首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of a two-step thermal-oxidative analysis (TOA) technique for quantification of the mass of total carbon (TC) and elemental carbon (EC) of turbine engine-borne particulate matter (PM) has been evaluated. This approach could be used in lieu of analysis methods which were developed to characterize diluted PM. This effort is of particular interest as turbine engine PM emissions typically have a higher EC content than ambient aerosols, and filter sample mass loadings can be significantly greater than recommended for existing analysis techniques. Analyses were performed under a pure oxygen environment using a two-step temperature profile; reference carbon and actual PM samples were used to identify appropriate analysis conditions. Thermal gravimetric analysis (TGA) methods were used to provide guidance on the nature of the carbon in several of the materials. This was necessary as a standard reference material does not exist for determination of the EC fraction in PM. The TGA also assisted in identifying an appropriate temperature range for the first-stage of the TOA method. Quantification of TC and EC for turbine engine PM samples using TOA was compared to results obtained using the NIOSH 5040 thermal-optical method. For first-stage TOA temperatures of 350°C and 400°C, excellent agreement between the techniques was observed in both the quantified TC and EC, supporting the viability for using TOA for analysis of turbine engine PM samples. A primary benefit of using TOA for these types of PM samples is that filters with relatively high PM mass loadings (sampled at the emission source) can be readily analyzed. In addition, an entire filter sample can be evaluated, as compared to the use of a filter punch sample for the NIOSH technique. While the feasibility of using a TOA method for engine PM samples has been demonstrated, future studies to estimate potential OC charring and oxidation of EC-type material may provide additional data to assess its impact on the OC/EC fractions for other carbon-type measurements.

Implications: This work presents results and procedures of an analytical method for the determination of total and elemental carbon, i.e., TC and EC present in combustion source particulate matter samples. In general, it is shown that the LECO TOA methodology is as reliable and comprehensive as NIOSH 5040 for determining TC and EC carbon types in particulate matter present in turbine emission sources, and should be considered as an alternative. Principles of the methodology, differences, and corresponding agreement with the standard NIOSH 5040 method and TGA analysis are discussed.  相似文献   


2.
Abstract

Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines—high-thrust and turboshaft—were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., “run-integrated” measurements). In all cases, the particle-size distributions showed single modes peaking at 20–40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.  相似文献   

3.
Ambient particulate samples are routinely analyzed for organic and elemental carbon (OC/EC) using either thermal manganese dioxide oxidation (TMO) or thermal volatilization-pyrolysis correction methods, such as the Interagency Monitoring of PROtected Visual Environments (IMPROVE) method with correction by reflectance, or a variation of the National Institute of Occupational Safety and Health (NIOSH) Method 5040 using thermal optical transmittance (TOT). With TMO, EC is modeled after the oxidation properties of submicron graphite and needle coke by MnO2, and is the fraction of total carbon (TC) that is not oxidized at >525 degrees C. In thermal volatilization methods, EC is the fraction of TC that accounts for the light extinction properties of the sample at the start of analysis. Chow et al. (2001) compared IMPROVE and NIOSH methods implemented on the same instrument using 60 samples of various types and found that NIOSH EC was lower than IMPROVE. This study compares total, organic, and elemental carbon measurements from the TMO and IMPROVE thermal optical reflectance (TOR) methods using a sample set consisting of 60 IMPROVE nonurban, 16 Korean urban, 10 Hong Kong urban, and 14 synthetic carbon black samples.  相似文献   

4.
Abstract

Ambient particulate samples are routinely analyzed for organic and elemental carbon (OC/EC) using either thermal manganese dioxide oxidation (TMO) or thermal volatil-ization-pyrolysis correction methods, such as the Inter-agency Monitoring of PROtected Visual Environments (IMPROVE) method with correction by reflectance, or a variation of the National Institute of Occupational Safety and Health (NIOSH) Method 5040 using thermal optical transmittance (TOT). With TMO, EC is modeled after the oxidation properties of submicron graphite and needle coke by MnO2, and is the fraction of total carbon (TC) that is not oxidized at >525 °C. In thermal volatilization methods, EC is the fraction of TC that accounts for the light extinction properties of the sample at the start of analysis. Chow et al. (2001) compared IMPROVE and NIOSH methods implemented on the same instrument using 60 samples of various types and found that NIOSH EC was lower than IMPROVE. This study compares total, organic, and elemental carbon measurements from the TMO and IMPROVE thermal optical reflectance (TOR) methods using a sample set consisting of 60 IMPROVE nonurban, 16 Korean urban, 10 Hong Kong urban, and 14 synthetic carbon black samples.  相似文献   

5.
Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine.

Implications: Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.  相似文献   


6.
Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.  相似文献   

7.
With the advent of unconventional natural gas resources, new research focuses on the efficiency and emissions of the prime movers powering these fleets. These prime movers also play important roles in emissions inventories for this sector. Industry seeks to reduce operating costs by decreasing the required fuel demands of these high horsepower engines but conducting in-field or full-scale research on new technologies is cost prohibitive. As such, this research completed extensive in-use data collection efforts for the engines powering over-the-road trucks, drilling engines, and hydraulic stimulation pump engines. These engine activity data were processed in order to make representative test cycles using a Markov Chain, Monte Carlo (MCMC) simulation method. Such cycles can be applied under controlled environments on scaled engines for future research. In addition to MCMC, genetic algorithms were used to improve the overall performance values for the test cycles and smoothing was applied to ensure regression criteria were met during implementation on a test engine and dynamometer. The variations in cycle and in-use statistics are presented along with comparisons to conventional test cycles used for emissions compliance.

Implications: Development of representative, engine dynamometer test cycles, from in-use activity data, is crucial in understanding fuel efficiency and emissions for engine operating modes that are different from cycles mandated by the Code of Federal Regulations. Representative cycles were created for the prime movers of unconventional well development—over-the-road (OTR) trucks and drilling and hydraulic fracturing engines. The representative cycles are implemented on scaled engines to reduce fuel consumption during research and development of new technologies in controlled laboratory environments.  相似文献   


8.
A pilot study was conducted to evaluate the performance and agreement of several commercially available black carbon (BC) measurement instruments, when applied to the quantification of BC in light-duty vehicle (LDV) exhaust. Samples from six vehicles, three fuels, and three driving cycles were used. The pilot study included determinations of the method detection limit (MDL) and repeatability. With respect to the MDL, the real-time instruments outperformed the time-integrated instruments, with MDL = 0.12 mg/mi for the AE51 Aethalometer, and 0.15 mg/mi for the Micro Soot Sensor (MSS), versus 0.38 mg/mi for the IMPROVE_A thermal/optical method, and 0.35 mg/mi for the OT21_T Optical Transmissometer. The real-time instruments had repeatability values ranging from 30% to 35%, which are somewhat better than those of the time-integrated instruments (40–41%). These results suggest that, despite being less resource intensive, real-time methods can be equivalent or superior to time-integrated methods in terms of sensitivity and repeatability. BC mass data, from the photoacoustic and light attenuation instruments, were compared against same-test EC data, determined using the IMPROVE_A method. The MSS BC data was well correlated with EC, with R 2 = 0.85 for the composite results and R2 = 0.86 for the phase-by-phase (PBP) results. The correlation of BC, by the AE51, AE22, and OT21_T, with EC was moderate to weak. The weaker correlation was driven by the inclusion of US06 test data in the linear regression analysis. We hypothesize that test-cycle-dependent BC:EC ratios are due to the different physicochemical properties of particulate matter (PM) in US06 and Federal Test Procedure (FTP) tests. Correlation amongst the real-time MSS, PASS-1, AE51, and AE22 instruments was excellent (R2 = 0.83–0.95), below 1 mg/mi levels. In the process of investigating these BC instruments, we learned that BC emissions at sub-1 mg/mi levels can be measured and are achievable by current-generation gasoline engines.

Implications: Most comparison studies of black carbon (BC) measurement methods were carried out in the ambient air. This study assesses the agreement among various BC measurement instrument in emissions from light-duty gasoline vehicles (LDGVs) on standard test cycles, and evaluates applicability of these methods under various fuel types, driving cycles, and engine combustion technologies. This research helps to fill in the knowledge gap of BC method standardization as stated in the U.S. Environmental Protection Agency (EPA) 2011 Report to Congress on Black Carbon, and these results demonstrate the feasibility of quantification of BC at the 1 mg/mi PM standard in California Low Emission Vehicle III regulations.  相似文献   

9.
The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions.

Implications: Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions.  相似文献   


10.
The replacement of the Desert Research Institute (DRI) model 2001 with model 2015 thermal/optical analyzers (TOAs) results in continuity of the long-term organic carbon (OC) and elemental carbon (EC) database, and it adds optical information with no additional carbon analysis effort. The value of multiwavelength light attenuation is that light absorption due to black carbon (BC) can be separated from that of brown carbon (BrC), with subsequent attribution to known sources such as biomass burning and secondary organic aerosols. There is evidence of filter loading effects for the 25% of all samples with the highest EC concentrations based on the ratio of light attenuation to EC. Loading corrections similar to those used for the seven-wavelength aethalometer need to be investigated. On average, nonurban Interagency Monitoring of PROtected Visual Environments (IMPROVE) samples show higher BrC fractions of short-wavelength absorption than urban Chemical Speciation Network (CSN) samples, owing to greater influence from biomass burning and aged aerosols, as well as to higher primary BC contributions from engine exhaust at urban sites. Sequential samples taken during an Everglades National Park wildfire demonstrate the evolution from flaming to smoldering combustion, with the BrC fraction increasing as smoldering begins to dominate the fire event.

Implications: The inclusion of seven wavelengths in thermal/optical carbon analysis of speciated PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) samples allows contributions from biomass burning and secondary organic aerosols to be estimated. This separation is useful for evaluating control strategy effectiveness, identifying exceptional events, and determining natural visibility conditions.  相似文献   


11.
The awareness of black carbon (BC) as the second largest anthropogenic contributor in global warming and an ice melting enhancer has increased. Due to prospected increase in shipping especially in the Arctic reliability of BC emissions and their invented amounts from ships is gaining more attention. The International Maritime Organization (IMO) is actively working toward estimation of quantities and effects of BC especially in the Arctic. IMO has launched work toward constituting a definition for BC and agreeing appropriate methods for its determination from shipping emission sources. In our study we evaluated the suitability of elemental carbon (EC) analysis by a thermal-optical transmittance (TOT) method to marine exhausts and possible measures to overcome the analysis interferences related to the chemically complex emissions. The measures included drying with CaSO4, evaporation at 40–180ºC, H2O treatment, and variation of the sampling method (in-stack and diluted) and its parameters (e.g., dilution ratio, Dr). A reevaluation of the nominal organic carbon (OC)/EC split point was made. Measurement of residual carbon after solvent extraction (TC-CSOF) was used as a reference, and later also filter smoke number (FSN) measurement, which is dealt with in a forthcoming paper by the authors. Exhaust sources used for collecting the particle sample were mainly four-stroke marine engines operated with variable loads and marine fuels ranging from light to heavy fuel oils (LFO and HFO) with a sulfur content range of <0.1–2.4% S. The results were found to be dependent on many factors, namely, sampling, preparation and analysis method, and fuel quality. It was found that the condensed H2SO4 + H2O on the particulate matter (PM) filter had an effect on the measured EC content, and also promoted the formation of pyrolytic carbon (PyC) from OC, affecting the accuracy of EC determination. Thus, uncertainty remained regarding the EC results from HFO fuels.

Implications: The work supports one part of the decision making in black carbon (BC) determination methodology. If regulations regarding BC emissions from marine engines will be implemented in the future, a well-defined and at best unequivocal method of BC determination is required for coherent and comparable emission inventories and estimating BC effects. As the aerosol from marine emission sources may be very heterogeneous and low in BC, special attention to the effects of sampling conditions and sample pretreatments on the validity of the results was paid in developing the thermal-optical analysis methodology (TOT).  相似文献   


12.
Plant (vegetable) oil has been evaluated as a substitute for mineral oil–based lubricants because of its natural and environmentally friendly characteristics. Availability of vegetable oil makes it a renewable source of bio-oils. Additionally, vegetable oil–based lubricants have shown potential for reducing hydrocarbon and carbon dioxide (CO2) emissions when utilized in internal combustion (IC) engines and industrial operations. In this study, sunflower oil was investigated to study its lubricant characteristics under different loads using the four-ball tribometer and the exhaust emissions were tested using a four-stroke, single-cylinder diesel engine. All experimental works conformed to American Society for Testing and Materials standard (ASTM D4172-B). Under low loads, sunflower oil showed adequate tribological characteristics (antifriction and antiwear) compared with petroleum oil samples. The results also demonstrated that the sunflower oil–based lubricant was more effective in reducing the emission levels of carbon monoxide (CO), CO2, and hydrocarbons under different test conditions. Therefore, sunflower oil has the potential to be used as lubricant of mating components.

Implications: An experimental investigation of the characteristics of nonedible sunflower oil tribological behaviors and potential as a renewable source for biofluids alternative to the petroleum oils was carried out. The level of emissions of a four–stroke, single-cylinder diesel engine using sunflower oil as a biolubricant was evaluated.  相似文献   


13.
Large auxiliary engines operated on ocean-going vessels in transit and at berth impact the air quality of populated areas near ports. This paper presents new information on the comparison of emission ranges from three similar engines and the effectiveness of three control technologies: switching to cleaner burning fuels, operating in the low oxides of nitrogen (NOx) mode, and selective catalytic reduction (SCR). In-use measurements of gaseous (NOx, carbon monoxide [CO], carbon dioxide [CO2]) and fine particulate matter (PM2.5; total and speciated) emissions were made on three auxiliary engines on post-PanaMax class container vessels following the International Organization for Standardization-8178-1 protocol. The in-use NOx emissions for the MAN B&W 7L32/40 engine family vary from 15 to 21.1 g/kW-hr for heavy fuel oil and 8.9 to 19.6 g/kW-hr for marine distillate oil. Use of cleaner burning fuels resulted in NOx reductions ranging from 7 to 41% across different engines and a PM2.5 reduction of up to 83%. The NOx reductions are a consequence of fuel nitrogen content and engine operation; the PM2.5 reduction is attributed to the large reductions in the hydrated sulfate and organic carbon (OC) fractions. As expected, operating in the low-NOx mode reduced NOx emissions by approximately 32% and nearly doubled elemental carbon (EC) emissions. However, PM2.5 emission factors were nearly unchanged because the EC emission factor is only approximately 5% of the total PM2.5 mass. SCR reduced the NOx emission factor to less than 2.4 g/kW-hr, but it increased the PM2.5 emissions by a factor of 1.5-3.8. This increase was a direct consequence of the conversion of sulfur dioxide to sulfate emissions on the SCR catalyst. The EC and OC fractions of PM2.5 reduced across the SCR unit.  相似文献   

14.
Recent improvements in integrated and continuous PM2.5 mass and chemical measurements from the Supersite program and related studies in the past decade are summarized. Analytical capabilities of the measurement methods, including accuracy, precision, interferences, minimum detectable levels, comparability, and data completeness are documented. Upstream denuders followed by filter packs in integrated samplers allow an estimation of sampling artifacts. Efforts are needed to: (1) address positive and negative artifacts for organic carbon (OC), and (2) develop carbon standards to better separate organic versus elemental carbon (EC) under different temperature settings and analysis atmospheres. Advances in thermal desorption followed by gas chromatography/ mass spectrometry (GC/MS) provide organic speciation of approximately 130 nonpolar compounds (e.g., n-alkanes, alkenes, hopanes, steranes, and polycyclic aromatic hydrocarbons [PAHs]) using small portions of filters from existing integrated samples. Speciation of water-soluble OC (WSOC) using ion chromatography (IC)-based instruments can replace labor-intensive solvent extraction for many compounds used as source markers. Thermal gas-based continuous nitrate and sulfate measurements underestimate filter ions by 10-50% and require calibration against on-site filter-based measurements. IC-based instruments provide multiple ions and report comparable (+/-10%) results to filter-based measurements. Maintaining a greater than 80% data capture rate in continuous instruments is labor intensive and requires experienced operators. Several instruments quantify black carbon (BC) by optical or photoacoustic methods, or EC by thermal methods. A few instruments provide real-time OC, EC, and organic speciation. BC and EC concentrations from continuous instruments are highly correlated but the concentrations differ by a factor of two or more. Site- and season-specific mass absorption efficiencies are needed to convert light absorption to BC. Particle mass spectrometers, although semiquantitative, provide much information on particle size and composition related to formation, growth, and characteristics over short averaging times. Efforts are made to quantify mass by collocating with other particle sizing instruments. Common parameters should be identified and consistent approaches are needed to establish comparability among measurements.  相似文献   

15.
The size distribution and chemical components of a fine fraction (<2.5 μm) of road dust collected at urban sites in Korea (Gwangju) and Mongolia (Ulaanbaatar) where distinct urban characteristics exist were measured. A clear bimodal size distribution was observed for the resuspended fine road dust at the urban sites in Korea. The first mode peaked at 100–110 nm, and the second peak was observed at 435–570 nm. Ultrafine mode (~30 nm) was found for the fine road dust at the Mongolia site, which was significantly affected by residential coal/biomass burning. The contribution of the water-soluble ions to the fine road dust was higher at the sites in Mongolia (15.8–16.8%) than at those in Korea (1.2–4.8%). Sulfate and chloride were the most dominant ionic species for the fine road dust in Mongolia. As (arsenic) was also much higher for the Mongolian road dust than the others. The sulfate, chloride, and As mainly come from coal burning activity, suggesting that coal and biomass combustion in Mongolia during the heating season should affect the size and chemical components of the fine road dust. Cu (copper) and Zn (zinc), carbonaceous particles (organic carbon [OC] and elemental carbon [EC]) increased at sites in Korea, suggesting that the fine road dust at these sites was significantly affected by the high volume of traffic (engine emission and brake/tire wear). Our results suggest that chemical profiles for road dust specific to certain sites should be applied to more accurately apportion road dust source contributing to the ambient particulate matter.

Implications: Size and chemical characteristics of fine road dust at sites having distinct urban characteristics were examined. Residential coal and biomass burning and traffic affected physiochemical properties of the fine road dust. Different road dust profiles at different sites should be needed to determine the ambient PM2.5 sources more accurately.  相似文献   


16.
As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was similar to that observed in emissions of pre-2007 engines. However, on average, when combining engine operation with and without active regeneration events, particle number emissions with the 2007 engines were 90% lower than the particle number emitted from a 2004-technology engine tested in an earlier program.  相似文献   

17.
In this study, the nitrogen oxide (NOx) emission factors and total NOx emissions of two groups of post-Panamax container ships operating on a long-term slow-steaming basis along Euro–Asian routes were calculated using both the probability density function of engine power levels and the NOx emission function. The main engines of the five sister ships in Group I satisfied the Tier I emission limit stipulated in MARPOL (International Convention for the Prevention of Pollution from Ships) Annex VI, and those in Group II satisfied the Tier II limit. The calculated NOx emission factors of the Group I and Group II ships were 14.73 and 17.85 g/kWhr, respectively. The total NOx emissions of the Group II ships were determined to be 4.4% greater than those of the Group I ships. When the Tier II certification value was used to calculate the average total NOx emissions of Group II engines, the result was lower than the actual value by 21.9%. Although fuel consumption and carbon dioxide (CO2) emissions were increased by 1.76% because of slow steaming, the NOx emissions were markedly reduced by 17.2%. The proposed method is more effective and accurate than the NOx Technical Code 2008. Furthermore, it can be more appropriately applied to determine the NOx emissions of international shipping inventory.

Implications: The usage of operating power probability density function of diesel engines as the weighting factor and the NOx emission function obtained from test bed for calculating NOx emissions is more accurate and practical. The proposed method is suitable for all types and purposes of diesel engines, irrespective of their operating power level. The method can be used to effectively determine the NOx emissions of international shipping and inventory applications and should be considered in determining the carbon tax to be imposed in the future.  相似文献   


18.
Black carbon (BC) or elemental carbon (EC) is a by-product of incomplete fuel combustion, and contributes adversely to human health, visibility, and climate impacts. Previous studies have examined nondestructive techniques for particle light attenuation measurements on Teflon® filters to estimate BC. The incorporation of an inline Magee Scientific OT21 transmissometer into the MTL AH-225 robotic weighing system provides the opportunity to perform optical transmission measurements on Teflon filters at the same time as the gravimetric mass measurement. In this study, we characterize the performance of the inline OT21, and apply it to determine the mass absorption cross-section (MAC) of PM2.5 BC across the United States. We analyzed 5393 archived Teflon® filters from the Chemical Speciation Network (CSN) collected during 2010–2011 and determined MAC by comparing light attenuation on Teflon® filters to corresponding thermal EC on quartz-fiber filters. Results demonstrated the importance of the initial transmission (I0) value used in light attenuation calculations. While light transmission varied greatly within filter lots, the average I0 of filter blanks during the sampling period provided an estimate for archived filters. For newly collected samples, it is recommended that filter-specific I0 measurements be made (i.e., same filter before sample collection). The estimated MAC ranged from 6.9 to 9.4 m2/g and varied by region and season across the United States, indicating that using a default value may lead to under- or overestimated BC concentrations. An analysis of the chemical composition of these samples indicated good correlation with EC for samples with higher EC content as a fraction of total PM2.5 mass, while the presence of light-scattering species such as crustal elements impacted the correlation affecting the MAC estimate. Overall, the method is demonstrated to be a quick, cost-effective approach to estimate BC from archived and newly sampled Teflon® filters by combining both gravimetric and BC measurements.

Implications: Robotic optical analysis is a valid, cost-effective means to obtain a vast amount of BC data from archived and current routine filters. A tailored mass absorption cross-section by region and season is necessary for a more representative estimate of BC. Initial light transmission measurements play an important role due to the variability in blank filter transmission. Combining gravimetric mass and BC analysis on a single Teflon® filter reduces costs for monitoring agencies and maximizes data collection.  相似文献   


19.
To explore the effect of biodiesel and sulfur content on PM2.5 emissions, engine dynamometer tests were performed on a Euro II engine to compare the PM2.5 emissions from four fuels: two petroleum diesel fuels with sulfur contents of 50 and 100 ppm respectively, and two B20 fuels in which soy methyl ester (SME) biodiesel was added to each of the above mentioned petroleum diesel fuels (v/v: 80%/20% for petroleum diesel and SME respectively). Gaseous pollutants and PM2.5 emissions were sampled with an AVL AMA4000 and Model 130 High-Flow Impactor (MSP Corp). Measurements were made of the PM2.5 mass, organic carbon (OC), elemental carbon (EC) and the water-soluble ion distribution. The results showed that PM2.5 emissions decreased with lower sulfur content or blending with SME biodiesel, and the decrease would be more by applying both two methods together. Particles of approximately 0.13 μm contributed 48–83% of PM2.5 emissions. The impact of sulfur content on this percentage was different for low and high engine speed. The majority of PM2.5 was comprised of OC and EC, and the carbon emission rate had the same trend as PM2.5. Since the EC abatement of B20 was larger than OC, the OC/EC ratio of B20 was always larger than that of petroleum diesel. For petroleum diesel, the OC/EC increased with sulfur content, which was not the case for B20. The SO42? had highest emission rate in the water-soluble ions of PM.  相似文献   

20.
The carbonaceous components of Particulate Matter samples form a substantial fraction of their total mass, but their quantification depends strongly on the instruments and methods used. United Kingdom monitoring networks have provided many relevant data sets that are already in the public domain. Specifically, hourly organic carbon (OC) and elemental carbon (EC) were determined at four sites between 2003 and 2007 using Rupprecht and Pattashnik (R & P) 5400 automatic instruments. Since 2007, daily OC/EC measurements have been made by manual thermo-optical analysis of filter samples using a Sunset Laboratory Carbon Aerosol Analysis instrument. In parallel, long term daily measurements of Black Smoke, a quantity directly linked to black carbon (measured by aethalometers) and indirectly related to elemental carbon, have been made at many sites. The measurement issues associated with these techniques are evaluated in the context of UK measurements, making use of several sets of parallel data, with the aim of aiding the interpretation of network results. From the results available, the main conclusions are that the R & P 5400 instruments greatly under-read EC and total carbon (TC = OC + EC) at kerbside sites, probably due to the fact that the smaller particles are not sampled by the instrument; the R & P 5400 instrument is inherently difficult to characterise, so that all quantitative results need to be treated with caution; both aethalometer and Black Smoke (converted to black carbon) measurements can show reasonable agreement with elemental carbon results; and manual thermo-optical OC/EC results may under-read EC (and hence over-read OC), whether either transmittance or reflectance is used for the pyrolysis correction, and this effect is significant at rural sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号