首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments.

In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries.

Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models.

Natural “interventions” - reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems – demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g., carbonaceous species, may cause harm, aiding interpretation of epidemiological studies.

Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer, and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the U.S. EPA rubric for judging possible causality of PM2.5. mass concentrations, be used to assess which PM2.5. species are most harmful to public health.

Implications: Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. “Natural intervention” studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.

A list of acronyms will be found at the end of the article.  相似文献   


2.
Novel aerial methane (CH4) detection technologies were used in this study to identify anomalously high-emitting oil and gas (O&G) facilities and to guide ground-based “leak detection and repair” (LDAR) teams. This approach has the potential to enable a rapid and effective inspection of O&G facilities under voluntary or regulatory LDAR programs to identify and mitigate anomalously large CH4 emissions from a disproportionately small number of facilities. This is the first study of which the authors are aware to deploy, evaluate, and compare the CH4 detection volumes and cost-effectiveness of aerially guided and purely ground-based LDAR techniques. Two aerial methods, the Kairos Aerospace infrared CH4 column imaging and the Scientific Aviation in situ aircraft CH4 mole fraction measurements, were tested during a 2-week period in the Fayetteville Shale region contemporaneously with conventional ground-based LDAR. We show that aerially guided LDAR can be at least as cost-effective as ground-based LDAR, but several variable parameters were identified that strongly affect cost-effectiveness and which require field research and improvements beyond this pilot study. These parameters include (i) CH4 minimum dectectable limit of aerial technologies, (ii) emission rate size distributions of sources, (iii) remote distinction of fixable versus nonfixable CH4 sources (“leaks” vs. CH4 emissions occurring by design), and (iv) the fraction of fixable sources to total CH4 emissions. Suggestions for future study design are provided.

Implications: Mitigation of methane leaks from existing oil and gas operations currently relies on on-site inspections of all applicable facilities at a prescribed frequency. This approach is labor- and cost-intensive, especially because a majority of oil and gas–related methane emissions originate from a disproportionately small number of facilities and components. We show for the first time in real-world conditions how aerial methane measurements can identify anomalously high-emitting facilities to enable a rapid, focused, and directed ground inspection of these facilities. The aerially guided approach can be more cost-effective than current practices, especially when implementing the aircraft deployment improvements discussed here.  相似文献   


3.
This study proposes an easy-to-apply method, the Total Life Cycle Emission Model (TLCEM), to calculate the total emissions from shipping and help ship management groups assess the impact on emissions caused by their capital investment or operation decisions. Using TLCEM, we present the total emissions of air pollutants and greenhouse gases (GHGs) during the 25-yr life cycle of 10 post-Panamax containerships under slow steaming conditions. The life cycle consists of steel production, shipbuilding, crude oil extraction and transportation, fuel refining, bunkering, and ship operation. We calculate total emissions from containerships and compare the effect of emission reduction by using various fuels. The results can be used to differentiate the emissions from various processes and to assess the effectiveness of various reduction approaches. Critical pollutants and GHGs emitted from each process are calculated. If the containerships use heavy fuel oil (HFO), emissions of CO2 total 2.79 million tonnes (Mt), accounting for 95.37% of total emissions, followed by NOx and SOx emissions,which account for 2.25% and 1.30%, respectively.The most significant emissions are from the operation of the ship and originate from the main engine (ME).When fuel is switched to 100% natural gas (NG), SOx, PM10, and CO2 emissions show remarkable reductions of 98.60%, 99.06%, and 21.70%, respectively. Determining the emission factor of each process is critical for estimating the total emissions. The estimated emission factors were compared with the values adopted by the International Maritime Organization (IMO).The proposed TLCEM may contribute to more accurate estimates of total life cycle emissions from global shipping.

Implications: We propose a total life cycle emissions model for 10 post-Panamax container ships. Using heavy fuel oil, emissions of CO2 total 2.79 Mt, accounting for approximately 95% of emissions, followed by NOx and SOx emissions. Using 100% natural gas, SOx, PM10, and CO2 emissions reduce by 98.6%, 99.1%, and 21.7%, respectively. NOx emissions increase by 1.14% when running a dual fuel engine at low load in natural gas mode.  相似文献   


4.
An important marine pollution issue identified by the International Maritime Organization (IMO) is NOx emissions; however, the stipulated method for determining the NOx certification value does not reflect the actual high emission factors of slow-speed two-stroke diesel engines over long-term slow steaming. In this study, an accurate method is presented for calculating the NOx emission factors and total amount of NOx emissions by using the actual power probabilities of the diesel engines in four types of bulk carriers. The proposed method is suitable for all types and purposes of diesel engines, is not restricted to any operating modes, and is highly accurate. Moreover, it is recommended that the IMO-stipulated certification value calculation method be modified accordingly to genuinely reduce the amount of NOx emissions. The successful achievement of this level of reduction will help improve the air quality, especially in coastal and port areas, and the health of local residents.

Implications: As per the IMO, the NOx emission certification value of marine diesel engines having a rated power over 130 kW must be obtained using specified weighting factor (WF)-based calculation. However, this calculation fails to represent the current actual situation. Effective emission reductions of 6.91% (at sea) and 31.9% (in ports) were achieved using a mathematical model of power probability functions. Thus, we strongly recommend amending the certification value of NOx Technical Code 2008 (NTC 2008) by removing the WF constraints, such that the NOx emissions of diesel engines is lower than the Tier-limits at any load level to obtain genuine NOx emission reductions.  相似文献   


5.
In May 2018, the University of Denver repeated on-road optical remote sensing measurements at two locations in Lynwood, CA. Lynwood area vehicle tailpipe emissions were first surveyed in 1989 and 1991 because the area suffered from a large number of carbon monoxide (CO) air quality violations. These new measurements allow for the estimation of fuel-specific CO and total hydrocarbon (HC) emissions reductions, changes in the longevity of emission-control components, and the prevalence of high emitters in the current fleet. Since 1989 CO emissions decreased approximately factors of 10 (120 ± 8 to 12.3 ± 0.2 gCO/kg of fuel) and 20 (210 ± 8 to 10.4 ± 0.4 gCO/kg of fuel) at our I-710/Imperial Highway and Long Beach Blvd. sites, respectively. These reductions are also reflected in the local ambient air measurements. Tailpipe HC emissions have decreased by a factor of 25 (50 ± 4 to 2.1 ± 0.3 gHC/kg of fuel) since 1991 at the Long Beach Blvd. location. The decreases are so dramatic that the vast majority of vehicles now have HC measurements that are indistinguishable from zero. The decreases have increased the skewedness of the emissions distribution with the 99th percentile now responsible for more than 37% (CO) and 28% (HC) of the totals. Ammonia emissions collected in 2018 at both Lynwood locations peak with 20-year-old vehicles (1998 models), indicating long lifetimes for catalytic converters.

In 1989 and 1991, the on-road Lynwood fleets had significantly higher emissions than fleets observed in other locations within the South Coast Air Basin. The 2018 fleets now have means and emissions by model year that are consistent with those observed at other sites in Los Angeles and the U.S. This indicates that modern vehicle combustion management and after-treatment systems are achieving their goals regardless of community income levels.

Implications: Recent on-road vehicle emission measurements at two locations in the Lynwood, CA area, first visited in 1989, found significant fuel specific CO and HC emission reductions. CO emissions have decreased by a factor of 10 and 20 at each location and HC emissions have declined by a factor of 25. This has increased the skewedness in both species emissions distribution. The 2018 fleets have means and emissions by model year that are now consistent with those observed at other U.S. sites indicating that modern vehicle emissions control advancements are achieving their goals regardless of community income levels.  相似文献   


6.
In this study, the nitrogen oxide (NOx) emission factors and total NOx emissions of two groups of post-Panamax container ships operating on a long-term slow-steaming basis along Euro–Asian routes were calculated using both the probability density function of engine power levels and the NOx emission function. The main engines of the five sister ships in Group I satisfied the Tier I emission limit stipulated in MARPOL (International Convention for the Prevention of Pollution from Ships) Annex VI, and those in Group II satisfied the Tier II limit. The calculated NOx emission factors of the Group I and Group II ships were 14.73 and 17.85 g/kWhr, respectively. The total NOx emissions of the Group II ships were determined to be 4.4% greater than those of the Group I ships. When the Tier II certification value was used to calculate the average total NOx emissions of Group II engines, the result was lower than the actual value by 21.9%. Although fuel consumption and carbon dioxide (CO2) emissions were increased by 1.76% because of slow steaming, the NOx emissions were markedly reduced by 17.2%. The proposed method is more effective and accurate than the NOx Technical Code 2008. Furthermore, it can be more appropriately applied to determine the NOx emissions of international shipping inventory.

Implications: The usage of operating power probability density function of diesel engines as the weighting factor and the NOx emission function obtained from test bed for calculating NOx emissions is more accurate and practical. The proposed method is suitable for all types and purposes of diesel engines, irrespective of their operating power level. The method can be used to effectively determine the NOx emissions of international shipping and inventory applications and should be considered in determining the carbon tax to be imposed in the future.  相似文献   


7.
This paper discusses results from a vehicular emissions research study of over 350 vehicles conducted in three communities in Los Angeles, CA, in 2010 using vehicle chase measurements. The study explores the real-world emission behavior of light-duty gasoline vehicles, characterizes real-world super-emitters in the different regions, and investigates the relationship of on-road vehicle emissions with the socioeconomic status (SES) of the region. The study found that in comparison to a 2007 earlier study in a neighboring community, vehicle emissions for all measured pollutants had experienced a significant reduction over the years, with oxides of nitrogen (NOX) and black carbon (BC) emissions showing the largest reductions. Mean emission factors of the sampled vehicles in low-SES communities were roughly 2–3 times higher for NOX, BC, carbon monoxide, and ultrafine particles, and 4–11 times greater for fine particulate matter (PM2.5) than for vehicles in the high-SES neighborhood. Further analysis indicated that the emission factors of vehicles within a technology group were also higher in low-SES communities compared to similar vehicles in the high-SES community, suggesting that vehicle age alone did not explain the higher vehicular emission in low-SES communities.

Evaluation of the emission factor distribution found that emissions from 12% of the sampled vehicles were greater than five times the mean from all of the sampled fleet, and these vehicles were consequently categorized as “real-world super-emitters.” Low-SES communities had approximately twice as many super-emitters for most of the pollutants as compared to the high-SES community. Vehicle emissions calculated using model-year-specific average fuel consumption assumptions suggested that approximately 5% of the sampled vehicles accounted for nearly half of the total CO, PM2.5, and UFP emissions, and 15% of the vehicles were responsible for more than half of the total NOX and BC emissions from the vehicles sampled during the study.

Implications: This study evaluated the real-world emission behavior and super-emitter distribution of light-duty gasoline vehicles in California, and investigated the relationship of on-road vehicle emissions with local socioeconomic conditions. The study observed a significant reduction in vehicle emissions for all measured pollutants when compared to an earlier study in Wilmington, CA, and found a higher prevalence of high-emitting vehicles in low-socioeconomic-status communities. As overall fleet emissions decrease from stringent vehicle emission regulations, a small fraction of the fleet may contribute to a disproportionate share of the overall on-road vehicle emissions. Therefore, this work will have important implications for improving air quality and public health, especially in low-SES communities.  相似文献   


8.
Significant amounts of volatile organic compounds and greenhouse gases are generated from wastewater lagoons and tailings ponds in Alberta, Canada. Accurate measurements of these air pollutants and greenhouse gases are needed to support management and regulatory decisions. A mobile platform was developed to measure air emissions from tailings pond in the oil sands region of Alberta. The mobile platform was tested in 2015 in a municipal wastewater treatment lagoon. With a flux chamber and a CO2/CH4 sensor on board, the mobile platform was able to measure CO2 and CH4 emissions over two days at two different locations in the pond. Flux emission rates of CO2 and CH4 that were measured over the study period suggest the presence of aerobic and anaerobic zones in the wastewater treatment lagoon. The study demonstrated the capabilities of the mobile platform in measuring fugitive air emissions and identified the potential for the applications in air and water quality monitoring programs.

Implications: The Mobile Platform demonstrated in this study has the ability to measure greenhouse gas (GHG) emissions from fugitive sources such as municipal wastewater lagoons. This technology can be used to measure emission fluxes from tailings ponds with better detection of spatial and temporal variations of fugitive emissions. Additional air and water sampling equipment could be added to the mobile platform for a broad range of air and water quality studies in the oil sands region of Alberta.  相似文献   


9.
Rapid economic growth in China has resulted in a significant increase in particulate matter (PM2.5) and sulfur dioxide (SO2), the reduction of which has become a primary government focus. However, as the energy consumption and air pollutant emissions in Chinese cities have very significant regional characteristics, individual governance measures are necessary. This study used 2013 to 2016 energy consumption data from 31 Chinese cities to evaluate the dynamic efficiency of the urban environments. Labor, fixed assets, and energy consumption were taken as the inputs, gross domestic product (GDP) was taken as the output, and particulate matter (PM2.5) and sulfur dioxide (SO2) were taken as the carry-over variable indicators. Using a meta-frontier dynamic DEA model, the 31 cities were classified into high-income and upper-middle-income cities, the overall 2013–2016 energy consumption and air pollutant efficiency scores were analyzed, and improvements and changes were recommended to increase the efficiencies. Large differences were found in the energy consumption and air pollution emissions efficiency scores and the needed improvements, with the hig-income cities performing better overall than the upper-middle-income cities. While there have been some significant improvements in SO2 emissions, PM2.5 improvements have been far slower. Therefore, in most cities, more control measures are needed to control PM2.5 emissions. However, in addition to improving PM2.5 in the upper-middle-income cities, SO2treatments are also needed.

Implications: There are big differences in the expectation of improvement of the two pollutants in all cities. In many Western cities, the expectation of PM2.5 improvement in the past years has not been reduced, but has been expanding. This shows that the central government has unified the air pollution control policies and the existing air pollution control measures formulated and implemented by the local governments.  相似文献   


10.
The Marcellus Shale is one of the largest natural gas reserves in the United States; it has recently been the focus of intense drilling and leasing activity. This paper describes an air emissions inventory for the development, production, and processing of natural gas in the Marcellus Shale region for 2009 and 2020. It includes estimates of the emissions of oxides of nitrogen (NOx), volatile organic compounds (VOCs), and primary fine particulate matter (≤2.5 µm aerodynamic diameter; PM2.5) from major activities such as drilling, hydraulic fracturing, compressor stations, and completion venting. The inventory is constructed using a process-level approach; a Monte Carlo analysis is used to explicitly account for the uncertainty. Emissions were estimated for 2009 and projected to 2020, accounting for the effects of existing and potential additional regulations. In 2020, Marcellus activities are predicted to contribute 6–18% (95% confidence interval) of the NOx emissions in the Marcellus region, with an average contribution of 12% (129 tons/day). In 2020, the predicted contribution of Marcellus activities to the regional anthropogenic VOC emissions ranged between 7% and 28% (95% confidence interval), with an average contribution of 12% (100 tons/day). These estimates account for the implementation of recently promulgated regulations such as the Tier 4 off-road diesel engine regulation and the U.S. Environmental Protection Agency's (EPA) Oil and Gas Rule. These regulations significantly reduce the Marcellus VOC and NOx emissions, but there are significant opportunities for further reduction in these emissions using existing technologies.

Implications: The Marcellus Shale is one of the largest natural gas reserves in United States. The development and production of this gas may emit substantial amounts of oxides of nitrogen and volatile organic compounds. These emissions may have special significance because Marcellus development is occurring close to areas that have been designated nonattainment for the ozone standard. Control technologies exist to substantially reduce these impacts. PM2.5 emissions are predicted to be negligible in a regional context, but elemental carbon emissions from diesel powered equipment may be important.  相似文献   


11.
The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions.

Implications: Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions.  相似文献   


12.
Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20–60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off-road vehicles in emissions inventories.

Implications: Measurements of off-road vehicles used in construction and agricultural activities in Mexico using on-board portable emissions measurements systems (PEMS) showed that these vehicles can be major sources of black carbon and NOX. Emission factors varied significantly under real-world operating conditions, suggesting the need for detailed vehicle operation data for accurately estimating emissions inventories. Tests conducted in a selected number of sampled vehicles indicated that diesel particle filters (DPFs) are an effective technology for control of diesel particulate emissions and can provide potentially large emissions reduction in Mexico if widely implemented.  相似文献   


13.
The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX. Three types of DG scenarios were considered in the presence of motor vehicle emissions and a realistic urban canopy: (1) a 25-MW natural gas turbine operating at steady state in either simple cycle or combined heating and power (CHP) mode; (2) a 25-MW simple cycle gas turbine undergoing a cold startup with either moderate or enhanced formaldehyde emissions; and (3) a data center generating 10 MW of emergency power with either diesel or natural gas-fired backup generators (BUGs) without pollution controls. Simulations of criteria pollutants (NO2, CO, O3, PM) and the toxic pollutant, formaldehyde (HCHO), were conducted assuming a 2-hr operational time period. In all cases, NOx titration dominated ozone production near the source. The turbine scenarios did not result in ambient concentration enhancements significantly exceeding 1 ppbv for gaseous pollutants or over 1 µg/m3 for PM after 2 hr of emission, assuming realistic plume rise. In the case of the datacenter with diesel BUGs, ambient NO2 concentrations were enhanced by 10–50 ppbv within 2 km downwind of the source, while maximum PM impacts in the immediate vicinity of the datacenter were less than 5 µg/m3.

Implications: Plausible scenarios of distributed fossil generation consistent with the electricity grid’s transformation to a more flexible and modernized system suggest that a substantial amount of deployment would be required to significantly affect air quality on a localized scale. In particular, natural gas turbines typically used in distributed generation may have minor effects. Large banks of diesel backup generators such as those used by data centers, on the other hand, may require pollution controls or conversion to natural gas-fired reciprocal internal combustion engines to decrease nitrogen dioxide pollution.  相似文献   


14.
In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials.

This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas.

The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW.

Implications: Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.  相似文献   


15.
Signalized intersections have been identified as vehicle emission hotspots, where drivers decelerate, idle, and accelerate their vehicles in response to signal changes. Advanced traffic signal status warning systems (ATSSWSs) can be applied to reduce traffic emissions at intersections by mitigating unnecessary braking and acceleration. In this study, two types of ATSSWSs, variable message sign (VMS) based and vehicle-to-infrastructure (V2I) based, were designed, and their environmental effectiveness was evaluated through driving simulator-based experiments. Three scenarios were designed and tested: (1) baseline without an ATSSWS, (2) with the VMS-based ATSSWS, and (3) with the V2I-based ATSSWS. The Motor Vehicle Emission Simulator model was used to evaluate and compare the environmental effectiveness of these two types of ATSSWSs. The results indicate that the proposed ATSSWSs can reduce traffic emissions at signalized intersections. In particular, the V2I-based ATSSWS can substantially reduce CO2, NOx, CO, and HC emissions. The results will help transportation practitioners with implementing advanced driver information systems and decision making on emission reduction policies.

Implications: Signalized intersection has been identified as one of hottest spots for vehicle emissions where signal control causes vehicles to frequently decelerate, idle, and accelerate. Advanced Traffic Signal Status Warning Systems (ATSSWS) can be applied to reduce traffic emission at intersections by decreasing vehicles’ unnecessary brakes and accelerations. The results of this study will assist transportation practitioners in implementing advanced driver information systems and making decisions on emission reduction policies.  相似文献   


16.
Motor vehicles are major sources of fine particulate matter (PM2.5), and the PM2.5 from mobile vehicles is associated with adverse health effects. Traditional methods for estimating source impacts that employ receptor models are limited by the availability of observational data. To better estimate temporally and spatially resolved mobile source impacts on PM2.5, we developed an approach based on a method that uses elemental carbon (EC), carbon monoxide (CO), and nitrogen oxide (NOx) measurements as an indicator of mobile source impacts. We extended the original integrated mobile source indicator (IMSI) method in three aspects. First, we generated spatially resolved indicators using 24-hr average concentrations of EC, CO, and NOx estimated at 4 km resolution by applying a method developed to fuse chemical transport model (Community Multiscale Air Quality Model [CMAQ]) simulations and observations. Second, we used spatially resolved emissions instead of county-level emissions in the IMSI formulation. Third, we spatially calibrated the unitless indicators to annually-averaged mobile source impacts estimated by the receptor model Chemical Mass Balance (CMB). Daily total mobile source impacts on PM2.5, as well as separate gasoline and diesel vehicle impacts, were estimated at 12 km resolution from 2002 to 2008 and 4 km resolution from 2008 to 2010 for Georgia. The total mobile and separate vehicle source impacts compared well with daily CMB results, with high temporal correlation (e.g., R ranges from 0.59 to 0.88 for total mobile sources with 4 km resolution at nine locations). The total mobile source impacts had higher correlation and lower error than the separate gasoline and diesel sources when compared with observation-based CMB estimates. Overall, the enhanced approach provides spatially resolved mobile source impacts that are similar to observation-based estimates and can be used to improve assessment of health effects.

Implications: An approach is developed based on an integrated mobile source indicator method to estimate spatiotemporal PM2.5 mobile source impacts. The approach employs three air pollutant concentration fields that are readily simulated at 4 and 12 km resolutions, and is calibrated using PM2.5 source apportionment modeling results to generate daily mobile source impacts in the state of Georgia. The estimated source impacts can be used in investigations of traffic pollution and health.  相似文献   


17.
Nitrous acid (HONO) is an important precursor of OH radicals in the atmosphere. In urban areas, emissions from vehicles are the main source of air pollutants, including reactive nitrogen. Previously reported emission ratios of HONO (HONO/NOx) from vehicles were measured in the late 1990s and need to be updated due to the significant changes in emission control technologies. We measured the emission ratio of a fleet of vehicles (38% diesel on average) from March 11 to 21, 2015, in a road tunnel in Hong Kong. The emission ratio of 1.24% (±0.35%) obtained is greater than the commonly adopted 0.8% or 0.3%. The elevated emission ratio is found to be related to the presence of vehicles equipped with diesel particle filters (DPFs). Positive correlation between HONO and black carbon (BC) shows that HONO and BC were emitted together, while the lack of correlation or even anticorrelation between HONO/NOx and BC indicates that the BC-mediated conversion of NO2 to HONO in the dark was insignificant in the immediate vicinity of the emission sources.

Implications: Vehicular emission is a key source for HONO in the urban atmosphere. However, the most commonly used emission ratio HONO/NOx in modeling studies was measured more than 15 years ago. Our tunnel study suggests that a mixed fleet nowadays has a higher emission ratio, possibly because of the diesel particle filter (DPF) retrofit program and the growing share of Euro IV or more advanced diesel vehicles. Our study also provides new insight into the role of black carbon in HONO formation from vehicles.  相似文献   


18.
A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NOx) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls.

Implications: Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.  相似文献   


19.
Scientists have effectively proved that vegetative environment buffers (VEBs) can be used for reducing dust emissions from livestock buildings, but they have seen fewer tests in poultry farms. A field research was conducted to assess the effectiveness of VEBs on reducing downwind transport of particulate matter (PM) from a ventilated poultry house in Changchun. Five plant species transferred from local area were used to establish five diverse VEBs and separately installed outside of the ventilation fans in summer 2017. The five plant species were Winged Euonymus (WE), Malus Spectabilis (MS), Padus Maackii (PAA), Acer Saccharum Marsh (ASM), and Padus Virginiana “Red Select Shrub” (PV_RSS). The mass concentrations of PM2.5 and PM10 (particulate matter with an aerodynamic diameter of 2.5 μm and 10 μm or less, respectively) were monitored at downwind and upwind sampling locations around the VEB. The results showed that with the presenting of VEBs, the particle concentrations at the downwind sampling point were significantly reduced compared with that at the upwind sampling point (p < 0.05). Specifically, compared to the control test without VEB, the VEB with PV_RSS had the best PM concentration reduction rate (CRR) of 47.24%±4.33% and 41.13%±5.83% for PM2.5 and PM10, respectively. The rough surface of plant leaves may help intercept more PM, though it was also affected by other factors (such as the blade angle, the interaction with wind) needed to be further investigated. The VEB with PV_RSS, which presented the best capacity of CRR, selectively intercepted PM, mainly related to the elements of N, Na, Mg, P, S, and Cl.

Implications: Five plant species, including WE, PAA, MS, ASM, and PV_RSS, were evaluated as VEBs to mitigate particulate emissions from outside of a ventilated poultry house in Changchun. They all significantly reduced particulate matter emissions. However, the PV_RSS presented the best capability of trapping fine and coarse particles: PM2.5 and PM10, respectively, while the PAA was the worst one. The microstructure of leaves affected particle deposition and remaining on the leaves, and PV_RSS selectively intercepted particulate matter mainly related to certain elements.  相似文献   


20.
Oil and gas activities have occurred in the Bakken region of North Dakota and nearby states and provinces since the 1950s but began increasing rapidly around 2008 due to new extraction methods. Three receptor-based techniques were used to examine the potential impacts of oil and gas extraction activities on airborne particulate concentrations in Class I areas in and around the Bakken. This work was based on long-term measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network. Spatial and temporal patterns in measured concentrations were examined before and after 2008 to better characterize the influence of these activities. A multisite back-trajectory analysis and a receptor-based source apportionment model were used to estimate impacts. Findings suggest that recent Bakken oil and gas activities have led to an increase in regional fine (PM2.5—particles with aerodynamic diameters <2.5 µm) soil and elemental carbon (EC) concentrations, as well as coarse mass (CM = PM10–PM2.5). Influences on sulfate and nitrate concentrations were harder to discern due to the concurrent decline in regional emissions of precursors to these species from coal-fired electric generating stations. Impacts were largest at sites in North Dakota and Montana that are closest to the most recent drilling activity.

Implications: The increase in oil and gas activities in the Bakken region of North Dakota and surrounding areas has had a discernible impact on airborne particulate concentrations that impact visibility at protected sites in the region. However, the impact has been at least partially offset by a concurrent reduction in emissions from coal-fired electric generating stations. Continuing the recent reductions in flaring would likely be beneficial for the regional visual air quality.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号