首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An updated assessment of fine particle emissions from light- and heavy-duty vehicles is needed due to recent changes to the composition of gasoline and diesel fuel, more stringent emission standards applying to new vehicles sold in the 1990s, and the adoption of a new ambient air quality standard for fine particulate matter (PM2.5) in the United States. This paper reports the measurement of emissions from vehicles in a northern California roadway tunnel during summer 1997. Separate measurements were made of uphill traffic in two tunnel bores: one bore carried both light-duty vehicles and heavy-duty diesel trucks, and the second bore was reserved for light-duty vehicles. Ninety-eight percent of the light-duty vehicles were gasoline-powered. In the tunnel, heavy-duty diesel trucks emitted 24, 37, and 21 times more fine particle, black carbon, and sulfate mass per unit mass of fuel burned than light-duty vehicles. Heavy-duty diesel trucks also emitted 15–20 times the number of particles per unit mass of fuel burned compared to light-duty vehicles. Fine particle emissions from both vehicle classes were composed mostly of carbon; diesel-derived particulate matter contained more black carbon (51±11% of PM2.5 mass) than did light-duty fine particle emissions (33±4%). Sulfate comprised only 2% of total fine particle emissions for both vehicle classes. Sulfate emissions measured in this study for heavy-duty diesel trucks are significantly lower than values reported in earlier studies conducted before the introduction of low-sulfur diesel fuel. This study suggests that heavy-duty diesel vehicles in California are responsible for nearly half of oxides of nitrogen emissions and greater than three-quarters of exhaust fine particle emissions from on-road motor vehicles.  相似文献   

2.
Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20–60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off-road vehicles in emissions inventories.

Implications: Measurements of off-road vehicles used in construction and agricultural activities in Mexico using on-board portable emissions measurements systems (PEMS) showed that these vehicles can be major sources of black carbon and NOX. Emission factors varied significantly under real-world operating conditions, suggesting the need for detailed vehicle operation data for accurately estimating emissions inventories. Tests conducted in a selected number of sampled vehicles indicated that diesel particle filters (DPFs) are an effective technology for control of diesel particulate emissions and can provide potentially large emissions reduction in Mexico if widely implemented.  相似文献   


3.
Abstract

With the recent focus on fine particle matter (PM2.5),new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference.The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2, nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of ~10-4 lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with ~5 × 10-3 lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of ~0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or woodfueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing “true” particulate carbon emission results.  相似文献   

4.
The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85–98CK auxiliary power unit (APU) were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuel Experiment (AAFEX) using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements were conducted by multiple research organizations for sulfur dioxide (SO2), total hydrocarbons (THC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), speciated gas-phase emissions, particulate matter (PM) mass and number, black carbon, and speciated PM. In addition, particle size distribution (PSD), number-based geometric mean particle diameter (GMD), and smoke number were also determined from the data collected. The results of the research showed PM mass emission indices (EIs) in the range of 20 to 700 mg/kg fuel and PM number EIs ranging from 0.5?×?1015 to 5?×?1015 particles/kg fuel depending on engine load and fuel type. In addition, significant reductions in both the SO2 and PM EIs were observed for the use of the FT fuel. These reductions were on the order of ~90% for SO2 and particle mass EIs and ~60% for the particle number EI, with similar decreases observed for black carbon. Also, the size of the particles generated by JP-8 combustion are noticeably larger than those emitted by the APU burning the FT fuel with the geometric mean diameters ranging from 20 to 50 nm depending on engine load and fuel type. Finally, both particle-bound sulfate and organics were reduced during FT-2 combustion. The PM sulfate was reduced by nearly 100% due to lack of sulfur in the fuel, with the PM organics reduced by a factor of ~5 as compared with JP-8.

Implications: The results of this research show that APUs can be, depending on the level of fuel usage, an important source of air pollutant emissions at major airports in urban areas. Substantial decreases in emissions can also be achieved through the use of Fischer Tropsch (FT) fuel. Based on these results, the use of FT fuel could be a viable future control strategy for both gas- and particle-phase air pollutants.  相似文献   

5.
Three furnaces and one hot water heater were tested for particulate and gaseous emissions. The effects of fuel, stoichiometry, operating conditions, and appliance type on emission levels were studied. The filterable particulate levels from a properly operating furnace were very low. However, condensable particulate emissions were considerably greater, approximately the same as predicted by EPA estimates of furnace particulate emissions. Carbon emissions comprised about 12% of filterable particulate emissions. However, when operated highly fuel-rich, copious amounts of elemental carbon particles were emitted with a mass median diameter of less than 0.4 μm. Gaseous emissions were dependent on cycling of the furnace and stoichiometry.

An estimate was made of the daily furnace emissions compared to daily emissions from a 1980 catalyst-equipped automobile. While gaseous emissions were less than the corresponding vehicle emissions, the particle emissions from the furnace were three times greater than particle emissions from a 1980 vehicle.  相似文献   

6.
Single-particle mass spectrometry data collected during the Pittsburgh Supersite experiment was used to isolate an episode on 27 October 2001 when the measurement site was primarily influenced by emissions from coal combustion sources. Results showed that (a) 60–80% of the particles detected during this event belonged to the Na/Si/K/Ca/Fe/Ga/Pb particle class associated with coal combustion emissions, (b) observation of this class was an isolated event occurring only during the hours of 06:00–14:00 EST, and (c) the detection of these particles was highly correlated with shifts in wind direction. Coincident SMPS, TEOM PM2.5, SO2, NOx, and O3 measurements were in excellent agreement with the single-particle results in terms of both identifying and characterizing this event. The three most likely point sources of these particles were isolated and Gaussian plume dispersion models were used in reverse to predict their particle number, particle mass, and gas phase emissions. Calculated mass emission rates were in general agreement with the US EPA National Emissions Inventory (NEI) database emissions estimates and the Title V PM10 limit. The largest of the three sources emits about 2.4×1017 fine and ultrafine particles per second.  相似文献   

7.
The concentrations of fine particles and selected gas pollutants in the flue gas entering the stack were measured under several common operation modes in an operating coal power plant producing electricity. Particle size distributions in a diameter range from 10 nm to 20 μm were measured by a scanning mobility particle sizer (SMPS), and the flue gas temperature and concentrations of CO2 and SO2 were monitored by a continuous emission monitoring system (CEMS). During the test campaign, five plant operating modes were studied: soot blowing, bypass of flue-gas desulfurization (FGD), reheat burner operating at 0% (turned off), 27%, and 42% (normal condition) of its full capacity. For wet and dry aerosols, the measured mode sizes were both around 40 nm, but remarkable differences were observed in the number concentrations (#/cm3, count per square centimeter). A prototype photoionizer enhanced electrostatic precipitator (ESP) showed improved removal efficiency of wet particles at voltages above +11.0 kV. Soot blowing and FGD bypass both increased the total particle number concentration in the flue gas. The temperature was slightly increased by the FGD bypass mode and varied significantly as the rating of reheat burner changed. The variations of CO2 and SO2 emissions showed correlations with the trend of total particle number concentration possibly due to the transitions between gas and particle phases. The results are useful in developing coal-fired power plant operation strategies to control fine particle emissions and developing amine-based CO2 capture technologies without operating and environmental concerns associated with volatile amine emissions.

Implications: The measurement of the fine particle size distributions in the exhaust gas under several common operating conditions of a coal-fired power plant revealed different response relations between aerosol number concentration and the operating condition. A photo-ionizer enhanced ESP was demonstrated to capture fine particles with higher efficiency compared to conventional ESPs, and the removal efficiency increased with the applied voltage. The characteristic information of aerosols and main gaseous pollutants in the exhaust gas is extremely important for developing and deploying CO2 scrubbers, whose amine emissions and operating effectiveness depends greatly on the upstream concentrations of fine particles, SO2, from the power plant.  相似文献   


8.
Modern diesel particulate filter (DPF) systems are very effective in reducing particle emissions from diesel vehicles. In this work low-level particulate matter (PM) emissions from a DPF equipped EURO-4 diesel vehicle were studied in the emission test laboratory as well as during real-world chasing on a high-speed test track. Size and time resolved data obtained from an engine exhaust particle sizer (EEPS) and a condensation particle counter (CPC) are presented for both loaded and unloaded DPF condition. The corresponding time and size resolved emission factors were calculated for acceleration, deceleration, steady state driving and during DPF regeneration, and are compared with each other. In addition, the DPF efficiency of the tested vehicle was evaluated during the New European Driving Cycle (NEDC) by real time pre-/post-DPF measurements and was found to be 99.5% with respect to PM number concentration and 99.3% for PM mass, respectively. PM concentrations, which were measured at a distance of about 10 m behind the test car, ranged from 1 to 1.5 times background level when the vehicle was driven on the test track under normal acceleration conditions or at constant speeds below 100 kmh?1. Only during higher speeds and full load accelerations concentrations above 3 times background level could be observed. The corresponding tests in the emission laboratory confirmed these results. During DPF regeneration the total PM number emission of nucleation mode particles was 3–4 orders of magnitude higher compared to those emitted at the same speed without regeneration, while the level of the accumulation mode particles remained about the same. The majority of the particles emitted during DPF regeneration was found to be volatile, and is suggested to originate from accumulated sulfur compounds.  相似文献   

9.
Residential heating is an important local source of fine particles and may cause significant exposure and health effects in populations. We investigated the cytotoxic and inflammatory activity of particulate emissions from normal (NC) and smouldering (SC) combustion in one masonry heater. The PM1–0.2 and PM0.2 samples were collected from the dilution tunnel with a high-volume cascade impactor (HVCI). Mouse RAW 264.7 macrophages were exposed to the PM-samples for 24 h. Inflammatory mediators, (IL-6, TNFα and MIP-2), and cytotoxicity (MTT-test), were measured. Furthermore, apoptosis and cell cycle of macrophages were analyzed. The HVCI particulate samples were characterized for ions, elements and PAH compounds. Assays of elemental and organic carbon were conducted from parallel low volume samples. All the samples displayed mostly dose-dependent inflammatory and cytotoxic activity. SC samples were more potent than NC samples at inducing cytotoxicity and MIP-2 production, while the order of potency was reversed in TNFα production. SC-PM1–0.2 sample was a significantly more potent inducer of apoptosis than the respective NC sample. After adjustment for the relative toxicity with emission factor (mg MJ?1), the SC-PM emissions had clearly higher inflammatory and cytotoxic potential than the NC-PM emissions. Thus, operational practice in batch burning of wood and the resultant combustion condition clearly affect the toxic potential of particulate emissions.  相似文献   

10.
Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47 × 107 particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated.

Implications:?A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.  相似文献   

11.
Emissions tests were conducted on two medium heavy-duty diesel trucks equipped with a particulate filter (DPF), with one vehicle using a NOx absorber and the other a selective catalytic reduction (SCR) system for control of nitrogen oxides (NOx). Both vehicles were tested with two different fuels (ultra-low-sulfur diesel [ULSD] and biodiesel [B20]) and ambient temperatures (70ºF and 20ºF), while the truck with the NOx absorber was also operated at two loads (a heavy weight and a light weight). The test procedure included three driving cycles, a cold start with low transients (CSLT), the federal heavy-duty urban dynamometer driving schedule (UDDS), and a warm start with low transients (WSLT). Particulate matter (PM) emissions were measured second-by-second using an Aethalometer for black carbon (BC) concentrations and an engine exhaust particle sizer (EEPS) for particle count measurements between 5.6 and 560 nm. The DPF/NOx absorber vehicle experienced increased BC and particle number concentrations during cold starts under cold ambient conditions, with concentrations two to three times higher than under warm starts at higher ambient temperatures. The average particle count for the UDDS showed an opposite trend, with an approximately 27% decrease when ambient temperatures decreased from 70ºF to 20ºF. This vehicle experienced decreased emissions when going from ULSD to B20. The DPF/SCR vehicle tested had much lower emissions, with many of the BC and particle number measurements below detectable limits. However, both vehicles did experience elevated emissions caused by DPF regeneration. All regeneration events occurred during the UDDS cycle. Slight increases in emissions were measured during the WSLT cycles after the regeneration. However, the day after a regeneration occurred, both vehicles showed significant increases in particle number and BC for the CSLT drive cycle, with increases from 93 to 1380% for PM number emissions compared with tests following a day with no regeneration.

Implications:?The use of diesel particulate filters (DPFs) on trucks is becoming more common throughout the world. Understanding how DPFs affect air pollution emissions under varying operating conditions will be critical in implementing effective air quality standards. This study evaluated particulate matter (PM) and black carbon (BC) emissions with two DPF-equipped heavy-duty diesel trucks operating on conventional fuel and a biodiesel fuel blend at varying ambient temperatures, loads, and drive cycles.  相似文献   

12.
The size distribution of particles has been studied in three sites in the Metropolitan area of Santiago de Chile in the winter of 2009 and a comparison with black carbon was performed. Two sites are located near busy streets in Santiago and the other site is located in a rural area about 40 km west of Santiago with little influence from vehicles, but large influence from wood burning. The campaign lasted 1 or 2 weeks in each site. We have divided the particle size measurements into four groups (10–39 nm, 40–62 nm, 63–174 nm, and 175–700 nm) in order to compare with the carbon monitor. In the sites near the street, black carbon has a high correlation (R ? 0.85) with larger particles (175–700 nm). The correlation decreased when black carbon was compared with smaller particles, having very small correlation with the smallest sizes (10–39 nm). In the rural site, black carbon also has a high correlation (R = 0.86) with larger particles (175–700 nm), but the correlation between black carbon and the finest particles (10–39 nm) decreases to near 0. These measurements are an indication that wood burning does not generate particles smaller than ?50 nm. In the urban sites, particle size distribution is peaked toward smaller particles (10–39 nm) only during rush hours, but at other times, particles size distribution is peaked toward larger sizes. When solar radiation was high, evidence of secondary particle formation was seen in the rural site, but not in the urban sites. The correlation between the number of secondary particles and solar radiation was R2 = 0.46, indicating that it there may be other variables that play a role in ultrafine particle formation.
Implications:A study of the size distribution of particles and black carbon concentration in two street sites and one rural site shows that in the last site the number of particles ultrafine particles (d < 40 nm) is 10 times lower but the number of larger particles is about 2 times lower. Thus, the rural site has less of the particles that are more dangerous to health. The number of ultrafine particles is mostly associated with traffic, while the number of larger particles is associated with wood burning and other sources. Wood burning does not generate particles smaller than ?50 nm.  相似文献   

13.
Abstract

A mobile exposure and air pollution measurement system was developed and used for on-freeway ultrafine particle health effects studies. A nine-passenger van was modified with a high-efficiency particulate air (HEPA) filtration system that can deliver filtered or unfiltered air to an exposure chamber inside the van. State-of-the-art instruments were used to measure concentration and size distribution of fine and ultrafine particles and the concentration of carbon monoxide (CO), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PAHs), fine particulate matter (PM2.5) mass, and oxides of nitrogen (NOx) inside the exposure chamber. This paper presents the construction and technical details of the van and air pollutant concentrations collected in 32 2-hr runs on two major Los Angeles freeways, Interstate 405 (I-405; mostly gasoline traffic) and Interstate 710 (I-710; large proportion of heavy-duty diesel traffic). More than 97% of particles were removed when the flow through the filter box was switched from bypass mode to filter mode while the vehicle was driving on both freeways. The filtration system thus provides a great particulate matter exposure contrast while keeping gas-phase pollutant concentrations the same. Under bypass mode, average total particle number concentration observed inside the exposure chamber was around 8.4 × 104 and 1.3 × 105 particles cm-3 on the I-405 and the I-710 freeways, respectively. Bimodal size distributions were consistent and similar for both freeways with the first mode around 16–20 nm and the second mode around 50–55 nm. BC and particle-bound PAH concentrations were more than two times greater on the I-710 than on the I-405 freeway. Very weak correlations were observed between total particle number concentrations and other vehicular pollutants on the freeways.  相似文献   

14.
In this paper, we report the results and analysis of a recent field campaign in August 2007 investigating the impacts of emissions from transportation on air quality and community concentrations in Beijing, China. We conducted measurements in three different environments, on-road, roadside and ambient. The carbon monoxide, black carbon and ultrafine particle number emission factors for on-road light-duty vehicles are derived to be 95 g kg?1-fuel, 0.3 g kg?1-fuel and 1.8 × 1015 particles kg?1-fuel, respectively. The emission factors for on-road heavy-duty vehicles are 50 g kg?1-fuel, 1.3 g kg?1-fuel and 1.1 × 1016 particles kg?1-fuel, respectively. The carbon monoxide emission factors from this study agree with those derived from remote sensing and on-board vehicle emission testing systems in China. The on-road black carbon and particle number emission factors for Chinese vehicles are reported for the first time in the literature. Strong traffic impacts can be observed from the concentrations measured in these different environments. Most clear is a reflection of diesel truck traffic activity in black carbon concentrations. The comparison of the particle size distributions measured at the three environments suggests that the traffic is a major source of ultrafine particles. A four-day traffic control experiment conducted by the Beijing Government as a pilot to test the effectiveness of proposed controls was found to be effective in reducing extreme concentrations that occurred at both on-road and ambient environments.  相似文献   

15.
With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.  相似文献   

16.
Field measurements and data investigations were conducted for developing an emission factor database for inventories of atmospheric pollutants from Chinese coal-fired power plants. Gaseous pollutants and particulate matter (PM) of different size fractions were measured using a gas analyzer and an electric low-pressure impactor (ELPI), respectively, for ten units in eight coal-fired power plants across the country. Combining results of field tests and literature surveys, emission factors with 95% confidence intervals (CIs) were calculated by boiler type, fuel quality, and emission control devices using bootstrap and Monte Carlo simulations. The emission factor of uncontrolled SO2 from pulverized combustion (PC) boilers burning bituminous or anthracite coal was estimated to be 18.0S kg t?1 (i.e., 18.0 × the percentage sulfur content of coal, S) with a 95% CI of 17.2S–18.5S. NOX emission factors for pulverized-coal boilers ranged from 4.0 to 11.2 kg t?1, with uncertainties of 14–45% for different unit types. The emission factors of uncontrolled PM2.5, PM10, and total PM emitted by PC boilers were estimated to be 0.4A (where A is the percentage ash content of coal), 1.5A and 6.9A kg t?1, respectively, with 95% CIs of 0.3A–0.5A, 1.1A–1.9A and 5.8A–7.9A. The analogous PM values for emissions with electrostatic precipitator (ESP) controls were 0.032A (95% CI: 0.021A–0.046A), 0.065A (0.039A–0.092A) and 0.094A (0.0656A–0.132A) kg t?1, and 0.0147A (0.0092–0.0225A), 0.0210A (0.0129A–0.0317A), and 0.0231A (0.0142A–0.0348A) for those with both ESP and wet flue-gas desulfurization (wet-FGD). SO2 and NOX emission factors for Chinese power plants were smaller than those of U.S. EPA AP-42 database, due mainly to lower heating values of coals in China. PM emission factors for units with ESP, however, were generally larger than AP-42 values, because of poorer removal efficiencies of Chinese dust collectors. For units with advanced emission control technologies, more field measurements are needed to reduce emission factor uncertainties.  相似文献   

17.
Abstract

Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 μm) in an urban environment, yet little is known about the concentration and size distribution of ultrafine particles in the vicinity of major highways. In the present study, particle number concentration and size distribution in the size range from 6 to 220 nm were measured by a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS), respectively. Measurements were taken 30, 60, 90, 150, and 300 m downwind, and 300 m upwind, from Interstate 405 at the Los Angeles National Cemetery. At each sampling location, concentrations of CO, black carbon (BC), and particle mass were also measured by a Dasibi CO monitor, an aethalometer, and a DataRam, respectively. The range of average concentration of CO, BC, total particle number, and mass concentration at 30 m was 1.7?2.2 ppm, 3.4?10.0 μg/m3, 1.3?2.0 × 105/cm3, and 30.2?64.6 μ/m3, respectively.

For the conditions of these measurements, relative concentrations of CO, BC, and particle number tracked each other well as distance from the freeway increased. Particle number concentration (6–220 nm) decreased exponentially with downwind distance from the freeway. Data showed that both atmospheric dispersion and coagulation contributed to the rapid decrease in particle number concentration and change in particle size distribution with increasing distance from the freeway. Average traffic flow during the sampling periods was 13,900 vehicles/hr. Ninety-three percent of vehicles were gasoline-powered cars or light trucks. The measured number concentration tracked traffic flow well. Thirty meters downwind from the freeway, three distinct ultrafine modes were observed with geometric mean diameters of 13, 27, and 65 nm. The smallest mode, with a peak concentration of 1.6 × 105/cm3, disappeared at distances greater than 90 m from the freeway. Ultrafine particle number concentration measured 300 m downwind from the freeway was indistinguishable from upwind background concentration. These data may be used to estimate exposure to ultrafine particles in the vicinity of major highways.  相似文献   

18.
19.
Characteristic parameters of black carbon aerosol (BC) emitted from jet engine were measured during ground tests and in-flight behind the same aircraft. Size distribution features were a primary BC mode at a modal diameter D≈0.045 μm, and a BC agglomeration mode at D<0.2 μm. The total BC number concentration at the engine exit was 2.9×107 cm-3 with good agreement between model results and in-flight measured number concentrations of non-volatile particles with D⩾0.014 μm. A comparison between total number concentration of BC particles and the non-volatile fraction of the total aerosol at the exit plane suggests that the non-volatile fraction of jet engine exhaust aerosol consists almost completely of BC. In-flight BC mass emission indices ranged from 0.11 to 0.15 g BC (kg fuel)-1. The measured in-flight particle emission value was 1.75±0.15×1015 kg-1 with corresponding ground test values of 1.0–8.7×1014 kg-1. Both size distribution properties and mass emission indices can be scaled from ground test to in-flight conditions. Implications for atmospheric BC loading, BC and cirrus interaction and the potential of BC for perturbation of atmospheric chemistry are briefly outlined.  相似文献   

20.
Annual CO2 emission tallies for 210 coal-fired power plants during 2009 were more accurately calculated from fuel consumption records reported by the U.S. Energy Information Administration (EIA) than measurements from Continuous Emissions Monitoring Systems (CEMS) reported by the U.S. Environmental Protection Agency. Results from these accounting methods for individual plants vary by ± 10.8%. Although the differences systematically vary with the method used to certify flue-gas flow instruments in CEMS, additional sources of CEMS measurement error remain to be identified. Limitations of the EIA fuel consumption data are also discussed. Consideration of weighing, sample collection, laboratory analysis, emission factor, and stock adjustment errors showed that the minimum error for CO2 emissions calculated from the fuel consumption data ranged from ± 1.3% to ± 7.2% with a plant average of ± 1.6%. This error might be reduced by 50% if the carbon content of coal delivered to U.S. power plants were reported.

Implications:

Potentially, this study might inform efforts to regulate CO2 emissions (such as CO2 performance standards or taxes) and more immediately, the U.S. Greenhouse Gas Reporting Rule where large coal-fired power plants currently use CEMS to measure CO2 emissions. Moreover, if, as suggested here, the flue-gas flow measurement limits the accuracy of CO2 emission tallies from CEMS, then the accuracy of other emission tallies from CEMS (such as SO2, NOx, and Hg) would be similarly affected. Consequently, improved flue gas flow measurements are needed to increase the reliability of emission measurements from CEMS.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号