首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract: There are few empirical data, particularly collected simultaneously from multiple sites, on extinctions resulting from human‐driven land‐use change. Southeast Asia has the highest deforestation rate in the world, but the resulting losses of biological diversity remain poorly documented. Between November 2006 and March 2008, we conducted bird surveys on six landbridge islands in Malaysia and Indonesia. These islands were surveyed previously for birds in the early 1900s, when they were extensively forested. Our bird inventories of the islands were nearly complete, as indicated by sampling saturation curves and nonparametric true richness estimators. From zero (Pulau Malawali and Pulau Mantanani) to 15 (Pulau Bintan) diurnal resident landbird species were apparently extirpated since the early 1900s. Adding comparable but published extinction data from Singapore to our regression analyses, we found there were proportionally fewer forest bird extinctions in areas with greater remaining forest cover. Nevertheless, the statistical evidence to support this relationship was weak, owing to our unavoidably small sample size. Bird species that are restricted to the Indomalayan region, lay few eggs, are heavier, and occupy a narrower habitat breadth, were most vulnerable to extinction on Pulau Bintan. This was the only island where sufficient data existed to analyze the correlates of extinction. Forest preservation and restoration are needed on these islands to conserve the remaining forest avifauna. Our study of landbridge islands indicates that deforestation may increasingly threaten Southeast Asian biodiversity.  相似文献   

2.
Threats to Avifauna on Oceanic Islands   总被引:1,自引:0,他引:1  
Abstract:  Results of the study by Blackburn et al. (2004 a ) of avifauna on oceanic islands suggest that distance from the mainland and time since European colonization have major influences on species extinctions and that island area is a significant but secondary contributing factor. After augmenting the data of the study on geographical properties for some of the islands they examined, we used a causal analysis approach with structural equation modeling to reexamine their conclusions. In our model geographical properties of islands, such as island area and isolation, were considered constraints on biological factors, such as the number of introduced mammalian predators and existing number of avifauna, that can directly or indirectly influence extinction. Of the variables we tested, island area had the greatest total influence on the threat of extinction due to its direct and indirect effects on the size of island avifauna. Larger islands had both a greater number of threatened bird species and more avifauna, increasing the number of species that could become threatened with extinction. Island isolation also had a significant, positive, and direct effect on threats to island avifauna because islands farther from the mainland had fewer current extant avifauna. Time since European colonization had a significant negative, but relatively weaker, influence on threats compared with the traditional biogeographic factors of island area and distance to the mainland. We also tested the hypothesis that the amount of threat is proportionally lower on islands that have had more extinctions (i.e., there is a "filter effect"). Because the proportion of bird extinctions potentially explained only 2.3% of the variation in the proportion of threatened species on islands, our results did not support this hypothesis. Causal modeling provided a powerful tool for examining threat of extinction patterns of known and hypothesized pathways of influence.  相似文献   

3.
Local extinction of native species and colonization of non-native species are commonly invoked as responsible for changes in species similarity among biotas of different regions. In this study we used a model of species similarity between islands to assess the emergent, and unexplored, effects of changes in colonization by native species, extinction of non-native species, and propagule pressure on species similarity among insular communities. The model predicts that extinction probability of endemic species has a positive but asymptotic effect on species similarity, which is exacerbated by increasing colonization and reducing extinction of non-native species. Species similarity tends to increase with increasing colonization probability by non-native species, however this effect may be reduced, or even reverted, when the islands are exposed to an elevated number of non-native species that are prone to extinction, high levels of endemic species loss, and an initially large number of native species shared between islands. Species similarity was positively affected by the propagule pressure rate of non-native species only when their colonization and extinction probabilities were large and small enough, respectively. A negative effect of propagule pressure rate can be caused by an increase in the pool size of non-native species, which involves the introduction of different species into different islands, promoting biotic differentiation between islands. Our results indicate that the interactions between colonization, extinction and species pool lead to nonlinear responses and unexpected scenarios of biotic change. In order to validate model predictions, future research programs should focus on understanding the dynamics on such complex meta-communities where coexist native, non-native and endemic species.  相似文献   

4.
Abstract:  In recent centuries bird species have been deteriorating in status and becoming extinct at a rate that may be 2–3 orders of magnitude higher than in prehuman times. We examined extinction rates of bird species designated critically endangered in 1994 and the rate at which species have moved through the IUCN (World Conservation Union) Red List categories of extinction risk globally for the period 1988–2004 and regionally in Australia from 1750 to 2000. For Australia we drew on historical accounts of the extent and condition of species habitats, spread of invasive species, and changes in sighting frequencies. These data sets permitted comparison of observed rates of movement through the IUCN Red List categories with novel predictions based on the IUCN Red List criterion E, which relates to explicit extinction probabilities determined, for example, by population viability analysis. The comparison also tested whether species listed on the basis of other criteria face a similar probability of moving to a higher threat category as those listed under criterion E. For the rate at which species moved from vulnerable to endangered, there was a good match between observations and predictions, both worldwide and in Australia. Nevertheless, species have become extinct at a rate that, although historically high, is 2 (Australia) to 10 (globally) times lower than predicted. Although the extinction probability associated with the critically endangered category may be too high, the shortfall in realized extinctions can also be attributed to the beneficial impact of conservation intervention. These efforts may have reduced the number of global extinctions from 19 to 3 and substantially slowed the extinction trajectory of 33 additional critically endangered species. Our results suggest that current conservation action benefits species on the brink of extinction, but is less targeted at or has less effect on moderately threatened species.  相似文献   

5.
Climate Change, Elevational Range Shifts, and Bird Extinctions   总被引:4,自引:0,他引:4  
Abstract:  Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of extinction risk. Our model that combined elevational ranges, four Millennium Assessment habitat-loss scenarios, and an intermediate estimate of surface warming of 2.8° C, projected a best guess of 400–550 landbird extinctions, and that approximately 2150 additional species would be at risk of extinction by 2100. For Western Hemisphere landbirds, intermediate extinction estimates based on climate-induced changes in actual distributions ranged from 1.3% (1.1° C warming) to 30.0% (6.4° C warming) of these species. Worldwide, every degree of warming projected a nonlinear increase in bird extinctions of about 100–500 species. Only 21% of the species predicted to become extinct in our scenarios are currently considered threatened with extinction. Different habitat-loss and surface-warming scenarios predicted substantially different futures for landbird species. To improve the precision of climate-induced extinction estimates, there is an urgent need for high-resolution measurements of shifts in the elevational ranges of species. Given the accelerating influence of climate change on species distributions and conservation, using elevational limits in a tested, standardized, and robust manner can improve conservation assessments of terrestrial species and will help identify species that are most vulnerable to global climate change. Our climate-induced extinction estimates are broadly similar to those of bird species at risk from other factors, but these estimates largely involve different sets of species.  相似文献   

6.
Abstract: The consequences of rapid rainforest clearance on native avifauna are poorly understood. In Southeast Asia, Singapore, a newly developing country, has had 95% of its native lowland rainforest cleared. Most of the rainforest was lost in the mid- to late-nineteenth century. We compared avifauna checklists from 1923, 1949, and 1998 to determine the extent of extinctions between 1923 and 1998 in Singapore. Of 203 diurnal bird species, 65 were extirpated in Singapore in the past 75 years. Four of these species were nonforest- dependent species, whereas 61 (94%) were forest bird species dependent on the primary or old secondary forest to survive. Twenty-six forest bird species became extinct between 1923 and 1949, whereas 35 forest species disappeared after 1949. We compared the body lengths, feeding guilds, and vertical feeding zones between extinct and extant forest bird species to determine whether extinction patterns were dependent on these characteristics. Larger forest bird species went extinct between 1923 and 1949. Body sizes, however, did not affect the loss of forest bird species between 1949 and 1998. We observed high losses of insectivorous birds; the insectivore-carnivore and insectivore-granivore guilds lost> 80% of the species present in 1923. The highest losses were among birds that fed in the canopy. None of the forest bird species are currently common (>100 individuals/species) within Singapore. Our study shows that more than half the forest avifauna became locally extinct after extensive deforestation. Based on this fact, the countries within Southeast Asia should reconsider their heavy deforestation practices.  相似文献   

7.
Abstract: The dependency of highly endemic island floras on few potential pollinators in depauperate island faunas suggests that pollinators and seed dispersers may be crucial in the preservation of biodiversity in isolated oceanic islands. We discuss the hypothesis that flying foxes are "strong interactors" in South Pacific islands where they setwe as the principal pollinators and seed dispersers, This suggests that the ongoing decline and ultimate extinction of flying fox species on Pacific islands may lead to a cascade of linked plant extinctions. We propose an empirical test of this hypothesis: comparisons of plant reproductive success in Guam, which has virtually lost its flying fox populations, and Samoa, where signifcant populations remain.  相似文献   

8.
Abstract: The dependency of highly endemic island floras on few potential pollinators in depauperate island faunas suggests that pollinators and seed dispersers may be crucial in the preservation of biodiversity in isolated oceanic islands. We discuss the hypothesis that flying foxes are "strong interactors" in South Pacific islands where they serve as the principal pollinators and seed dispersers, This suggests that the ongoing decline and ultimate extinction of flying fox species on Pacific islands may lead to a cascade of linked plant extinctions. We propose an empirical test of this hypothesis: comparisons of plant reproductive success in Guam, which has virtually lost its flying fox populations, and Samoa, where significant populations remain.  相似文献   

9.
Nested Faunas and Extinction in Fragmented Habitats   总被引:9,自引:0,他引:9  
Abstract: The faunas of habitat islands, such as those produced by fragmentation of formerly continuous habitats, are commonly made up of nonrandom subsets of the total available species pool. Faunas within an archipelago may form a nested series, with depauperate faunas made up of subsets of more species-rich faunas. The pattern is seldom perfect: widespread species may be absent from otherwise rich faunas (holes), and uncommon species may occur in depauperate faunas (outliers). The "nestedness" of an assemblage of faunas (its fit to the "nested subset model"; Patterson & Atmar 1986) can be measured by summing the holes and outliers.
The distributions of boreal mammals and birds among mountain ranges in the Great Basin of western North America were analyzed by this method Despite differences in their derivation (mammalian faunas are thought to be relicts, isolated since the Pleistocene; bird faunas have probably experienced recurrent colonization throughout their history] both groups show an approximately equal (and highly significant) fit to the nested subset model. They differ, however, in the relative numbers of holes and outliers in their patterns. The mammalian pattern is hole-rich; the bird pattern is outlier-rich.
The present-day composition of the mammalian faunas is the result of selective extinction of species of originally richer faunas. The existence of nested subsets in these faunas suggests that extinction is a highly deterministic process: extinctions occurred in approximately the same sequence throughout the region, despite wide variation in extinction rates Extinction sequence has, in fact, been less variable than extinction rates.  相似文献   

10.
Abstract:  Researchers predict that new infrastructure development will sharply increase the rate and extent of deforestation in the Brazilian Amazon. There are no predictions, however, of which species it will affect. We used a spatially explicit model that predicts the location of deforestation in the Brazilian Amazon by 2020 on the basis of historical patterns of deforestation following infrastructure development. We overlaid the predicted deforested areas onto maps of bird ranges to estimate the amount of habitat loss within species ranges. We also estimated the amount of habitat loss within modified ecoregions, which were used as surrogates for areas of bird endemism. We then used the extent of occurrence criterion of the World Conservation Union to predict the future conservation status of birds in the Brazilian Amazon. At current rates of development, our results show that at least 16 species will qualify as threatened or will lose more than half of their forested habitat. We also identified several subspecies and isolated populations that would also qualify as threatened. Most of the taxa we identified are not currently listed as threatened, and the majority are associated with riverine habitats, which have been largely ignored in bird conservation in Amazonia. These habitats and the species they hold will be increasingly relevant to conservation as river courses are altered and hydroelectric dams are constructed in the Brazilian Amazon.  相似文献   

11.
Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well‐known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well‐known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well‐known and little‐known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km2 and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km2 and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to islands. Beneficios de los Taxa Poco Estudiados para la Conservación de la Diversidad de Aves y Mamíferos en Islas  相似文献   

12.
Abstract:  Destruction and fragmentation of natural habitats results in small species populations that face increased risk of extinction. A time delay may be involved in the regional extinction of species, and the number of species that eventually may go extinct in the future is called the "extinction debt." In boreal Sweden, we examined whether the number of epiphytic crustose lichens and wood-inhabiting fungi in old-growth forest remnants diverges from species richness levels in forest patches that have been naturally isolated for millennia. An excess of species in forest remnants could indicate the presence of an extinction debt. Observed species richness in 32 old-growth forest remnants (also called woodland key habitats [WKHs]) was compared with predicted species richness. To predict species richness we used regression models based on data from 46 isolated old-growth forest patches in a forest-wetland matrix. The reference landscape is ancient and assumed to reflect the conditions of insular floras in dynamic equilibrium. Stand factors constituted predictive variables in the models. The observed number of lichen species was higher than expected (i.e., an extinction debt among lichens may exist). By contrast, there was no significant difference between observed and expected species richness among wood-inhabiting fungi. The species richness of wood-inhabiting fungi has adjusted to the changes in forest and landscape structure more rapidly than the species richness of lichens. Differences in substrate dynamics between epiphytes on living trees and species growing on decaying logs might explain the difference between species groups. The results also indicate that population densities of red-listed species were low, which may result in continuing extinctions of red-listed species. The importance of WKHs might be overvalued because species may be lost if conservation efforts consider only protection and preservation of WKHs.  相似文献   

13.
Abstract: Application of island biogeography theory to prediction of species extinctions resulting from habitat loss is based on the assumption that the transformed landscape matrix is completely inhospitable to the taxa considered, despite evidence demonstrating the nontrivial influence of matrix on populations within habitat remnants. The island biogeography paradigm therefore needs refining to account for specific responses of taxa to the area of habitat “islands” and to the quality of the surrounding matrix. We incorporated matrix effects into island theory by partitioning the slope (z value) of species–area relationships into two components: γ, a constant, and σ, a measure of taxon‐specific responses to each component of a heterogeneous matrix. We used our matrix‐calibrated model to predict extinction and endangerment of bird species resulting from land‐use change in 20 biodiversity hotspots and compared these predictions with observed numbers of extinct and threatened bird species. We repeated this analysis with the conventional species–area model and the countryside species–area model, considering alternative z values of 0.35 (island) or 0.22 (continental). We evaluated the relative strength of support for each of the five candidate models with Akaike's information criterion (AIC). The matrix‐calibrated model had the highest AIC weight (wi = 89.21%), which means the weight of evidence in support of this model was the optimal model given the set of candidate models and the data. In addition to being a valuable heuristic tool for assessing extinction risk, our matrix‐calibrated model also allows quantitative assessment of biodiversity benefits (and trade‐offs) of land‐management options in human‐dominated landscapes. Given that processes of secondary regeneration have become more widespread across tropical regions and are predicted to increase, our matrix‐calibrated model will be increasingly appropriate for practical conservation in tropical landscapes.  相似文献   

14.
Forest Fragmentation and Bird Extinctions: San Antonio Eighty Years Later   总被引:5,自引:1,他引:5  
We report on the extent of bird extinctions at San Antonio, a fragmented cloud forest site in the western Andes of Colombia, for which surveys dating back to 1911 and 1959 an available. In 1911, 128 forest bird species were present in San Antonio. Twenty-four species had disappeared by 1959, and since then 16 more species have gone locally extinct, for a total of 40 species or 31% of the original avifauna. We analyzed patterns of extinction in relation to geographic distribution and foraging guilds. We found that in this montane assemblage, being at the limits of the altitudinal distribution was the main correlate of extinction; 37% of the extinct species were at the upper limit of their altiudinal distribution. We also found that the most vulnerable guilds were the understory insectivores and the large canopy frugivores. Our study illustrates the extent of bird extinctions that are currently undocumented in the highly fragmented forests of the northern Andes, where the absence of baseline information on the fauna of unaltered forests is a limiting factor for the development of conservation and management plans. We stress the need to establish data bases and long-term monitoring projects for the Andean fauna.  相似文献   

15.
We present a model of species extinction rates that depends on the distribution of species and rates of habitat conversion. This model allows prediction of numbers of species lost as well as current extinction rates. We apply the model to plant species in the Neotropics. We examined distribution data for 51 angiosperm taxa, comprising 4258 species from Flora Neotropica monographs. Of these, 25.7% had been recorded as occurring in a single locality, with 12.8% and 9.5% being recorded from two or three localities respectively. Assuming that 18.7% of Neotropical forested area has been cleared since 1950, when 60,000 plant species existed, the model predicts that 3020 species will have been lost by 1992. At current deforestation rates, the entire Neotropics loses between 71 and 95 plant species per year. We also apply the model to individual Neotropical countries and find annual rates of within-country extinctions ranging from 0 per year in Belize to 63 per year in Ecuador. We suggest a means by which the model may be tested in the field.  相似文献   

16.
A unified model of avian species richness on islands and continents   总被引:2,自引:0,他引:2  
Kalmar A  Currie DJ 《Ecology》2007,88(5):1309-1321
How many species in a given taxon should be found in a delimited area in a specified place in the world? Some recent literature suggests that the answer to this question depends strongly on the geographical, evolutionary, and ecological context. For example, current theory suggests that species accumulate as a function of area differently on continents and islands. Species richness-climate relationships have been examined separately on continents and on islands. This study tests the hypotheses that (1) the functional relationship between richness and climate is the same on continents and islands; (2) the species-area slope depends on distance-based isolation; (3) species-area relationships differ among land bridge islands, oceanic islands, and continents; (4) richness differs among biogeographic regions independently of climate and isolation. We related bird species numbers in a worldwide sample of 240 continental parcels and 346 islands to several environmental variables. We found that breeding bird richness varies similarly on islands and on continents as a function of mean annual temperature, an area x precipitation interaction, and the distance separating insular samples from the nearest continent (R2 = 0.86). Most studies to date have postulated that the slope of the species-area relationship depends upon isolation. In contrast, we found no such interaction. A richness-environment relationship derived using Old World sites accurately predicts patterns of richness in the New World and vice versa (R2 = 0.85). Our results suggest that most of the global variation in richness is not strongly context-specific; rather, it reflects a small number of general environmental constraints operating on both continents and islands.  相似文献   

17.
Abstract: Habitat loss is silently leading numerous insects to extinction. Conservation efforts, however, have not been designed specifically to protect these organisms, despite their ecological and evolutionary significance. On the basis of species–host area equations, parameterized with data from the literature and interviews with botanical experts, I estimated the number of specialized plant‐feeding insects (i.e., monophages) that live in 34 biodiversity hotspots and the number committed to extinction because of habitat loss. I estimated that 795,971–1,602,423 monophagous insect species live in biodiversity hotspots on 150,371 endemic plant species, which is 5.3–10.6 monophages per plant species. I calculated that 213,830–547,500 monophagous species are committed to extinction in biodiversity hotspots because of reduction of the geographic range size of their endemic hosts. I provided rankings of biodiversity hotspots on the basis of estimated richness of monophagous insects and on estimated number of extinctions of monophagous species. Extinction rates were predicted to be higher in biodiversity hotspots located along strong environmental gradients and on archipelagos, where high spatial turnover of monophagous species along the geographic distribution of their endemic plants is likely. The results strongly support the overall strategy of selecting priority conservation areas worldwide primarily on the basis of richness of endemic plants. To face the global decline of insect herbivores, one must expand the coverage of the network of protected areas and improve the richness of native plants on private lands.  相似文献   

18.
Abstract:  Mollusks are the group most affected by extinction according to the 2007 International Union for Conservation of Nature (IUCN) Red List, despite the group having not been evaluated since 2000 and the quality of information for invertebrates being far lower than for vertebrates. Altogether 302 species and 11 subspecies are listed as extinct on the IUCN Red List. We reevaluated mollusk species listed as extinct through bibliographic research and consultation with experts. We found that the number of known mollusk extinctions is almost double that of the IUCN Red List. Marine habitats seem to have experienced few extinctions, which suggests that marine species may be less extinction prone than terrestrial and freshwater species. Some geographic and ecologic biases appeared. For instance, the majority of extinctions in freshwater occurred in the United States. More than 70% of known mollusk extinctions took place on oceanic islands, and a one-third of these extinctions may have been caused precipitously by introduction of the predatory snail Euglandina rosea. We suggest that assessment of the conservation status of invertebrate species is neglected in the IUCN Red List and not managed in the same way as for vertebrate species .  相似文献   

19.
Insularization of Tanzanian Parks and the Local Extinction of Large Mammals   总被引:8,自引:0,他引:8  
Island biogeography theory predicts that species will be lost on habitat "islands" created by the fragmentation of continental regions. Many Tanzanian parks are rapidly becoming habitat islands as a result of human settlement, agricultural development, and the active elimination of wildlife on adjacent lands. The rate of extinction of mammals in six Tanzanian parks over the last 35–83 years is significantly and inversely related to park area, suggesting that increasing insularization of the parks has been an important contributory factor in large mammal extinctions. I compared observed patterns of persistence of mammals in Tanzanian parks to predictions derived from earlier extinction models. The predictions of the S 1 models of Soulé et al. (1979) and Burkey (1994) and the S 2 and S 3 models of Soulé et al. (1979) match very closely the observed pattern of persistence of mammals in Tanzanian parks. The loss of mammal species will probably continue, particularly in the smaller parks. Establishment of wildlife corridors linking the parks in northern Tanzania could help to reduce the potential loss of species in the future.  相似文献   

20.
Abstract: Informally gathered species lists are a potential source of data for conservation biology, but most remain unused because of questions of reliability and statistical issues. We applied two alternative analytical methods (contingency tests and occupancy modeling) to a 35‐year data set (1973–2007) to test hypotheses about local bird extinction. We compiled data from bird lists collected by expert amateurs and professional scientists in a 2‐km2 fragment of lowland tropical forest in coastal Ecuador. We tested the effects of the following on local extinction: trophic level, sociality, foraging specialization, light tolerance, geographical range area, and biogeographic source. First we assessed extinction on the basis of the number of years in which a species was not detected on the site and used contingency tests with each factor to compare the frequency of expected and observed extinction events among different species categories. Then we defined four multiyear periods that reflected different stages of deforestation and isolation of the study site and used occupancy modeling to test extinction hypotheses singly and in combination. Both types of analyses supported the biogeographic source hypothesis and the species‐range hypothesis as causes of extinction; however, occupancy modeling indicated the model incorporating all factors except foraging specialization best fit the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号