica and measured toxin accumulation in C. gigas. The only significant correlation found was between toxin accumulation at one temperature and higher numbers of circulating live and dead hemocytes in C. gigas. The PSP toxins are known to interfere specifically with sodium-channel function; therefore, the finding that the toxins had no effect on measured hemocyte functions suggests that sodium-channel physiology is not important in these hemocyte functions. Finally, because oysters were exposed to the living algae, not purified toxins, there was no evidence of bioactive compounds other than PSP toxins affecting hemocytes in the two species of Alexandrium studied.  相似文献   

10.
Paralytic shellfish poisoning (PSP) toxins can be accumulated by bivalves through the feeding process; therefore, knowledge on feeding and the assimilation of PSP-toxin-containing algae is critical to understand the kinetics of PSP toxins in these bivalves. In the South China Sea, it has been documented that the scallop Chlamys nobilis has a much higher PSP toxin burden than the clam Ruditapes philippinarum. Experiments were therefore carried out to assess whether the difference in toxin burden between these two species of bivalves was due to differences in feeding and absorption. In a mixed diet of Alexandrium tamarense (a PSP-toxin-producing dinoflagellate) and Thalassiosira pseudonana (a non-toxic diatom), the maximum clearance and filtration rates were about two times higher in the scallop C. nobilis than in the clam R. philippinarum. Furthermore, the clams produced pseudofeces at a lower cell density than the scallops. However, we found that the clams were unable to selectively exclude the toxic dinoflagellates by pseudofeces production. The scallop C. nobilis also possessed a greater ability to assimilate A. tamarense with a comparable carbon absorption efficiency to the diatom T. pseudonana. In contrast, the carbon absorption in the clam R. philippinarum was lower when feeding on A. tamarense than on the diatom. In general, the absorption efficiency decreased with increasing concentration of A. tamarense. Thus, it is likely that the higher PSP toxin levels in the scallops compared with clams can be partly explained by differences in their feeding and absorption behavior. Other processes, especially the biotransformation and biokinetics of PSP toxins, may also play a significant role in defining the inter-species differences in PSP body burden in marine bivalves.  相似文献   

11.
In scallops, mobilization of reserves from the adductor muscle to support maintenance and reproductive activity may impinge upon a major role of the adductor muscle, the movement of the valves during swimming and escape responses. The tropical scallop Euvola ziczac (Linnaeus 1758) invests energy reserves to different degrees during its two periods of reproduction each year. We evaluated the impact of reproductive investment on the escape responses (clapping capacity and recovery after exhaustive exercise) of E. ziczac sampled at different reproductive stages (immature, mature, spawned) during the two reproductive periods in 1997. We compared the escape response capacities with the levels of muscle energetic reserves (glycogen, proteins, and arginine phosphate) and muscle metabolic capacities [activity of the glycolytic enzymes: glycogen phosphorylase (GP), pyruvate kinase (PK), phosphofructokinase (PFK), octopine dehydrogenase (ODH), arginine kinase (AK), and the mitochondrial enzyme, citrate synthase (CS)]. Gonad size, gamete volume fraction, and levels of gonadal protein and lipid were greater for mature scallops during the first than during the second reproduction. Numbers of claps during escape responses (49–57) and levels of muscle arginine phosphate remained similar throughout the different reproductive stages in both reproductive periods. In contrast, recovery was slowed during gonadal maturation in both reproductive periods and during spawning in the first reproduction. Scallops generally took more time to regain their initial clapping capacity during the first (25–40 min) than during the second reproduction (20–30 min). Muscle glycogen decreased markedly during both gonadal maturation and spawning in both reproductions; whereas, muscle proteins decreased only in the first reproduction. The levels of most enzymes decreased during gonadal maturation in both reproductions, and also after spawning, particularly during the first reproduction. We concluded that gonadal maturation and spawning did not decrease clapping capacity of E. ziczac, but decreased its capacity to recover from exhaustive exercise most likely due to decreased levels of energetic reserves and a reduced metabolic capacity of the adductor muscle. Moreover, these effects were probably stronger during the first cycle because of the greater reproductive investment coincident with decreased food availability. Received: 28 April 2000 / Accepted: 21 September 2000  相似文献   

12.
The known negative effects of shellfish toxin-producing dinoflagellates on feeding, burrowing and survival of some bivalve mollusks has prompted questions concerning whether they might also impair the internal defense system of affected bivalves and make them more susceptible to disease agents. The primary components of the cellular defense system are hemocytes. Many toxic dinoflagellates are too large to be ingested whole by hemocytes and would most likely be exposed to intracellular toxins only after the algae are consumed, broken down, and the water-soluble toxins, released. Therefore, we conducted a series of experiments in which hemocytes from two suspension-feeding bivalves—the Manila clam, Ruditapes philippinarum, and the softshell clam, Mya arenaria—were exposed in vitro to filtered extracts of one highly toxic paralytic shellfish toxin (PST)-producing and one nonPST-producing strain of Alexandrium tamarense (isolates PR18b, 76 ± 6 STXeq cell−1 and CCMP115, with undetectable PST, respectively). We measured adherence and phagocytosis, two hemocyte attributes known to be inhibited by bacterial pathogens and other stressors. We found no measurable effect of a cell-free extract from a highly concentrated suspension of the PST-producing strain on hemocytes of either bivalve species. Instead, extract from the nonPST-producing strain had a consistent negative effect on both clams, resulting in significantly lower adherence and phagocytosis compared to strain PR18b and filtered seawater controls. The bioactive compound produced by strain CCMP115, which has yet to be characterized, may be similar to the PST-independent allelopathic compounds described for Alexandrium spp., which act on other plankters. These compounds and those produced by other harmful algae are known to cause immobilization, cellular deformation and lysis of co-occurring target organisms. Thus, nonPST producing Alexandrium spp., which do not cause paralysis and burrowing incapacitation of clams, may still produce a compound(s) that has negative effects not only on hemocytes, but on other molluscan cell types and their functions, as well.  相似文献   

13.
The surf clam Spisula solidissima, when exposed to a northern bloom of the toxic dinoflagellate Gonyaulax tamarensis, concentrates paralytic shellfish poison (PSP) and retains it for periods of over 1 year. The purpose of this investigation was to identify those tissues in which S. solidissima concentrates PSP and to examine the efficacy of ozone gas in PSP detoxification. Various levels of the toxin were found in every untreated tissue examined: the mantle and gill containing high concentrations (>1600 g/100 g tissue); the visceral mass, siphon, and foot showing less toxicity (1100 to 200 g/100 g tissue); and the adductor muscle yielding a level of toxin considered safe for human consumption (<60 g/100 g tissue). Toxic clams exposed to ozonized seawater for 2 weeks exhibited rapid detoxification in all tissues examined.This work was supported, in part, by a grant from the Massachusetts Science and Technology Foundation, Wakefield, Massachusetts 01880, USA.  相似文献   

14.
Feeding selectivity of the intertidal scavenging gastropod Nassarius festivus on four types of tissue (soft tissue, adductor muscle, foot, mantle margin) of the venerid clam Marcia hiantina was studied by field observations and laboratory experiments. Both approaches showed similar results with the soft tissue and adductor muscle being much preferred. As the energy content of the four types of tissue was similar and individuals of N. festivus rearing in different types of tissue obtained similar growth rates both in shell length and in body wet weight, differential consumption was most likely determined by the palatability of the tissues. Energy intake in a meal for N. festivus was estimated at 10.92, 9.17, 3.86 and 2.02 cal meal−1 ind−1 for soft tissue, adductor muscle, mantle margin, and foot, respectively. In view of the small size and sporadic distribution of the carrion, and intense competition among the conspecifics, selective feeding on more palatable tissues maximizes energy intake for scavengers like N. festivus.  相似文献   

15.
Scallops (Placopecten magellanicus Gmelin) were collected during August 1989 from shallow water (10 m) and deep water (31 m) habitats at Sunnyside, Trinity Bay, Newfoundland, to compare the lipid composition of eggs and adductor muscle tissue. Less favorable food levels and lower temperature conditions associated with deeper water have previously been shown to produce slower growth and reduced fecundity in individuals from this habitat. Triacylglycerol reserves consistently accounted for 60% of the total lipids present in both groups. The total lipid content of the eggs and the composition of their triacylglycerol fatty acid pools were similar in shallow water and deep water scallops, indicating very little if any nutritional difference between the two groups. Relative to their counterparts from shallow water, individuals from deeper water contained higher proportions of docosahexaenoic acid [22:6(n-3)] in the egg phospholipids and higher levels of 24-methylenecholesterol (a phytosterol commonly found in diatoms) in the adductor muscle. Differences in fatty acid composition are interpreted as biochemical adjustments of cell membranes to increase membrane fluidity, thereby compensating for the lower temperatures prevailing at the greater depth.  相似文献   

16.
In scallops, gametogenesis and spawning can diminish the metabolic capacities of the adductor muscle and reduce escape response performance. To evaluate potential mechanisms underlying this compromise between reproductive investment and escape response, we examined the impact of reproductive stage (pre-spawned, spawned and reproductive quiescent) of the giant scallop, Placopecten magellanicus, on behavioural (i.e., escape responses), physiological (i.e., standard metabolic rates and metabolic rates after complete fatigue) and mitochondrial capacities (i.e., oxidative rates) and composition. Escape responses changed markedly with reproductive investment, with spawned scallops making fewer claps and having shorter responses than pre-spawned or reproductive-quiescent animals. After recuperation, spawned scallops also recovered a lower proportion of their initial escape response. Scallop metabolic rate after complete fatigue (VO2max) did not vary significantly with reproductive stage whereas standard metabolic rate (VO2min) was higher in spawned scallops. Thus spawned scallops had the highest maintenance requirements (VO2min/VO2max). Maximal capacities for glutamate oxidation by muscle mitochondria did not change with reproductive stage although levels of ANT and cytochromes as well as cytochrome C oxidase (CCO) activity did. Total mitochondrial phospholipids, sterols and the proportion of phospholipid classes differed only slightly between reproductive stages. Few modifications were detected in the fatty acid (FA) composition of the phospholipid classes except in cardiolipin (CL). In this class, pre-spawned and spawned scallops had fairly high proportions of 20:5n-3 whereas this FA in reproductive-quiescent scallops was threefold lower and 22:6n-3 was significantly higher. These changes paralleled the increases in CCO activity and suggest an important role of CL on the modifications of CCO activity in scallops. However, mitochondrial properties could not explain the decreased recuperation ability from exhausting exercise in spawned scallops. Shifts in maintenance requirements (VO2min/VO2max) and aerobic scope (VO2max − VO2min) provided the best explanation for the impact of reproduction on escape response performance.  相似文献   

17.
Cell proliferation and apoptosis were investigated in tissues of two bivalve species, Arctica islandica from the German Bight (age of bivalves: 33–98 years) and Iceland (7–148 years) and Aequipecten opercularis from the English Channel (2–4 years). High proliferation rates (10% nuclei dividing) and apoptosis in tissues of A. opercularis were in line with high-energy throughput and reduced investment into antioxidant defence mechanisms in the scallop. In contrast, cell turnover was slow (<1% nuclei dividing) in A. islandica and similar in mantle, gill and adductor muscle between young and old individuals. In the heart, cell turnover rates decreased with age, which indicates less-efficient removal of damaged cells in ageing A. islandica. Cell turnover rates, mass specific respiration and antioxidant enzyme activities were similar in German Bight and Iceland ocean quahog. Variable maximum life expectancies in geographically separated A. islandica populations are determined by extrinsic factors rather than by fundamental physiological differences.  相似文献   

18.
Seasonal changes in the tissue weight and biochemical composition of the pectinid bivalve Chlamys septemradiata (Müller) from a station in the Cumbrae Deep, Clyde Sea Area (UK), were studied during 1969–1971. Separate analyses were made of three divisions of the tissues: the adductor muscle, the gonad, and the remaining tissues referred to as mantle. The composition of each of these divisions, and of the total tissues of an animal of standard size was calculated for each sampling date to give information on seasonal changes independent of shell growth. Increase in gonad weight took place mainly between March and May, although there was a slow increase during the winter months (November-March). Spawning in July and August resulted in a fall in gonad weight to very low levels in September and October. The female gonad contained a greater proportion of lipid than the male, and the male a greater proportion of nitrogen than the female, although the total calorific content was similar in both sexes. The adductor muscle showed a clear seasonal cycle of tissue weight and composition, and it was demonstrated that the adductor muscle tissues are a site for storage of reserves. The weight of the adductor muscle was maximal in October-November, and declined through the winter to reach minimum values in March. There was a steady increase during the summer. Lipid, carbohydrate and protein all contributed to the decrease in winter, in part contributing to gonad differentiation but mainly meeting the bivalve's metabolic maintenance requirements. The remaining tissues displayed some irregular fluctuations, but in general the changes showed an upward trend in weight until November followed by a general downward trend to March. The changes are compared with those for other bivalves from the same area.  相似文献   

19.
Previous studies have shown that large numbers of ciliated and nonciliated epithelial cells (diam.: 6 to 15 μm) are released by adult sea scallops, Placopecten magellanicus (Gmelin), during summer months in Newfoundland when water temperatures are at a maximum and gonads are well developed. Such exfoliation of cells could be a response to stresses associated with elevated water temperatures and/or spawning activity. In the present study an electronic particle counter/sizer was used to further investigate the factors that influence exfoliation of epithelial cells by juvenile and adult scallops throughout the year. We observed release of epithelial cells from juveniles, and from adults collected in months when gametogenic activity was minimal, indicating that exfoliation does not occur as a result of reproductive activity alone. SEM analysis revealed little difference in surface characteristics of the gills, mantle and gonad between scallops that had released cells and those that had not, suggesting that exfoliation of small numbers of cells may be a consequence of cellular turnover and normal physiological function. Adult scallops were monitored in a second experiment to determine the effects of raising water temperatures from 8.5 to 14.7 and to 21.0 °C on the frequency (proportion) and rate of cellular exfoliation. Only at the highest experimental temperature (21.0 °C) were exfoliation rates significantly higher than rates recorded at 8.5 or 14.7 °C. SEM analyses revealed some damage to gill, mantle and gonad tissues when scallops were exposed to 14.7 and then to 21.0 °C for a total of 8 d. Received: 21 August 1996 / Accepted: 13 September 1996  相似文献   

20.
A.V. Silina 《Marine Biology》2006,148(4):833-840
Three types of tumor-like formations on the shell of commercial Japanese scallop Patinopecten (= Mizuhopecten) yessoensis were identified. The first type of tumor-like formation (Type I) is a brown prominent knob on the inner shell surface. This is the result of penetration of aggregations of the polychaete worms of genus Polydora into the scallop cavity usually through the upper valve of scallop and subsequent covering of their boreholes by shell calcite carbonate. The second type (Type II) is tumor-like lamination of the shell with the inclusion of organic matter between calcite layers on the inner surface of the upper and lower valves. These laminations have no outlet to the outer shell surface. The third type of scallop shell tumor-like lesion (Type III) mainly built up on the inner surface of the lower valve. It is a cone-shaped lump, which seemed to consist of aggregated coarse-grained sand. It has no outlet to the outer shell surface. Tumors of the different types are not equally distributed. Type I tumors are the most common, followed by Type II and Type III. Other kinds of tumor-like lesions on the inner shell surface are not found in the species studied. On the outer surface of scallop shell tumor-like formations were not found. The shell tumor-like lesions occurred significantly more frequently on scallops that are inhabiting muddy bottom sediments than sand. A positive relationship was found between scallop age and occurrence of shell lesions. The tumor-like formations of all types adversely influence scallops. The shell height and total, soft tissue and adductor muscle weights were lower for scallops with tumor-like formations on the shell than for healthy individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号