首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
To evaluate the effect of handle design characteristics on subjective ratings and pulling forces, meat-hook handles with various handle shapes, sizes, and hook positions were tested in a pulling task. Finger and phalange force data measured by force sensitive resistors and subjective ratings of discomfort were also evaluated. Generally subjects preferred 37-mm double frustum, 30-mm oval handles followed by 30-mm double frustum handles, 37-mm oval, and 45-mm double frustum handles. In the analyses of total pulling force, 37- and 45-mm double frustum handles showed less required pulling force than the others. The averages of finger force contributions to the total pulling force were 27.2, 28.1, 23.9, and 20.8% in order from index to little fingers. The average of phalange force contributions were 28.8, 33.6, and 37.6% for the distal, middle, and proximal phalanges, respectively. The findings illustrate that the pulling finger forces and subjective discomfort ratings were related to the handle shape as well as handle size.  相似文献   

2.
基于神经网络的温度预测   总被引:7,自引:0,他引:7  
室内温度与诸多影响因素之间的非线性、复杂性等关系 ,给建模、预测带来了难度 ,引入了人工神经网络 ;利用人工神经网络的非线性、并行计算和自学习特性进行建模 ,实现了对温度模拟  相似文献   

3.
Objective: Currently, in Turkey, fault rates in traffic accidents are determined according to the initiative of accident experts (no speed analyses of vehicles just considering accident type) and there are no specific quantitative instructions on fault rates related to procession of accidents which just represents the type of collision (side impact, head to head, rear end, etc.) in No. 2918 Turkish Highway Traffic Act (THTA 1983). The aim of this study is to introduce a scientific and systematic approach for determination of fault rates in most frequent property damage–only (PDO) traffic accidents in Turkey.

Methods: In this study, data (police reports, skid marks, deformation, crush depth, etc.) collected from the most frequent and controversial accident types (4 sample vehicle–vehicle scenarios) that consist of PDO were inserted into a reconstruction software called vCrash. Sample real-world scenarios were simulated on the software to generate different vehicle deformations that also correspond to energy-equivalent speed data just before the crash. These values were used to train a multilayer feedforward artificial neural network (MFANN), function fitting neural network (FITNET, a specialized version of MFANN), and generalized regression neural network (GRNN) models within 10-fold cross-validation to predict fault rates without using software. The performance of the artificial neural network (ANN) prediction models was evaluated using mean square error (MSE) and multiple correlation coefficient (R).

Results: It was shown that the MFANN model performed better for predicting fault rates (i.e., lower MSE and higher R) than FITNET and GRNN models for accident scenarios 1, 2, and 3, whereas FITNET performed the best for scenario 4. The FITNET model showed the second best results for prediction for the first 3 scenarios. Because there is no training phase in GRNN, the GRNN model produced results much faster than MFANN and FITNET models. However, the GRNN model had the worst prediction results. The R values for prediction of fault rates were close to 1 for all folds and scenarios.

Conclusions: This study focuses on exhibiting new aspects and scientific approaches for determining fault rates of involvement in most frequent PDO accidents occurring in Turkey by discussing some deficiencies in THTA and without regard to initiative and/or experience of experts. This study yields judicious decisions to be made especially on forensic investigations and events involving insurance companies. Referring to this approach, injury/fatal and/or pedestrian-related accidents may be analyzed as future work by developing new scientific models.  相似文献   


4.
The three layer artificial neural network model was applied to predict the degradation efficiency for carbamazepine in photocatalytic oxidation under UV radiation. Titania–zirconia was employed as a catalyst for the photooxidation. The catalyst was prepared using titanium isopropoxide and zirconium oxychloride by sol–gel method and characterized by transmission electron microscopy and BET analysis. Different process parameters such as, initial concentration of carbamazepine, pH of the solution, catalyst concentration and time of UV irradiation were employed as the input to the artificial neural network model and the output of the network was degradation efficiency of carbamazepine. The multilayer feed-forward networks with the Levenberg–Marquardt (trainlm) backpropagation training algorithm was used for the network training. The smallest mean square error was obtained for three-layer network with ‘logsig’ transfer function and five neurons in the hidden layer gave optimal results. A comparison between the predicted values and selective experimental data of degradation efficiency showed a high correlation coefficient (R2) of 0.997.  相似文献   

5.
基于砂土液化的影响因素具有非线性关系,而神经网络模型能够逼近任意非线性函数和适合于动态系统辨识的特性,分别建立输入层为4,隐含层神经元为2,输出层为1的三层BP神经网络和Elman网络,并且通过matlab软件运算,实例比较得出Elman模型比BP模型收敛速度快、精度高,在砂土液化的预测中效果更好。  相似文献   

6.
基于BP神经网络人群流量预测的实现   总被引:2,自引:1,他引:1  
人群拥挤踩踏突发性的特点决定了现场的事故救援措施效果较差,事前预防是唯一有效的策略。对商业区人群流量进行预测,对于合理控制商业网点人口,预防人群类事故的发生具有重要的意义。本文介绍了基于BP神经网络的人群流量预测方法,利用Matlab建立了相关模型,并结合实际数据对模型进行了调整,分析了隐含层神经元个数、不同输入-输出结构、不同传递函数等因素对网络性能的影响。研究表明利用神经网络的非线性映射能力对人群流量进行预测时可行的。  相似文献   

7.
基于BP神经网络的煤层自燃预测   总被引:3,自引:0,他引:3  
在全面分析影响煤层自燃因素的基础上,建立了煤层自燃预测的人工神经网络模型.应用该模型对某煤田的多个煤层样本进行了训练和预测,网络经过10次训练后,误差达到设定的最小值,6次预测测试中最大误差仅为0.027 8,最小的为0.000 1.研究表明,该模型精度较高,可用于预测煤层自燃的实际应用.  相似文献   

8.
Batch process usually differs from the continuous process because of its time-varying variables and the process parameters. An early detection and isolation of faults in the process will help to reduce the process upsets and keep it safe and reliable. This paper discusses on the application of multi-layer perceptron neural network in detecting various faults in batch chemical reactor based on an esterification process that involves the reaction of ethanol and acetic acid catalyzed by sulfuric acid. A multi-layer feed forward neural network with double hidden layers has been used in the neural network architecture. The detection was based on the different patterns generated between normal and faulty conditions. An optimum network configuration was found when the network produced the minimal error with respect to the training, testing and data validation.  相似文献   

9.
为了提高火灾事故预测的精度,根据我国火灾事故数据样本较小,波动性较大的特点,将遗传算法优化的灰色无偏预测模型与遗传算法优化的BP神经网络模型结合起来,建立灰色神经网络优化组合模型,充分发挥无偏灰色预测模型适用于小样本的数据预测的优势与BP神经网络处理非线性问题的优点。分别采用遗传算法优化后的无偏灰色GM(1,1)模型、遗传算法优化的BP神经网络预测模型与灰色神经网络优化组合模型对我国1998-2008年的火灾事故进行拟合,并对2009-2011年的火灾事故发生数进行预测。结果表明:灰色神经网络优化组合模型的预测误差最小,精度最高,适用于火灾事故的预测。  相似文献   

10.
Test case based risk predictions using artificial neural network   总被引:3,自引:0,他引:3  
INTRODUCTION: The traditional fuzzy-rule-based risk assessment technique has been applied in many industries due to the capability of combining different parameters to obtain an overall risk. However, a drawback occurs as the technique is applied in circumstances where there are multiple parameters to be evaluated that are described by multiple linguistic terms. METHOD: In this study, a risk prediction model incorporating fuzzy set theory and Artificial Neural Network (ANN) capable of resolving the problem encountered is proposed. An algorithm capable of converting the risk-related parameters and the overall risk level from the fuzzy property to the crisp-valued attribute is also developed. Its application is demonstrated by a test case evaluating the navigational safety within port areas. RESULTS: It is concluded that a risk predicting ANN model is capable of generating reliable results as long as the training data takes into account any potential circumstance that may be met. IMPACT ON INDUSTRY: This paper provides safety assessment practitioners with a novel and flexible framework of modelling risks using a fuzzy-rule-base technique. It is especially applicable in circumstances where there are multiple parameters to be considered. The proposed framework also enables the port industry to manage navigational safety in a rational manner.  相似文献   

11.
结合当前国内外对高速铁路动车组运用的相关研究,给出了动车组周转这一特大型组合优化问题的数学描述并建立神经网络模型,提出了基于分层聚类思想与模拟退火算法相结合的解决方案,降低了算法的时间复杂度,达到了减少车底在车站的停留时间,提高了车底利用效率,为优化我国在建和拟建的高速铁路、城际客运专线的动车组周转及计算机自动编制车底运用计划提供理论支持,并结合实际客运专线运用计算机模拟进行检算,证实了算法的可行性、实用性.  相似文献   

12.
为监测建筑火灾事故区域的危险程度,实现更加安全、高效的火灾应急救援,以通廊式建筑为研究对象,基于转置卷积神经网络及数值模拟方法开发1种可实时预测走廊位置处烟气扩散和温度分布的神经网络模型。首先,依托Python建立包含全连接、转置卷积、反池化等在内的19层神经网络模型的整体架构;其次,建立包含99个火灾场景,共7 920组图像数据的火场信息数据库用于模型训练;最后,使用测试集对模型进行可靠性验证。研究结果表明:烟气(温度)预测模型在不同火灾场景下的预测精度达到95%,训练完成后模型的预测时间一般为1~2 s。研究结果可为应急策略的快速制定提供数据参考。  相似文献   

13.
走滑断层是埋地管道常见的地质灾害威胁,断层作用下管道会发生较大的拉压应变而失效。为得到X80管道的设计应变,基于有限元方法建立了走滑断层作用下管道的应变响应数值计算模型,模型使用壳单元模拟管道,非线性弹簧单元模拟土壤约束,采用西二线实际工程的管道应变影响参数范围,计算了管道的设计应变;为预测管道的设计应变值,基于以上参数化分析得到的4 817组设计应变结果,采用人工神经网络建立了管道设计应变预测模型。结果表明:该神经网络模型预测结果的最大相对误差小于10%,预测准确性良好,且该方法具有较高的计算效率,可以为断层作用下埋地管道的应变设计与评估提供参考。  相似文献   

14.
为解决传统经验公式在预测气体泄爆中最大超压出现时的较大偏差或过于保守的问题,提出使用人工神经网络预测气体泄爆最大超压。基于124组实验数据,采用BP与RBF神经网络,通过优化算法计算与迭代循环对泄爆样本中的影响因素进行降维与选择,并确定2类神经网络本身在学习与计算气体泄爆样本时的相关参数。结果表明:PCA(主成分分析法)在当前样本条件下的降维效果较差,而通过迭代对比确认气体泄爆样本中的5类特征全部保留时神经网络的训练模拟效果最好;通过对124组实验数据进行随机挑选训练集与测试集的训练模拟结果发现,神经网络对气体泄爆中最大超压的预测效果较好;通过对比Molkov提出的和经Fakandu等改进的NFPA 68经验公式以及2类神经网络的预测结果表明,神经网络相比于传统气体泄爆经验公式具有明显优势。  相似文献   

15.
为提高煤层瓦斯含量预测的精准度和效率,提出1种利用遗传算法(GA)和模拟退火算法(SA)混合初始化BP神经网络(BPNN)的瓦斯含量预测新模型(GASA-BPNN模型)。利用灰色关联分析法(GRA)筛选瓦斯含量主控因素并作为GASA-BPNN预测模型的输入。为解决BPNN收敛速度慢和易陷入局部极小陷阱的问题,将GA和具有时变概率突跳性的SA整合为GASA算法协同初始化BPNN的权值和阈值,有效地提高BPNN的参数学习能力。将该模型应用于煤炭生产现场,结果表明:BPNN模型、GA-BPNN模型和GASA-BPNN模型瓦斯含量预测总平均相对误差分别为15.79%,9.03%,5.56%。相比BPNN模型和GA-BPNN模型,GASA-BPNN模型对样本的泛化能力更强,参数训练速度最快并且预测精准度最高。  相似文献   

16.
A sequencing batch reactor was modeled using multi-layer perceptron and radial basis function artificial neural networks (MLPANN and RBFANN). Then, the effects of influent concentration (IC), filling time (FT), reaction time (RT), aeration intensity (AI), SRT and MLVSS concentration were examined on the effluent concentrations of TSS, TP, COD and NH4+-N. The results showed that the optimal removal efficiencies would be obtained at FT of 1 h, RT of 6 h, aeration intensity of 0.88 m3/min and SRT of 30 days. In addition, COD and TSS removal efficiencies decreased and TP and NH4+-N removal efficiencies did not change significantly with increases of influent concentration. The TSS, TP, COD and NH4+-N removal efficiencies were 86%, 79%, 94% and 93%, respectively. The training procedures of all contaminants were highly collaborated for both RBFANN and MLPANN models. The results of training and testing data sets showed an almost perfect match between the experimental and the simulated effluent of TSS, TP, COD and NH4+-N. The results indicated that with low experimental values of input data to train ANNs the MLPANN models compared to RBFANN models are more precise due to their higher coefficient of determination (R2) and lower root mean squared errors (RMSE) values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号