首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustainable construction: composite use of tyres and ash in concrete   总被引:2,自引:0,他引:2  
An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chips 15-20mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.  相似文献   

2.
Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.  相似文献   

3.

The aggregate composed of cement clinker, an intermediate cement product, improves strength development and mass transfer resistance of concrete. Fly ash (FA) is a supplementary cementitious material that can be substituted by cement. This study investigated the strength development of highly FA-substituted mortar mixed with cement clinker fine aggregate (CL) and tested its inhibitory effect against the alkali–silica reaction (ASR). In addition to these, this study provides the testing results of evaluating the effects of using cement clinker fine aggregate on delayed ettringite formation (DEF), which can be problematic for precast concrete products. The study results revealed that at 91 days of age, in the case of 80% replacement ratio of fly ash to cement, using CL exhibited similar strength development as mortar with limestone fine aggregate and no FA substitution. Furthermore, mortars with 70% and 80% FA substitution did not exhibit clear ASR-induced expansion even at 182 days of age. Lastly, mortar using clinker fine aggregate could suppress DEF-induced expansion at 182 days of age, which was similar to the effect obtained using FA. These results can promote the utilization of CL resources for concrete and using clinker as fine aggregate in precast concrete products.

  相似文献   

4.
Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28 cm-high, 18 cm-wide and 3 cm-thick units, and is measured as the time needed to reach a temperature of 180 °C on the non-exposed surface of the blocks for the different compositions.The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire.  相似文献   

5.
Fly ash and granulated blast furnace slag (GBFS) are major by-products of thermal and steel plants, respectively. These materials often cause disposal problems and environmental pollution. Detailed laboratory investigations were carried out on cement stabilized fly ash-(GBFS) mixes in order to find out its suitability for road embankments, and for base and sub-base courses of highway pavements. Proctor compaction test, unconfined compressive strength (UCS) test and California Bearing Ratio (CBR) test were conducted on cement stabilized fly ash-GBFS mixes as per the Indian Standard Code of Practice. Cement content in the mix was varied from 0% to 8% at 2% intervals, whereas the slag content was varied as 0%, 10%, 20%, 30% and 40%. Test results show that an increase of either cement or GBFS content in the mixture, results in increase of maximum dry density (MDD) and decrease of optimum moisture content (OMC) of the compacted mixture. The MDD of the cement stabilized fly ash-GBFS mixture is comparably lower than that of similarly graded natural inorganic soil of sand to silt size. This is advantageous in constructing lightweight embankments over soft, compressible soils. An increase in percentage of cement in the fly ash-GBFS mix increases enormously the CBR value. Also an increase of the amount of GBFS in the fly ash sample with fixed cement content improves the CBR value of the stabilized mix. In the present study, the maximum CBR value of compacted fly ash-GBFS-cement (52:40:8) mixture obtained was 105%, indicating its suitability for use in base and sub-base courses in highway pavements with proper combinations of raw materials.  相似文献   

6.

This article investigates the suitability of utilizing end of life rubber tyre particles in concrete as fine aggregate. Rubber ash and rubber fibers were used to develop two series of rubber ash concrete (series I) and hybrid concrete (series II) mixes. The natural fine aggregate was replaced by rubber ash (by volume of 5%, 10%, 15% and 20%) in series I; whereas in series II, the amount of rubber ash was kept constant at 10% and rubber fiber was introduced as replacement of fine aggregate (by volume of 5%, 10%, 15%, 20% and 25%). The concrete mixes were evaluated for compressive strength, flexural strength, resistance to impact loading, fatigue loading, water penetration and shrinkage strain was evaluated. It was observed that inclusion of rubber ash resulted in the improvement of impact resistance of concrete. The results also show that up to 10% rubber ash and rubber fibers can be utilized as fine aggregate to develop feasible and durable rubberized concrete pavements, crash barriers and paver blocks.

  相似文献   

7.
通过试验研究再生骨料混凝土中粉煤灰和再生骨料对混凝土强度的影响。采用粉煤灰替代部分水泥、再生骨料替代部分天然粗骨料的方法,通过正交试验测定混凝土立方体抗压强度的方法,来研究粉煤灰对再生骨料混凝土强度的影响。试验得出:当再生骨料掺量为20%~30%时,粉煤灰的最佳掺量为20%左右;当再生骨料掺量高于40%、粉煤灰掺量高于20%时,其混凝土拌合物搅拌时间不小于240 s,且当粉煤灰在20%~30%时,可获得较理想的混凝土抗压强度;当粉煤灰的掺入量分布在20%~30%、再生骨料的最佳掺量为50%时,可获得较理想的混凝土抗压强度。由此得出,合理的再生骨料、粉煤灰掺量对混凝土的抗压强度影响并不明显且有提高的趋势,对降低混凝土成本,提高建筑垃圾的再生利用,有一定的经济效益和社会效益。  相似文献   

8.
Use of waste ash from palm oil industry in concrete   总被引:1,自引:0,他引:1  
Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively.  相似文献   

9.
This paper presents the results of experimental research using concrete produced by substituting part of the natural coarse aggregates with recycled aggregates from concrete demolition. The influence of the quality of the recycled aggregate (amount of declassified and source of aggregate), the percentage of replacement on the targeted quality of the concrete to be produced (strength and workability) has been evaluated. The granular structure of concrete and replacement criteria were analyzed in this study, factors which have not been analyzed in other studies. The following properties of recycled concretes were analyzed: density, absorption, compressive strength, elastic modulus, amount of occluded air, penetration of water under pressure and splitting tensile strength.A simplified test program was designed to control the costs of the testing while still producing sufficient data to develop reliable conclusions in order to make the number of tests viable whilst guaranteeing the reliability of the conclusions.Several factors were analyzed including the type of aggregate, the percentage of replacement, the type of sieve curve, the declassified content, the strength of concrete and workability of concrete and the replacement criteria. The type of aggregate and the percentage of replacement were the only factors that showed a clear influence on most of the properties.Compressive strength is clearly affected by the quality of recycled aggregates. If the water–cement ratio is kept constant and the loss of workability due to the effect of using recycled aggregate is compensated for with additives, the percentage of replacement of the recycled aggregate will not affect the compressive strength.The elastic modulus is affected by the percentage of replacement. If the percentage of replacement does not exceed 50%, the elastic modulus will only change slightly.  相似文献   

10.
One of the major environmental issues in Iraq is the large quantity of waste iron resulting from the industrial sector which is deposited in domestic waste and in landfills. A series of 109 experiments and 586 tests were carried out in this study to examine the feasibility of reusing this waste iron in concrete. Overall, 130 kg of waste iron were reused to partially replace sand at 10%, 15%, and 20% in a total of 1703 kg concrete mixtures. The tests performed to evaluate waste-iron concrete quality included slump, fresh density, dry density, compressive strength, and flexural strength tests: 115 cubes of concrete were molded for the compressive strength and dry density tests, and 87 prisms were cast for the flexural strength tests. This work applied 3, 7, 14, and 28 days curing ages for the concrete mixes. The results confirm that reuse of solid waste material offers an approach to solving the pollution problems that arise from an accumulation of waste in a production site; in the meantime modified properties are added to the concrete. The results show that the concrete mixes made with waste iron had higher compressive strengths and flexural strengths than the plain concrete mixes.  相似文献   

11.
Manufacture of artificial aggregate using MSWI bottom ash   总被引:1,自引:0,他引:1  
This paper reports the results of an investigation on material recovery by stabilization/solidification of bottom ash coming from a municipal solid waste incineration plant. Stabilization/solidification was carried out to produce artificial aggregate in a rotary plate granulator by adding hydraulic binders based on cement, lime and coal fly ash. Different mixes were tested in which the bottom ash content ranged between 60% and 90%. To avoid undesirable swelling in hardened products, the ash was previously milled and then granulated at room temperature. The granules were tested to assess their suitability to be used as artificial aggregate through the measurement of the following properties: density, water absorption capacity, compressive strength and heavy metals release upon leaching. It was demonstrated that the granules can be classified as lightweight aggregate with mechanical strength strongly dependent on the type of binder. Concrete mixes were prepared with the granulated artificial aggregate and tested for in-service performance, proving to be suitable for the manufacture of standard concrete blocks in all the cases investigated.  相似文献   

12.
Recycling of industrial wastes and by-products can help reduce the cost of waste treatment prior to disposal and eventually preserve natural resources and energy. To assess the recycling potential of a given waste, it is important to select a tool capable of giving clear indications either way, with the least time and work consumption, as is the case of modelling the system properties using the results obtained from statistical design of experiments. In this work, the aggregate reclaimed from the mud that results from washout and cleaning operations of fresh concrete mixer trucks (fresh concrete waste, FCW) was recycled into new concrete with various water/cement ratios, as replacement of natural fine aggregates. A 32 factorial design of experiments was used to model fresh concrete consistency index and hardened concrete water absorption and 7- and 28-day compressive strength, as functions of FCW content and water/cement ratio, and the resulting regression equations and contour plots were validated with confirmation experiments. The results showed that the fresh concrete workability worsened with the increase in FCW content but the water absorption (5–10 wt.%), 7-day compressive strength (26–36 MPa) and 28-day compressive strength (32–44 MPa) remained within the specified ranges, thus demonstrating that the aggregate reclaimed from FCW can be recycled into new concrete mixtures with lower natural aggregate content.  相似文献   

13.
In Malta all of the waste produced is mixed and deposited at various sites around the island. None of these sites were purpose built, and all of the waste is above groundwater level. The landfills are not engineered and do not contain any measures to collect leachate and gases emanating from the disposal sites. Another waste, which is disposed of in landfills, is pulverized fuel ash (PFA), which is a by-product of coal combustion by the power station. This has been disposed of in landfill, because its use has been precluded due to the radioactivity of the ashes. The aim of this study was to analyze the chemical composition of the pulverized fuel ash and to attempt to utilize it as a cement replacement in normal concrete mixes in the construction industry. The levels of radiation emitted from the ashes were measured by gamma spectrometry. The results of this study revealed that although at early ages cement replacement by PFA resulted in a reduction in compressive strength (P=0), when compared to the reference concrete at later ages the strengths measured on concrete cores were comparable to the reference concrete (P>0.05). The utilization of PFA up to 20% cement replacement in concrete did not raise the radioactivity of the concrete. In conclusion, utilization of PFA in the construction industry would be a better way of disposing of the ashes rather than controlling the leachate and any radioactivity emitted by the landfilled ashes.  相似文献   

14.
This study has examined the mechanical properties of lightweight aggregate concrete with a density of 1800 kg/m3. The effects of the following parameters on the concrete properties have been analyzed: the pre-wetting time of the lightweight aggregate and the percentage of pulverized fly ash used as cementitious replacement material. The strength of the lightweight aggregate was found to be the primary factor controlling the strength of high-strength lightweight concrete. An increase in the cementitious content from 420 to 450 kg/m3 does not significantly increase the strength of lightweight aggregate concrete. The relationship between the flexural and compressive strength at 28 days can be represented by the equation fr=0.69/fck. The elastic modulus was found to be much lower than that of normal weight concrete, ranging from 15.0 to 20.3 GPa. The addition of PFA increases the slump and density of lightweight aggregate concrete.  相似文献   

15.
An experimental investigation was carried out to study the effects of various percentages of fine/coarse tire waste and microsilica at various temperatures on the compressive strength of concrete. The compressive strength of concrete mixtures made with tire rubber was assessed statistically with those of concrete containing microsilica and conventional concretes in order to evaluate the usefulness of recycling rubber waste as a component of concrete. Results confirmed that the recipe and processing temperature of concrete cubes influence the compressive strength values. Generally, the use of microsilica or fine rubber mixed with microsilica as aggregate replacement of 5% by volume improved the compressive strength of concrete processed at a temperature of 150°C. The addition of coarse rubber did not achieve any increase in strength when used as an aggregate replacement at any percentage. Moreover, the reductions in the compressive strength of concrete mixes at higher temperatures were much smaller for the fine rubber with 5 vol% microsilica than those for control and coarse rubber mixes. The specimens made with fine rubber and 5 vol% microsilica at elevated temperatures above 400°C appeared to show very similar compressive strength values. The use of fine rubber in building construction could help save energy and reduce costs and solve the solid waste disposal problem posed by this type of waste.  相似文献   

16.
A study of disposed fly ash from landfill to replace Portland cement   总被引:1,自引:0,他引:1  
The landfills of fly ash are the problem of all power plants because this disposed fly ash is not used in any work. This research studies the potential of using disposed fly ashes which have disposal time of 6-24 months from the landfill of Mae Moh power plants in Thailand to replace Portland cement type I. Median particle sizes of disposed fly ashes between 55.4 and 99.3 microm were ground to reduce the sizes to about 7.1-8.4 microm. Both original and ground disposed fly ashes were investigated on physical and chemical properties. Compressive strengths of disposed fly ash mortars were determined when Portland cement type I was replaced by disposed fly ashes at the rate of 10%, 20%, and 30% by weight of cementitious material (Portland cement type I and disposed fly ash). The results presented that most particles of original disposed fly ashes were solid and sphere with some irregular shape while those of ground disposed fly ashes were solid and irregular shape. CaO and LOI contents of disposed fly ashes with different disposal times had high variation. The compressive strengths of original disposed fly ash mortars were low but those of ground disposed fly ash mortars at the age of 7 days were higher than 75% of the standard mortar and increased to be higher than 100% after 60 days. From the results, it could be concluded that ground disposed fly ashes were excellent pozzolanic materials and could be used as a partial replacement of cement in concrete, even though they were exposed to the weather for 24 months.  相似文献   

17.
This article investigates the effects of stone powder sludge on the microstructure and strength development of alkali-activated fly ash and blast furnace slag mixes. Stone powder sludge produced from a crushed aggregate factory was used to replace fly ash and granulated blast furnace slag at replacement ratios of 0%, 10%, 20%, and 30% by mass. The unit weight and compressive strength of the samples were measured, and scanning electron microscopy/energy dispersive spectroscopy and X-ray diffraction (XRD) analyses were performed. The test results indicated that the compressive strength of alkali-activated blast furnace slag mixes using stone powder sludge was higher than that of the alkali-activated blast furnace slag control mix, but the compressive strength of alkali-activated fly ash mixes decreased with increasing replacement ratio of stone powder sludge. Microscopy results indicated that for alkaliactivated blast furnace slag samples, broken surfaces were more evident than for the alkali-activated fly ash samples. For all XRD diagrams, broad and diffuse peaks were observed around 2θ = 35° (d = 2.96–3.03 Å), implying amorphous or short-ordering structure phases.  相似文献   

18.
New composite materials based on an alkali-resistant glass-fibre reinforced cement (AR-GRC) system are being developed by using fly ash (FA) produced at coal thermoelectric power plants, and fluid catalytic cracking catalyst residue (FC3R) from the petrol industry as cement replacement materials. These wastes are reactive from the pozzolanic viewpoint, and modify the nature and the microstructure of the cement matrix when a part of the Portland cement is replaced in the formulation of GRC. Several microstructural and mechanical aspects are being studied for AR-GRC systems. The behaviour of composites exposed to ageing shows that the pozzolanic activity of the ground FA added in high amounts and its mixture with the FC3R increase the flexural strength and no evidences of strength decay are observed. Additionally, the fibres due to the high alkalinity of the cementing matrix can be deteriorated. Fibres in the control (only Portland cement) and FC3R containing composites were attacked, whereas composites with FA and their mixture with FC3R show that the fibres have not been attacked, due to the pozzolanic activity of replacing materials that reduce the calcium hydroxide content in the cementing matrix.  相似文献   

19.
Industrial activities in Iraq are associated with significant amounts of non-biodegradable solid waste, waste plastic being among the most prominent. This study involved 86 experiments and 254 tests to determine the efficiency of reusing waste plastic in the production of concrete. Thirty kilograms of waste plastic of fabriform shapes was used as a partial replacement for sand by 0%, 10%, 15%, and 20% with 800 kg of concrete mixtures. All of the concrete mixtures were tested at room temperature. These tests include performing slump, fresh density, dry density, compressive strength, flexural strength, and toughness indices. Seventy cubes were molded for compressive strength and dry density tests, and 54 prisms were cast for flexural strength and toughness indices tests. Curing ages of 3, 7, 14, and 28 days for the concrete mixtures were applied in this work. The results proved the arrest of the propagation of micro cracks by introducing waste plastic of fabriform shapes to concrete mixtures. This study insures that reusing waste plastic as a sand-substitution aggregate in concrete gives a good approach to reduce the cost of materials and solve some of the solid waste problems posed by plastics.  相似文献   

20.

The present study investigates the feasibility of using two types of municipality solid wastes incineration ashes, namely, fly ash and bottom ash in the production of sustainable alkali-activated binder. The ashes are collected from the incineration plant and characterized to determine their particle size distribution, specific gravity, chemical composition, and heavy metals content. The ashes are then used as either fly ash or sand replacement with five replacement ratios 0%, 5%, 10%, 15%, and 20% to produce the binder. The produced binder are characterized in terms of strength, workability, density, water absorption, thermal conductivity and stability, chemical composition, and heavy metals content. The results reflect the ability of producing sustainable alkali-activated binder with small dosage of MSWI ashes as either fly ash or sand replacement without negatively affecting its strength, workability, density, and water absorption. The ashes enhance the thermal insulation capability of the binder.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号