首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeLittle is known about the ecotoxicity of nanomaterials and there are no specific guidelines for sample preparation and testing. We set out to establish whether the method used to prepare TiO2 dispersions had a significant impact on aquatic ecotoxicity. We also followed the formation of agglomerates during the incubation period.MethodsWe applied the algal growth inhibition test (OECD test guideline no. 201). Dispersions were prepared by stirring and/or ultrasonication for different durations, and by filtration according to an OECD procedure recommended for testing difficult substances.ResultsSamples stirred for 7?d were not toxic, but EC20 values could be calculated for all the other treatments. Shorter treatments generated EC20 values in the range 1–27?mg/L. Only the shortest treatment (1 min stirring, 1 min ultrasonication) produced an unusually high EC20 value, indicating low toxicity. Development of agglomerate size and of toxicity depends on the nanoparticles. We found that ecotoxicity was predominantly caused by a fraction of nanoparticles and agglomerates obtained by passing dispersions through a 0.22-µm filter.ConclusionsWe propose a short treatment regime to generate the most relevant ecotoxicity data for TiO2, for example stirring for 1?min followed by 3 min ultrasonication. Until more data concerning the ecotoxicity of different fractions are available, we recommend the testing of unfiltered dispersions rather than filtrates. Relating ecotoxicity to the total hydrodynamic surface of the nanomaterials rather than concentration does not seem to improve the accuracy of ecotoxicity assessments using the algal growth inhibition test.  相似文献   

2.
Great attention should be paid to the possible impacts of various nanoparticles on aquatic organism. Freshwater diatoms are essential components of phytoplankton and play a critical role in bioassessment of nanoparticle exposure in the environment. In this study, cell growth was inhibited by TiO2-NPs and MWCNTs, the 24?h EC50 values of TiO2-NPs and MWCNTs to Nitzschia frustulum were 20.75 and 24.64?mg?L?1, respectively. Significant decreases of Chl a content after TiO2-NPs exposures were detected and the Chl a content of N. frustulum was obviously increased by MWCNTs treatment at lower concentration. The ROS was detected in N. frustulum after TiO2-NPs and MWCNTs exposures. The MDA content was significantly induced by TiO2-NPs at lower concentrations of 24 and 48?h exposure; meanwhile, it increased at all tested concentrations at 24?h MWCNTs exposure. The SOD enzyme was induced by 72 and 96?h TiO2-NPs exposure, and increased by MWCNTs treatment at 96?h in N. frustulum. Scanning electron microscopy results revealed that N. frustulum had obvious cell deformation after TiO2-NPs treatment. The result showed that the physiological and biochemical response mechanisms after NPs exposure of diatom were species-specific, and in relation to the exposure concentration and time.  相似文献   

3.
Little information is available on the potential ecotoxicity of nanomaterials in the marine environment. In particular, the aquatic ecotoxicity impact of titanium dioxide (TiO2) has been rarely reported. To carefully address this issue, we report on the synthesis of TiO2 NPs using solvothermal process. The structure and morphology of the prepared TiO2 nanoparticles were characterised using different techniques. To study the potential ecotoxicity effect of TiO2, antioxidant system of mediterranean bivalves (Mytilus galloprovincialis) was used, measuring three oxidative biomarkers (ROS production, SOD activity and GSH/GSSG level). No considerable effect was found in the digestive glands of any of the groups treated with TiO2 with concentration gradients ranging from 1 to 100?mg/L. Thus, the level of the superoxide anion, the activity of an antioxidant enzyme superoxide dismutase (SOD) and the GSH/GSSG ratio showed no significantly differences in digestive glands of all treated groups compared to the control. However, slight modifications were observed in the gills at high concentrations. These results demonstrated that TiO2 appears to exert little toxicity on marine mussels after a short-term exposure at high concentration. However, before considering the use of this nanomaterial in various applications, further complementary studies are required in order to ensure the environmental safety of these NPs.  相似文献   

4.
In current research, the combined effects of copper oxide nanoparticles (CuO NPs) and titanium dioxide nanoparticles (TiO2 NPs) on the histopathological anomalies of gill and intestine tissues in common carp (Cyprinus carpio) were studied. Common carp were exposed to TiO2 NPs (10.0?mg L?1), CuO NPs (2.5 and 5.0?mg L?1), and mixture of TiO2 NPs (10.0?mg L?1)?+?CuO NPs (2.5 and 5.0 mg?L?1) for two periods of exposure (10 and 20 days) and recovery (30 and 40 days). The most common histopathological anomalies in the gill of common carp such as hyperplasia, oedema, curvature, fusion, aneurism, and necrosis were observed. The synergistic effect of co-existing TiO2 NPs and CuO NPs reduced the length of secondary lamella and increased the diameters of the gill filaments and secondary lamellae. Moreover, the presence of TiO2 NPs increased the CuO NPs effects on the histopathological anomalies of intestine tissue and the synergistic effect of TiO2 NPs and CuO mixture leads to an increase in the severity of histopathological lesions such as degeneration, swelling of goblet cells, and necrosis - erosion in the intestine tissue. In conclusion, the presence of TiO2 NPs increased the toxicity of CuO NPs.  相似文献   

5.
The cytotoxicity of 13 and 22 nm aluminum oxide (Al2O3) nanoparticles was investigated in cultured human bronchoalveolar carcinoma-derived cells (A549) and compared with 20 nm CeO2 and 40 nm TiO2 nanoparticles as positive and negative control, respectively. Exposure to both Al2O3 nanoparticles for 24 h at 10 and 25 µg mL?1 doses significantly decreased cell viability compared with control. However, the cytotoxicity of 13 and 22 nm Al2O3 nanoparticles had no difference at 5–25 µg mL?1 dose range. The cytotoxicity of both Al2O3 nanoparticles were higher than negative control TiO2 nanoparticles but lower than positive control CeO2 nanoparticles (TiO2 < Al2O3 < CeO2). A real-time single cell imaging system was employed to study the cell membrane potential change caused by Al2O3 and CeO2 nanoparticles using a membrane potential sensitive fluorescent probe DiBAC4(3). Exposure to the 13 nm Al2O3 nanoparticles resulted in more significant depolarization than the 30 nm Al2O3 particles. On the other hand, the 20 nm CeO2 particles, the most toxic, caused less significant depolarization than both the 13 and 22 nm Al2O3. Factors such as exposure duration, surface chemistry, and other mechanisms may contribute differently between cytotoxicity and membrane depolarization.  相似文献   

6.
Metal toxicity on selenastrum capricornutum were examined by batch culture and chemostat culture system. EC50 values under nutrient‐limited condition and saturated condition were compared. The two EC5Os differed by a factor of 10.6 for Cd in batch test, and differed by a factor of 6.5 in continuous test. Both batch and continuous test results indicate that inhibition on algal growth is more severe under nutrient‐limited conditions compared to that under near saturation conditions.

Strong correlation, as characterized by the correlation coefficient ρ, were found between the activation level (nutrient requirement) and the tolerance of microorganisms to the toxicant. ρ is equal to 0.9 for the case of Cd in batch test and 0.6 in continuous test. The theory in this study provides generally good estimations to the dose‐response relationship at limiting nutrient conditions. The study indicate that nutrient conditions constitute an important factor in algal toxicity tests.  相似文献   

7.
研究考察了不同行业废水对4种微藻24 h和72 h的急性毒性效应。以斜生栅藻(Scenedesmus obliquus)、蛋白核小球藻(Chlorella pyrenoidosa)、海水小球藻(Chlorella spp.)以及等鞭金藻(Isochrysis galbana)为指示生物,采用COD浓度较高的焦化厂实际生产废水和制药厂实际生产废水、COD浓度较低的印染厂生化处理后出水和城市污水处理厂进出水作为受试水体,以微藻的生长抑制率为测试指标,评价微藻对不同行业废水的急性毒性效应和敏感性。结果表明,不同行业废水对4种微藻的急性毒性效应有所不同:焦化废水对等鞭金藻的生长抑制作用最强,制药废水对斜生栅藻的毒性效应最为明显,印染废水及城市污水处理厂的进出水对海水小球藻的毒性较为显著,说明不同微藻对不同行业废水毒性的敏感性存在差异。上述研究结果为废水毒性评价中受试物种的选择提供了基础数据。  相似文献   

8.
Titanium dioxide (TiO2) nanoparticles possess the potential to coexist with Copper (Cu2+) in soil. The individual and combined toxicity of these two chemicals was evaluated using the bacterium Bacillus subtilis, a known soil model bacterium. Cu2+ (6.25–50?µg?mL?1) alone produced toxicity to bacteria as evidenced by the decreased cell viability and deceased α-amylase production. The addition of TiO2 (50?mg?mL?1) enhanced the Cu2+-induced decrease in cell viability but elevated amylase activity. TiO2 did not markedly affect the growth rate and lag period. A primary cause of TiO2 increasing Cu2+ toxicity is presumed to be associated with hydroxyl radical formation, while increased amylase activity is considered to arise from Cu2+ facilitating TiO2 degradation ability.  相似文献   

9.
Sensitivity of three algal species, Chlorella vulgaris, Scenedesmus acutus and Pseudanabaena galeata to herbicides atrazine and chlorsulfuron was studied using single species toxicity tests. Organisms were exposed to different concentrations of these herbicides and the algal growth was measured by turbidity at 750 nm. Atrazine appeared to be the most inhibitory to algae growth. 96 hr EbC50 of atrazine was: 1.3, 0.014, 0.014 mg/1 for C. saccharophila, S. acutus and P. galeata, respectively and 96 hr EbC50 of chlorsulfuron was 74.5 mg/1 for C.saccharophila, 0.19 mg/1 for S. acutus and 21.1 mg/1 for P. galeata  相似文献   

10.
The acute toxicity of monodispersed 6 nm and <100 nm poly-dispersed copper oxide nanoparticles toward Daphnia magna was assessed using 48 h immobilization tests. CuSO4 was used as a reference. Four different exposure conditions were tested, to study whether the toxicity of the nanoparticle suspensions changed in a way similar to what is known for dissolved Cu: first in ISO standard test conditions (pH 7.8), second with slight acidity (pH 6.5), third in the presence of citric acid, and fourth in the presence of humic acid. For all four exposure conditions, the toxicity of Cu employed in the three forms followed the same sequence, i.e., CuSO4 > monodispersed 6 nm CuO ? poly-dispersed CuO. The toxicity of all Cu forms decreased from pH 6.5, ? pH 7.8, > pH 7.8 + citric acid, to ? pH 7.8 + humic acid. This pattern is in agreement with concentrations of Cu2+ calculated using the equilibrium model MINTEQ. These findings show that the acute toxicity of copper oxide nanoparticles is governed by test water composition and the chemical species Cu2+.  相似文献   

11.
The inhibitory effect of silver nanoparticles (AgNPs) on photochemical reactions of photosynthesis was investigated using the green alga model Chlamydomonas reinhardtii. Algal cells were exposed to 1, 5, and 10?µmol?L?1 of AgNPs under both light and dark conditions during 6?h. The rapid rise of chlorophyll a fluorescence and the fluorescence imaging system were employed to investigate the alteration of photosystem II (PSII) photochemical reactions and the associated electron transport activity. When algal cells were exposed to 5 and 10?µmol?L?1 of AgNPs, our results showed the evidence of a structural deterioration of PSII reaction center, the alteration of the oxygen evolving complex and the inhibition of electron transport activity, which was stronger for AgNPs treatment under light exposure. Under these conditions, there was no activation of regulated photoprotective mechanisms against excess absorbed light-energy by the antenna system of the PSII complex. The highest deteriorating effect on the structural and functional integrity of PSII was observed for algal cells exposed 6?h in light condition to 10?µmol?L?1 of AgNPs. Therefore, we provide valuable data in this study permitting to use photosynthetic-based fluorescence parameters for aquatic toxicological risk investigation of polluted water that may contain AgNP suspension.  相似文献   

12.
Spherical TiO2 nanoparticles (npTiO2) were prepared by controlled hydrolysis of tetraethoxy orthotitanate under a nitrogen atmosphere. ZnO nanoparticles (npZnO) were prepared using hydrothermal methods. The crystal structure, chemical, thermal and morphological properties of npZnO and npTiO2 were characterised using Fourier Transform Infrared Spectrometer, enery-dispersive X-ray spectroscopy, X-ray diffraction, and scanning electron microscope techniques. The short- and long-term experiments were started with neonates taken from the same culture and laboratory condition. In the acute experiments, npTiO2, npZnO, and cocktail concentrations were applied. 96h-LC50 values were 1.8, 0.7, and 0.1?mg?L?1, respectively (p?<?.05). For the chronic experiments, different npTiO2 concentrations were performed. 21d-LC50 value was 1.0?mgL?1 (p?<?.05). Morphometry became progressively worse in concentrations of more than 1?mgL?1 npTiO2. Neonate and young individuals were more sensitive to death because of their low tolerance. This result was affected by population progeny and growth rates (p?<?.05). While control and 0.5?mgL?1 npTiO2 groups were determined as growing population, 1.5 and 2?mgL?1 npTiO2 groups had decreased population size as R0 values. Consequently, the relationships between nanoparticle accumulation within Daphnia magna and its population structure and body morphometry for each concentration were important indicators. Its tolerance level to nanoparticles under laboratory conditions reflected its replacement and behaviour in the ecosystem.  相似文献   

13.
王举  李婧  陈荣  沈莹 《生态毒理学报》2018,13(5):226-234
针对磷和微量元素对藻类生长的共同作用,研究不同磷源条件下锌对藻细胞生长与产毒的影响。实验选用铜绿微囊藻为藻种,分别以无机磷磷酸氢二钾(K_2HPO_4)、小分子有机磷甘油磷酸钠(NaGly)和大分子有机磷卵磷脂(LEC)为磷源,研究不同锌(Zn~(2+))含量对藻细胞的藻密度、碱性磷酸酶活性(alkaline phosphatase activity,APA)以及胞内藻毒素(MC-LR)的影响。研究发现:以NaGly为磷源时微量元素锌对藻细胞生长的促进效果显著,而以K_2HPO_4或LEC为磷源时,锌含量的变化对藻细胞生长无显著影响。APA不仅与磷源有关而且与锌含量相关,以LEC为磷源时的APA显著高于以K_2HPO_4或NaGly为磷源时的APA,且锌含量越低APA越低,以K_2HPO_4为磷源时锌含量越低APA越高,而锌对以NaGly为磷源时的APA几乎没有影响。磷源与微量元素锌对藻细胞的产毒均产生影响,NaGly有利于藻毒素的产生; LEC不利于藻细胞的产毒,但锌含量越低藻细胞的产毒量越多。综上所述,磷源与微量元素锌共同作用对藻细胞的生长与产毒产生影响,小分子有机磷NaGly与锌的效果显著。  相似文献   

14.
随着纳米技术的飞速发展,纳米材料的应用日益广泛。同时,这类具有独特物理化学特性的微小颗粒对环境和健康的影响引起了人们的关注。本工作参考国际经济合作与发展组织(OECD)化学品生态毒理测试方法,以蛋白核小球藻(Chlorella pyrenoidosa)和大型溞(Daphnia magna)为受试生物,研究了CeO_2纳米颗粒暴露对小球藻生长、叶绿素含量和细胞内活性氧水平以及大型溞运动能力的影响,分析了大型溞体内铈的形态。随着暴露浓度的升高和时间延长,CeO_2纳米颗粒逐渐抑制小球藻的生长,导致叶绿素水平的降低和活性氧水平升高。暴露96 h后,CeO_2纳米颗粒对小球藻生长的EC50为30.4 mg·L-1,而对大型溞活动抑制的24 h、48 h-EC50分别为430.2 mg·L-1和142.7 mg·L-1。根据中华人民共和国环境保护行业标准中的毒性分级标准,CeO_2纳米颗粒对小球藻属于中毒性物质,对大型溞属于低毒性物质。CeO_2纳米颗粒在大型溞体内主要以Ce(IV)的形式存在,约有3%转化为Ce(III)。对CeO_2纳米颗粒的水生态效应给予足够重视并深入研究其毒性作用机制。  相似文献   

15.
The aim of this study was to evaluate the in vitro toxicity of two multi-wall carbon nanotubes on four different cell lines: human alveolar epithelial (A549) cells, hepatocytes (Hep 3B cells), human embryonic kidney cells, and intestinal (P407 cells) cells. The adverse effects of carbon nanoparticles were analyzed after 24 h incubation with different cell lines using the trypan blue dye exclusion method. Incubation of carbon nanotubes with different cells produced a concentration-dependent inhibition of growth of the cells. The TC50 or IC50 values (toxic concentration 50, i.e., concentration of particles inducing 50% cell mortality) of two nanoparticles were (1) found to be in the range 23.5–30.5 µg mL?1, and (2) less than that of quartz (known toxic agent, 28.8–66.9 µg mL?1), indicating the greater cytotoxic effect of carbon nanoparticles than quartz particles.  相似文献   

16.
The use of aquatic organisms to monitor for contamination is well-established. Therefore, this study was designed to assess the adverse effects of titanium dioxide nanoparticles (TiO2NP) in freshwater snail Lymnea luteola L. (L. luteola). For TiO2NPs ecotoxicity tests, snails were exposed for seven days. A dose and time-response relationship was observed for TiO2NP-induced genotoxicity. Induction of oxidative stress in digestive gland was observed by a decrease in glutathione and gluthathions-S-transferase levels accompanied by elevated malondialdehyde levels at TiO2NP (9 and 28 µg/mL). Superoxide dismutase activities were markedly reduced at TiO2NP (9 and 28 µg/mL) at days 1 and 3, but not at day 7. Catalase activities were decreased at days 1 and 3 but increased at higher concentration of TiO2NP at day 7. DNA fragmentation occurring in L. luteola due to ecotoxic impact TiO2NP was further substantiated by alkaline single-cell gel electrophoresis assay and expressed in terms of percent tail DNA and olive tail moment. The results indicate that the interaction of these TiO2NP with snail influences the toxicity, which is mediated by oxidative stress in a dose- and time-dependent manner. The measurement of DNA integrity in L. luteola thus provides an early warning signal of contamination of the aquatic ecosystem by TiO2NP. Data suggest the freshwater snail L. luteola is a potential biomonitor organism.  相似文献   

17.
The environmental impact of nanotechnology has caused a great concern. Many in vitro studies showed that many types of nanoparticles were cytotoxic. However, whether these nanoparticles caused cell membrane damage was not well studied. F2-isoprostanes are specific products of arachidonic acid peroxidation by nonenzymatic reactive oxygen species and are considered as reliable biomarkers of oxidative stress and lipid peroxidation. In this article, we investigated the cytotoxicity of different nanoparticles and the degree of cellular membrane damage by using F2-isoprostanes as biomarkers after exposure to nanoparticles. The human lung epithelial cell line A549 was exposed to four silica and metal oxide nanoparticles: SiO2 (15 nm), CeO2 (20 nm), Fe2O3 (30 nm), and ZnO (70 nm). The levels of F2-isoprostanes were determined by using high-performance liquid chromatography/mass spectrometry. The F2-isoprostanes’ peak was identified by retention time and molecular ion m/z at 353. Oasis HLB cartridge was used to extract F2-isoprostanes from cell medium. The results showed that SiO2, CeO2, and ZnO nanoparticles increased F2-isoprostanes levels significantly in A549 cells. Fe2O3 nanoparticle also increased F2-isoprostanes level, but was not significant. This implied that SiO2, CeO2, ZnO, and Fe2O3 nanoparticles can cause cell membrane damage due to the lipid peroxidation. To the best of our knowledge, this is the first report on the investigation of effects of cellular exposure to metal oxide and silica nanoparticles on the cellular F2-isoprostanes levels.  相似文献   

18.
We investigated the effects of ethyl 2-methyl acetoacetate (EMA) on growth of the marine diatom algae Phaeodactylum tricornutum (P. tricornutum) and Skeletonema costatum (S. costatum). Growth of P. tricornutum was significantly inhibited by the minimum concentration (3.5 mmol·L ?1) of EMA at lower initial algal densities (IADs) (3.6×104 and 3.3×105 cells·mL ?1). However, at the highest IAD, significant growth inhibition was found at above 7 mmol·L ?1 of EMA exposure. In S. costatum, EMA concentrations of 10.5 mmol·L ?1 or more significantly inhibited growth at lower IAD (3×104 and 1.8×105 cells·mL ?1); at the highest IAD, only EMA concentrations above 14 mmol·L ?1 obviously inhibited the growth of S. costatum. Changes in specific growth rates and pigment were consistent with algal growth, but only at higher EMA concentrations or lower IAD values was the ratio of chlorophyll a (Chla) to carotenoid significantly lower than the control. Medium effective concentration (EC 50) values were in the order 4.07, 8.03 and 12.27 mmol·L ?1 for P. tricornutum and 7.48, 11.92 and 17.22 mmol·L ?1 for S. costatum. All these results show that the effect of EMA on the growth of algae was species specific and mainly depended on IAD, which might be an important factor to influence algal growth.  相似文献   

19.
A micro-scale algal growth inhibition (μ-AGI) test using a common micro-plate based fluorometric detection was used to demonstrate the effects of humic substances (HSs) on the toxicity of tetrabromobisphenol A (TBBPA) and its oxidative decomposition products 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ), 2,5-dibromohydroquinone (2,5-DBHQ), 2,6-dibromobenzoquinone (2,6-DBBQ), and 2,6-dibromophenol (2,6-DBP) to Pseudokirchneriella subcapitata. The EC50 values were: EC50(TBBPA) = 7 mg L?1, EC50(2,5-DBHQ) = 7 mg L?1, EC50(2,5-DBBQ) = 19 mg L?1, EC50(2,6-DBP) = 49 mg L?1, and EC50(2,6-DBBQ) = 13 mg L?1. The toxicity of the chemicals was slightly lower in the presence of HA. The toxicity of TBBPA decomposed by a biomimetic catalytic system consisting of iron (III) 5,10,15,20-tetrakis (p-sulfonatophenyl) porphyrin (Fe(III)-TPPS) and KHSO5 was also evaluated using P. subcapitata and Chlamydomonas reinhardtii.  相似文献   

20.
Variabilities in the responses of several South African red and green macroalgae to direct grazing and the responses of one green alga to cues from grazers were tested. We used two feeding experiments: (1) testing the induced responses of three red and one green algae to direct grazing by mesograzers and (2) a multi-treatment experiment, in which the direct and indirect effects of one macrograzer species on the green alga Codium platylobium were assessed. Consumption rates were assessed in feeding assays with intact algal pieces and with agar pellets containing non-polar extracts of the test algae. Defensive responses were induced for intact pieces of Galaxaura diessingiana, but were not induced in pellets, suggesting either morphological defence or chemical defence using polar compounds other than polyphenols. In contrast, exposure to grazing stimulated consumption of Gracilaria capensis and Hypnea spicifera by another grazing species. In the multi-treatment experiment, waterborne cues from both grazing and non-grazing snails induced defensive algal traits in C. platylobium. We suggest that inducible defences among macroalgae are not restricted to brown algae, but that both the responses of algae to grazers and of grazers to the defences of macroalgae are intrinsically variable and complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号