共查询到19条相似文献,搜索用时 62 毫秒
1.
为揭示三峡蓄水对局地气候的影响,利用TRMM 3B42卫星降水产品分析了三峡蓄水前后(以2003年为分界)库区的局地降水变化。分析表明,蓄水以后,库区西北部年累积降水量增加,东南部年累积降水量减少,这种降水变化是大尺度上降水变化的区域体现。蓄水对干流附近降水产生了一定影响,干流站点间降水量差别增大,但整个大库区平均的年累积降水量无明显变化。蓄水之后的降水变化具有季节差异。冬季几乎整个库区的降水量都有所增加;春季降水量在干流的上游个别地区和下游减少,中游增加;夏季除库区下游部分地区外,大部分库区降水量有所减少;秋季,库区的上游和中游降水增加,下游降水减少。区域平均的季节降水量无明显年际趋势。结果表明,三峡蓄水带来的降水变化空间尺度只局限在近库区,对整个大库区降水变化的影响可忽略不计 相似文献
2.
近50年长江流域降水日数的演变趋势 总被引:2,自引:0,他引:2
通过分析不同强度降水量(大于75百分位和大于95百分位降水,下同)对应降水日数,研究了长江流域1951~2000年逐年和年代际降水日数变化趋势。大于75百分位的降水日数在上游以及中游的北岸增加趋势最显著,四川盆地是唯一显示减少趋势的地区。同样,大于95百分位的降水日数在中游和下游也表现出十分明显的增加趋势,呈现减少趋势的仍然是四川盆地,并略向其北方延伸。详细分析每10年的平均降水日数的距平发现,大于75百分位降水日数最大的正距平集中在中游的1980s、1990s和下游的1980s。最大的负距平也是在中游地区,发生在1950~1979年。因此,中游的降水日数增加的幅度最大。对于大于95百分位降水日数,长江流域中游和下游的变化趋势也是一致的,在1960s 和1970s的负距平后,都出现较大的正距平。上游降水日数的年际变化要小于中下游。比较不同百分位降水日数的变化趋势,可将长江流域1950~2000年降水日数的变化趋势分为3种类型:(1)在大于75百分位降水日数增加的同时,大于95百分位降水日数却有所减少;(2)大于75和大于95百分位降水日数同时呈减少的趋势;(3)大于75和大于95百分位降水日数同时呈增加趋势。 相似文献
3.
基于1961~2019年逐日降水格点数据,对长江流域偏前型、偏后型、均衡型和单日型极端降水时空变化特征进行分析。结果表明:(1)在变化过程上,1961~2019年,长江流域偏前型极端降水先增加后下降,偏后型、均衡型极端降水变化以平稳波动为主,单日型极端降水持续上升;(2)在空间格局上,长江流域偏前型、偏后型极端降水量呈现“东南高—西北低”的分布格局,均衡型极端降水高值区分布于金沙江、鄱阳湖流域,单日型极端降水空间特征表现为“中间高、两侧低”;(3)在影响因素上,长江流域及其子流域不同类型极端降水与两类厄尔尼诺(东部型-Ni1o 1+2区和中部型-Ni1o 3.4区)正相关占比为79.2%,且与Ni1o 1+2区的相关性高于Ni1o 3.4区;(4)1998年长江流域极端降水以偏前型为主导,7月20~26日偏前型极端降水事件为1998年夏季洪涝灾害的核心致灾因子。 相似文献
4.
气候变化加剧了极端天气和水文事件的发生,降水是区域干旱与洪水事件最直接驱动因素。以TRMM/PR月累积降水反演遥感数据为基础,利用经验正交函数EOF(Empirical Orthogonal Function)方法对长江流域降水时空变化模式进行提取,并对比分析了主要模式振幅强弱与极端水文事件的对应关系。结果表明在流域尺度上EOF方法及TRMM/PR数据可以较好地识别降水主要模式,通过时空尺度变换成功揭示主要降水模式强弱与流域极端水文事件的对应关系。鉴于日益丰富的巨量水文气象时空数据,EOF方法在模式提取、水文模拟、极端事件预估及灾害适应性研究等方面具有应用潜力 相似文献
5.
基于长江流域115个雨量站1963~2013年的日降水数据,应用小波多分辨分析结合信息论的方法,揭示长江流域近51 a来日降水时空变异的多尺度特征。结果表明:空间上,流域日降水序列的变异性具有明显的局部聚集性;并沿纬向呈现出显著的非均质性,而沿经向呈现出拟均匀性;并于103°E附近存在一条明显的分界线,界线以西的日降水变异程度显著高于界限以东的;且日降水变异性与高程之间存在较强的线性相关性,而与年降水量和年降水天数之间则存在较弱的相关性。时间上,流域各站点日降水子序列对原始序列总变异的相对贡献的大小于103°E附近也存在一条明显的分界线,界线以西,各时间尺度下子序列的贡献均大于界线以东;且这种相对贡献的谱图于256 d处呈现出突变现象。此外,流域降水变异的时间尺度可分为3个不同的区间:短期的(2~16 d)、年内的(16~256 d)和年际的(大于256 d)。 相似文献
6.
以长江流域130个气象站点1965~2014年的日降水量资料为基础,应用线性矩以及各种统计检验和空间分析技术对流域极端降水进行区域频率分析和时空特征描绘。研究表明:(1)应用模糊C均值分类和异质性检验,整个长江流域的年最大1、3、7和10日降水序列均可划分为7个一致性子区域。拟合优度检验表明,广义极值分布(GEV)和广义正态分布(GNO)为大部分区域极端降水序列的最佳分布;(2)使用考虑站间依赖性的Monte Carlo模拟评价极端降水增长曲线和分位数估计值的精确性,与站点绝对独立的情况相比,其均方根误差(RMSE)变大,90%的误差界也变宽;(3)每个一致性区域的区域增长曲线及其90%的误差界表明,当重现期小于100年时分位数估计值具有较高的可靠性,在四川盆地和长江中下游地区发生极端降水事件的可能性比较大,易发生高风险洪涝灾害;(4)重现期为100年的极端降水空间分布格局表明,从长江上游到下游的极端降水量逐渐增加,导致长江中下游流域更容易遭受洪涝灾害,这一结果与其区域增长曲线相一致。 相似文献
7.
基于热带测雨卫星(TRMM)3B42降水数据,通过Z 指数方法对鄱阳湖流域1998年1月~2010年12月
旱涝的时空分布进行分析,并利用流域内15个雨量站观测降雨数据同样采用Z 指数方法分析流域旱涝变化,与
TRMM 结果进行对比,检验其精度和可靠性.结果显示:TRMM 降水与地面雨量站观测降雨具有较高的一致性,
能正确反映流域的降水情况;其计算的Z指数在1998~2010年以0为中心呈锯齿状增大减小交替变化,所反映的
洪涝事件主要发生在4~6月,占全年的60%左右,而干旱主要发生在9月~翌年1月份,其与鄱阳湖流域降水的
年内分布特征是一致的;同时,基于TRMM 降水反映的流域旱涝等级与降雨量的空间分布基本一致,TRMM 降水
能够用于流域旱涝的空间分布监测. 相似文献
旱涝的时空分布进行分析,并利用流域内15个雨量站观测降雨数据同样采用Z 指数方法分析流域旱涝变化,与
TRMM 结果进行对比,检验其精度和可靠性.结果显示:TRMM 降水与地面雨量站观测降雨具有较高的一致性,
能正确反映流域的降水情况;其计算的Z指数在1998~2010年以0为中心呈锯齿状增大减小交替变化,所反映的
洪涝事件主要发生在4~6月,占全年的60%左右,而干旱主要发生在9月~翌年1月份,其与鄱阳湖流域降水的
年内分布特征是一致的;同时,基于TRMM 降水反映的流域旱涝等级与降雨量的空间分布基本一致,TRMM 降水
能够用于流域旱涝的空间分布监测. 相似文献
8.
长江流域近50年来的气温变化特征 总被引:18,自引:0,他引:18
分析了1951~2000年长江流域(上、中、下游)的平均气温、平均日最低气温、平均日最高气温随时间的变化趋势特征。结果表明:长江流域近50年来年平均气温、年平均日最低气温、年平均日最高气温在20世纪50年代明显偏高,60~80年代波动下降,80年代中后期以后有所上升,90年代较80年代增温0.3℃~0.6℃之间;同时不同季节、不同区域气温呈现不同的态势,冬季平均气温、平均日最低气温在60年代以后呈上升趋势,而平均日最高气温呈下降趋势,夏季平均气温、平均日最低气温、平均日最高气温均以降温为主。 相似文献
9.
基于长江流域138个气象站1961~2016年的逐月降水观测资料,应用集合经验模态分解(EEMD)方法,分别对各站点的月降水序列进行EEMD分解,然后,运用时滞相关分析和逐步变量选择的方法,以识别长江流域月降水周期振荡和长期趋势的显著影响因子,并构建多元线性回归模型对长江流域月降水进行预测。结果表明:(1)近50多年来,长江流域各站点的月降水呈现出显著的季节、年际和年代际尺度振荡特征。(2)流域内各站点月降水的长期变化趋势存在着较大的空间差异性,表现为金沙江、雅砻江、大渡河以及鄱阳湖流域是月降水长期趋势显著增加的集中区,而岷江中游以及洞庭湖流域的南部是月降水长期趋势显著减少的集中区。(3)厄尔尼诺1+2区的平均海表温度(NINO1+2)的过去模式是影响长江流域月降水周期振荡的主要气候因子,而全球平均气温距平(GlobalT)是影响长江流域月降水长期趋势的主要气候因子。(4)基于已识别的影响因子构建的月降水量预测模型在旱季的预报性能高于雨季,并在长江上游地区的预报性能高于其中下游地区。 相似文献
10.
三峡库区来水流量与长江流域上游前期降水的关系研究 总被引:1,自引:0,他引:1
较为准确地预估三峡库区9月份来水流量,对于安全而有效地完成三峡水库蓄水任务具有重要的实用意义。通过相关分析,发现三峡库区9月的来水流量与长江流域(Yangtze River Valley,YRV)上游大多数气象站点的8月降水量有显著的正相关,据此定义了影响三峡库区来水流量的长江流域上游前期降水关键区。计算关键区内各气象站点8月降水量的算术平均值,并对比其与三峡库区9月三峡库区来水流量的年际变化,发现两者的变化较为一致,同样具有显著的正相关关系,因此长江流域上游前期降水关键区的8月降水量可以作为预估9月三峡库区来水流量的一个重要因子,这可以为三峡水库蓄水计划的制定提供一定的参考依据。还分析了相应的大气环流背景,发现三峡库区来水流量的多少与大气环流的变化具有密切的联系,即三峡库区来水流量偏少的年份,天气形势及水汽输送等因素都不利于降水过程的发生,进而可能导致三峡库区后期的来水流量偏少;相反地,在三峡库区来水流量高值年,天气形势和水汽输送都有利于降水过程的发生,使后期三峡库区来水流量偏多 相似文献
11.
本文采用统计相关分析、Morlet小波分析、Rodionov时间序列分析与GIS空间分析等技术方法,分析了1983年7月至2012年9月长江流域SRB和CERES地表净辐射月产品的时空变化特征.结果表明:拟合后遥感产品比气象辐射站点观测值整体高15.8%,平均误差为15.31 W/m2,均方根误差为21.58W/m2.长江流域地表净辐射多年均值为78.0W/m2,整体呈下降趋势,于1996年突降,存在16年和10年周期;季相上,呈夏>春>秋>冬.空间上,呈现西部地区>东部地区>中部地区;1996~2012年相较1983~1995年净辐射整体下降,其中上游流域降幅大于中下游;净辐射降低主要出现在5~7月,降幅较大地区主要是长江上游流域部分地区和长江中游流域纬度较低地区.研究结果对于认识长江流域的气候变化条件下的能量和水分循环过程等具有重要意义. 相似文献
12.
长江流域逐月气温空间插值方法的探讨 总被引:4,自引:0,他引:4
长江流域地形地貌特征复杂。为了探索适合长江流域的逐月气温数据空间插值方法,在考虑海拔、经纬度、坡度、坡向对气温影响和没有考虑这些地形因子对气温影响的两种情况下,利用流域151个气象站2007年逐月气温与对应的站点地形因子进行回归分析,并与回归直线截距相加产生栅格化的回归气温值,同时对回归多项式的残差分别运用反距离权重法(IDW)、普通克立格法(OK)和样条函数法(SPLINE)气温进行了空间插值,然后将栅格化的回归气温值与残差的插值结果相加得到空间化的逐月气温数据,并利用交叉检验方法对插值精度进行了评估。结果表明:考虑了地形因子影响的3种插值方法的精度都有比较明显的提高,对于普通克立格法,平均绝对误差(MAE)从103℃降到060℃,均方根误差(RMSE)从238℃降到123℃;对于反距离权重法,MAE从110℃降到065℃,RMSE从248℃降到138℃;对于样条插值法,MAE从124℃降到074℃,RMSE从266℃降到151℃。考虑了地形因子影响的空间插值方法整体上要优于没有考虑地形因子的空间插值方法,其中,基于地形因子的普通克里格插值方法结果相对较好 相似文献
13.
长江流域年平均气温的时空变化特征 总被引:3,自引:0,他引:3
利用长江流域146个气象站点1960~2005年的逐年气温资料,选用EOF和REOF方法识别长江流域年平均气温空间变化特征,并对长江流域年平均气温变化敏感区域进行时间演变分析和突变检测。研究表明:长江流域年平均气温主要有2种空间振荡型(即全流域气温变化趋向一致型和流域内气温变化存在东西向差异型),3个变化敏感区域(长江流域中下游地区、长江流域南部和金沙江流域)。3个变化敏感区域的年平均气温都在20世纪90年代明显升高,且均在90年代后期呈突变增加,其中金沙江流域升温趋势最为明显,气候倾向率为0.20℃/10a。全流域1991~2005年年平均气温距平空间分布表明,自1991年以来全流域都为升温趋势,其中长江流域中下游地区和金沙江流域是升温幅度最大的地区。 相似文献
14.
利用长江流域146个气象站点1960~2005年的逐年气温资料,选用EOF和REOF方法识别长江流域年平均气温空间变化特征,并对长江流域年平均气温变化敏感区域进行时间演变分析和突变检测。研究表明:长江流域年平均气温主要有2种空间振荡型(即全流域气温变化趋向一致型和流域内气温变化存在东西向差异型),3个变化敏感区域(长江流域中下游地区、长江流域南部和金沙江流域)。3个变化敏感区域的年平均气温都在20世纪90年代明显升高,且均在90年代后期呈突变增加,其中金沙江流域升温趋势最为明显,气候倾向率为0.20℃/10a。全流域1991~2005年年平均气温距平空间分布表明,自1991年以来全流域都为升温趋势,其中长江流域中下游地区和金沙江流域是升温幅度最大的地区。 相似文献
15.
集合经验模态分解在长江中下游梅雨变化多尺度分析中的应用 总被引:2,自引:0,他引:2
基于长江中下游流域5个梅雨监测站1961~2012年的日数据,利用集合经验模态分解(EEMD)方法,对研究期内梅雨时间序列进行多尺度的分析,探讨其在不同时间尺度上的振荡模态结构特征。结果表明:近50多年来,长江中下游梅雨变化呈现出显著的年际和年代际尺度振荡特征,在年际尺度上表现出准3 a和6 a的周期变化,而在年代际尺度上显示准13 a和24 a的周期变化;各分量方差〖JP2〗贡献率显示,年际振荡在梅雨长期变化中占据主导地位;自1961年以来,EEMD分解的梅雨长期变化趋势表现出先增加后减少的倒“U”型特征,其中1961~1985年呈上升趋势,1985~2012年呈下降趋势,尤其是在2000年之后的下降趋势最为明显。由此可以看出,EEMD能够有效地揭示梅雨长期序列在不同时间尺度上的变化规律,可用于诊断非线性、非平稳性信号变化的复杂性特征 相似文献
16.
段七零 《长江流域资源与环境》2009,18(9):789
在认识空间结构内涵与确定研究范围的基础上,运用主成分和聚类分析方法,获得了长江流域的空间分异状况。长江流域空间结构符合核心 边缘结构模式,包括3个一级核心、8个二级核心、两大跨省成长三角、1条主轴、2条辅轴、3条地方轴、1个外围区和1个边缘区。长江流域空间结构的演变,经历了低水平的离散型阶段、极化发展的非均衡阶段、扩散的多核非均衡阶段,未来将向区域一体化的高水平均衡阶段发展。从聚散原理、空间相互作用和国家宏观区域发展战略等3方面,分析了长江流域空间结构的演变机制。长江流域空间结构的优化,要从内部要素与外部力量两方面入手做3件事情。一要加快单个节点的发展和尽快形成核心区域,尤其是上游地区要构建一个以成渝为双核的兼顾南北较大范围的成长多边形;二要加快东西通道的建设和注重主轴与辅轴间的连接通道的构建或完善;三要注重基于市场一体化的区域空间治理体制的创新. 相似文献
17.
2006年长江特枯径流特征及其原因初探 总被引:3,自引:0,他引:3
2006年长江流域出现了百年罕见的特大枯水,对长江流域用水和生态环境都产生了深远影响。使用2006年长江干支流主要水文站水情资料和长江流域气象资料,并同时考虑了三峡蓄水的影响,分析了2006年长江径流过程特征及其原因。研究发现,2006年长江径流量减少主要是汛期径流量显著减少所致,表现出“汛期特枯”的特点。径流量和水位最大降幅都出现在8~9月份,各站径流量最大减幅都超过50%,水位汛期也有显著下降。洞庭湖、汉江与历史同期相比,汛期来水也明显偏小;而鄱阳湖来水略丰,对干流枯水起到一定的缓和作用。7、8月份长江上游区(特别是屏山至宜昌区间)降水少气温高是形成长江汛期特枯的主要原因。气象变化与径流变化存在较好的对应关系。三峡蓄水使2006年10月宜昌站径流量减少了一半左右,而对10~11月大通径流减少影响率为187%。 相似文献
18.
基于MODIS-EVI数据的长江三角洲地区植被变化的特征 总被引:2,自引:0,他引:2
基于2001~2010年MODIS EVI植被指数产品数据,结合国家标准气象站逐月气温、降雨及日照时数资料,对长江三角洲地区植被的时空变化特征进行分析。结果表明:(1)空间分布上,该区域西南部以林地为主,而东北部以农田为主,近10 a植被变化面积占总面积的32%,以农田的转出和城镇的转入为主;(2)区域年最大EVI整体呈减少趋势(-0028/10 a),不同季节下,夏冬季均呈减少趋势(以2月和8月份最为显著),春秋季则呈增加趋势(以5月和10月份最为显著);(3)不同植被类型下,城镇和农田EVI呈不同程度减少趋势,以城镇EVI下降速度(-0076/10 a)最为显著(R2=077),而林地变化较弱;(4)研究区湿润气候环境下,农田和林地年最大EVI与日照时数和气温多呈正相关性,与降雨多呈负相关性,其中以林地EVI与2~4月份日照时数的正相关性较为显著,城镇EVI与气象因子的关系相对较弱,更多的是受城镇化等人类活动的影响 相似文献
19.
长江三角洲地区气温变化的周末效应 总被引:2,自引:0,他引:2
基于1996~2010年长江三角洲地区4个省会城市的逐日地面观测资料,研究了气温指标(气温日较差,日平均气温,日最高气温和日最低气温)的周循环特征,并分析了春节、五一节、十一节长假期间与假日前后各7 d气温指标的差异。结果表明:气温变化具有明显的周末效应现象,其中气温日较差和日最高气温最为显著;气温变化的周末效应存在季节差异,夏季周末气温指标值比工作日大,其他季节周末气温指标值比工作日小,其中春季周末效应最为显著。春节、五一节、十一节三大长假存在明显的假日效应,其中春节和十一节假日期间气温指标值相比假日前后7 d小,五一节假日期间气温指标值相比前后7 d大。由于三大节假日的时间更长,气温变化的假日效应比周末效应更为显著。人类经济活动的人为划分是引起气温变化的周末效应和假日效应的根本原因 相似文献