首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Transport and degradation of de-icing chemical (containing propylene glycol, PG) in the vadose zone were studied with a lysimeter experiment and a model, in which transient water flow, kinetic degradation of PG and soil chemistry were combined. The lysimeter experiment indicated that aerobic as well as anaerobic degradation occurs in the vadose zone. Therefore, the model included both types of degradation, which was made possible by assuming advection-controlled (mobile) and diffusion-controlled (immobile) zones. In the mobile zone, oxygen can be transported by diffusion in the gas phase. The immobile zone is always water-saturated, and oxygen only diffuses slowly in the water phase. Therefore, the model is designed in a way that the redox potential can decrease when PG is degraded, and thus, anaerobic degradation can occur. In our model, manganese oxide (MnO2, which is present in the soil) and NO \(_{3}^{-}\) (applied to enhance biodegradation) can be used as electron acceptors for anaerobic degradation. The application of NO \(_{3}^{-}\) does not result in a lower leaching of PG nor in a slower depletion of MnO2. The thickness of the snowcover influences the leached fraction of PG, as with a high infiltration rate, transport is fast, there is less time for degradation and thus more PG will leach. The model showed that, in this soil, the effect of the water flow dominates over the effect of the degradation parameters on the leaching at a 1-m depth.  相似文献   

2.
When present in the vadose zone, potentially toxic nitrate and perchlorate anions can be persistent sources of groundwater contamination. Gaseous electron donor injection technology (GEDIT), an anaerobic variation of petroleum hydrocarbon bioventing, involves injecting electron donor gases, such as hydrogen or ethyl acetate, into the vadose zone, to stimulate biodegradation of nitrate and perchlorate. Laboratory microcosm studies demonstrated that hydrogen and ethanol promoted nitrate and perchlorate reduction in vadose zone soil and that moisture content was an important factor. Column studies demonstrated that transport of particular electron donors varied significantly; ethyl acetate and butyraldehyde were transported more rapidly than butyl acetate and ethanol. Nitrate removal in the column studies, up to 100%, was best promoted by ethyl acetate. Up to 39% perchlorate removal was achieved with ethanol and was limited by insufficient incubation time. The results demonstrate that GEDIT is a promising remediation technology warranting further validation.  相似文献   

3.
A partitioning tracer test based on gas-phase diffusion in the vadose zone yields estimates of the residual nonaqueous phase liquid (NAPL) saturation. The present paper investigates this technique further by studying diffusive tracer breakthrough curves in the vadose zone for a heterogeneous NAPL distribution. Tracer experiments were performed in a lysimeter with a horizontal layer of artificial kerosene embedded in unsaturated sand. Tracer disappearance curves at the injection point and tracer breakthrough curves at some distance from the injection point were measured inside and outside of the NAPL layer. A numerical code was used to generate independent model predictions based on the physicochemical sand, NAPL, and tracer properties. The measured and modeled tracer breakthrough curves were in good agreement confirming the validity of important modeling assumptions such as negligible sorption of chlorofluorocarbon (CFC) tracers to the uncontaminated sand and their fast reversible partitioning between the soil air and the NAPL phase. Subsequently, the model was used to investigate different configurations of NAPL contamination. The experimental and model results show that the tracer disappearance curves of a single-well diffusive partitioning tracer test (DPTT) are dominated by the near-field presence of NAPL around the tip of the soil gas probe. In contrast, breakthrough curves of inter-well tracer tests reflect the NAPL saturation in between the probes, although there is no unique interpretation of the tracer signals if the NAPL distribution is heterogeneous. Numerical modeling is useful for the planning of a DPTT application. Simulations suggest that several cubic meters of soil can be investigated with a single inter-well partitioning tracer test of 24-hour duration by placing the injection point in the center of the investigated soil volume and probes at up to 1 m distance for the monitoring of gaseous tracers.  相似文献   

4.
This study evaluated the feasibility of supplementing groundwater monitoring protocols by assessing the vadose zone for the extent of residual subsurface contamination. The study also characterized the response of the soil gas signatures with respect to different soil types and degrees of contamination. A field study was conducted at a former gasoline vending station located in Ottawa, Canada. The current state of contamination was determined by analysis of soil samples taken from boreholes. A series of 10 nested soil gas wells with monitoring depths of 0.75, 1.5, 2.25 and 3.0 m were then installed. Using these wells, soil gas surveys were performed at regular intervals over an extended period to quantify Gaseous TPH (TPH g ), oxygen and carbon dioxide concentrations in the soil gas. Results indicate that soil gas wells located near the source term exhibited characteristic soil gas signatures and significant fluctuations in TPH g , oxygen, and carbon dioxide concentrations with time. Soil gas wells located beyond the soil contamination demonstrated limited correlation between TPH g , oxygen and carbon dioxide concentrations and decreased seasonal variability.  相似文献   

5.
We have examined how some major catchment disturbances may affect the aquatic greenhouse gas fluxes in the boreal zone, using gas flux data from studies made in 1994-1999 in the pelagic regions of seven lakes and two reservoirs in Finland. The highest pelagic seasonal average methane (CH(4)) emissions were up to 12 mmol x m(-2) x d(-1) from eutrophied lakes with agricultural catchments. Nutrient loading increases autochthonous primary production in lakes, promoting oxygen consumption and anaerobic decomposition in the sediments and this can lead to increased CH(4) release from lakes to the atmosphere. The carbon dioxide (CO(2)) fluxes were higher from reservoirs and lakes whose catchment areas were rich in peatlands or managed forests, and from eutrophied lakes in comparison to oligotrophic and mesotrophic sites. However, all these sites were net sources of CO(2) to the atmosphere. The pelagic CH(4) emissions were generally lower than those from the littoral zone. The fluxes of nitrous oxide (N(2)O) were negligible in the pelagic regions, apparently due to low nitrate inputs and/or low nitrification activity. However, the littoral zone, acting as a buffer for leached nitrogen, did release N(2)O. Anthropogenic disturbances of boreal lakes, such as increasing eutrophication, can change the aquatic greenhouse gas balance, but also the gas exchange in the littoral zone should be included in any assessment of the overall effect. It seems that autochthonous and allochthonous carbon sources, which contribute to the CH(4) and CO(2) production in lakes, also have importance in the greenhouse gas emissions from reservoirs.  相似文献   

6.
Air distribution in the Borden aquifer during in situ air sparging   总被引:3,自引:0,他引:3  
A field experiment was conducted at Canadian Forces Base Borden (CFB Borden) to assess the air distribution from a single in situ air sparging injection point. This aquifer consists of fine to medium sand deposited in horizontal layers. The permeability at the study location varied from 10(-10) to 10(-14) m2 and distinct low permeability horizons were present at approximately 1.2, 2.0, and 2.9 m below the water table. Prior to air injection, a 15x15-m portion of the vadose zone was excavated to the water table (approximately 1 m below ground surface) in order to visually observe air release distribution at the water table. The water table was actively maintained 5 cm above the excavated surface. The sparging system operated for a period of 7 days with an injection flow rate of 200 m3/days (5 scfm). The resulting subsurface air distribution was assessed using a variety of techniques including neutron logging, borehole and surface ground penetrating radar, piezometric head measurements, surface visualization, and hydraulic testing. Through this combination of tests, it was demonstrated that variations in permeability and, hence, capillary pressure at the site were sufficient to cause the injected air to spread laterally, forming stratigraphically trapped air pockets beneath the low permeability horizons. The formation of these air pockets eventually resulted in a buildup of capillary pressure that exceeded the air entry pressure and allowed some air to migrate up through the lower permeability layers. Each of the assessment techniques employed generated information at different spatial scales that prevented a direct comparison of the results from the various techniques; however, the results from all techniques proved to be critical in the interpretation of the experimental data. As a consequence, the different assessment techniques should not be viewed as alternatives, but rather as complimentary techniques.  相似文献   

7.
This study evaluated the feasibility of supplementing groundwater monitoring protocols by assessing the vadose zone for the extent of residual subsurface contamination. The study also characterized the response of the soil gas signatures with respect to different soil types and degrees of contamination.A field study was conducted at a former gasoline vending station located in Ottawa, Canada. The current state of contamination was determined by analysis of soil samples taken from boreholes. A series of 10 nested soil gas wells with monitoring depths of 0.75, 1.5, 2.25 and 3.0 m were then installed. Using these wells, soil gas surveys were performed at regular intervals over an extended period to quantify Gaseous TPH (TPHg), oxygen and carbon dioxide concentrations in the soil gas.Results indicate that soil gas wells located near the source term exhibited characteristic soil gas signatures and significant fluctuations in TPHg, oxygen, and carbon dioxide concentrations with time. Soil gas wells located beyond the soil contamination demonstrated limited correlation between TPHg, oxygen and carbon dioxide concentrations and decreased seasonal variability.  相似文献   

8.
To investigate the coupled effects of solution chemistry and hydrodynamics on the mobility of quantum dot (QD) nanoparticles in the vadose zone, laboratory scale transport experiments involving single and/or sequential infiltrations of QDs in unsaturated and saturated porous media, and computations of total interaction and capillary potential energies were performed. As ionic strength increased, QD retention in the unsaturated porous media increased; however, this retention was significantly suppressed in the presence of a non-ionic surfactant in the infiltration suspensions as indicated by surfactant enhanced transport of QDs. In the vadose zone, the non-ionic surfactant limited the formation of QD aggregates, enhanced QD mobility and transport, and lowered the solution surface tension, which resulted in a decrease in capillary forces that not only led to a reduction in the removal of QDs, but also impacted the vadose zone flow processes. When chemical transport conditions were favorable (ionic strength of 5 × 10(-4)M and 5 × 10(-3)M, or ionic strengths of 5 × 10(-2)M and 0.5M with surfactant), the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were meso-scale processes, where infiltration by preferential flow results in the rapid transport of QDs. When chemical transport conditions were unfavorable (ionic strength of 5 × 10(-2)M and 0.5M) the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were pore-scale processes governed by gas-water interfaces (GWI) that impact the mobility of QDs. The addition of surfactant enhanced the transport of QDs both in favorable and unfavorable chemical transport conditions. The mobility and retention of QDs was controlled by interaction and capillary forces, with the latter being the most influential. GWI were found to be the dominant mechanism and site for QD removal compared with solid-water interfaces (SWI) and pore straining. Additionally, ripening phenomena were demonstrated to enhance QDs removal or retention in porous media and to be attenuated by the presence of surfactant.  相似文献   

9.
ABSTRACT

In the present work, nitrous oxide emissions were estimated [mg/L] by the use of lysimeters under the closed chamber technique for a six month period. The lysimeters were classified by the type of irrigation used: one for drinking water, and the other for treated wastewater. Each lysimeter had two different types of soil (sand and clay), based on the types of soil in Chihuahua City, Mexico. An additional classification based on the depth was done (reticular and vadose zone). Each zone collected gas by the use of a closed chamber technique, allowing the samples to be taken for subsequent quantification and analysis by gas chromatography. A statistical analysis of variance (ANOVA) and principal components analysis (PCA) were conducted to identify the most influential variables or parameters in the formation of nitrous oxide. The variables that were considered for analysis were total Kjeldahl nitrogen (TKN), ammoniacal nitrogen (NH3-N), nitrate nitrogen (NO3-N), and nitrite nitrogen (NO2-N), along with meteorological parameters. In total, 58944 mg/L of N2O were emitted during the measurement period. The results showed that concentration emissions of N2O where the type of soil is sandy were smaller than those of clay soil, while the mean concentration in the vadose zone was higher than those in the reticular zone, regardless the type of soil. The parameters that showed greater influence in the N2O emissions were NO2-N and NO3-N concentrations. Temperature also played an important role in the emissions (the highest emissions were emitted during the cold months). Furthermore, denitrification appeared to be the dominant process in the production of nitrous oxide in soils.

Implications: Nitrous oxide (N2O) emissions produced in lysimeters with two types of soil (sand and clay) at two different depths (vadose and reticular zones) using treated waste water showed that the higher emissions of N2O are derived from clay soils in vadose zone; it could be due to the formation of clogging that favors the formation of anoxic conditions for the denitrification process. The parameters that showed more influence in the N2O emissions were nitrite (NO2-N) and nitrate (NO3-N) concentrations along with the temperature.  相似文献   

10.
A large-scale experiment was conducted to investigate the transport of trichloroethylene (TCE) vapors in the unsaturated zone and to determine the mass transfer to the groundwater and the atmosphere. The experiment involved injection of 5 1 of TCE in the unsaturated zone under controlled conditions, with multidepth sampling of gas and water through the unsaturated zone and across the capillary zone into underlying groundwater. The mass transfer of TCE vapors from the vadose zone to the atmosphere was quantified using a vertical flux chamber. A special soil water sampler was used to monitor transport across the capillary fringe. Experimental data indicated that TCE in the unsaturated zone was mainly transported to the atmosphere and this exchange reduced significantly the potential for groundwater pollution. The maximum measured TCE flux to the atmosphere was about 3 g/m(2)/day. Observed and calculated fluxes based on vertical TCE vapor concentration gradients and Fick's law were in good agreement. This confirms that TCE vapor transport under the experimental conditions was governed essentially by molecular diffusion. TCE vapors also caused a lower, but significant contamination of the underlying groundwater by dispersion across the capillary fringe with a corresponding maximum flux of about 0.1 g/m(2)/day. This mass transfer to groundwater is partly uncertain due to an inadvertent entry of some nonaqueous phase liquid (NAPL) from the source area into the saturated zone. Application of an analytical solution to estimate the TCE flux from the unsaturated zone to the groundwater indicated that this phenomenon is not only influenced by molecular diffusion but also by vertical dispersion. The mass balance indicates that, under the given experimental conditions (e.g. proximity of the source emplacement relative to the soil surface, relatively high permeable porous medium), nearly 95% of the initial TCE mass was transferred to the atmosphere.  相似文献   

11.
A simple algebraic model is proposed to estimate the transport of a volatile or soluble chemical caused by oscillatory flow of fluid in a porous medium. The model is applied to the barometric pumping of vapors in the vadose zone, and to the transport of dissolved species by earth tides in an aquifer. In the model, the fluid moves sinusoidally with time in the porosity of the soil. The chemical concentration in the mobile fluid is considered to equilibrate with the concentration in the surrounding matrix according to a characteristic time governed by diffusion, sorption, or other rate processes. The model provides a closed form solution, to which barometric pressure data are applied in an example of pore gas motion in the vadose zone. The model predicts that the additional diffusivity due barometric pumping in an unfractured vadose zone would be comparable to the diffusivity in stagnant pore gas if the equilibration time is 1 day or longer. Water motion due to the M2 lunar tide is examined as an example of oscillatory transport in an aquifer. It is shown that the tidal motion of the water in an aquifer might significantly increase the vertical diffusivity of dissolved species when compared to diffusion in an absolutely stagnant aquifer, but the hydrodynamic dispersivity due to tidal motion or gravitational flow would probably exceed the diffusivity due to oscillatory advection.  相似文献   

12.
The effects of oxygen limitation on solid-bed bioleaching of heavy metals (Me) were studied in a laboratory percolator system using contaminated sediment supplemented with 2% elemental sulfur (So). Oxygen limitation was realized by controlling the gas flow and oxygen concentration in the aeration gas. The oxygen supply varied between 150 and 0.5 mol So (-1) over 28 d of leaching. Moderate oxygen limitation led to temporarily suppression of acidification, rate of sulfate generation and Me solubilization. Lowering the oxygen supply to 0.5 mol O2 mol So (-1) resulted in retarding acidification over a period of three weeks and in poor Me solubilization. Oxidation of So occurred even under strong oxygen limitation at a low rate. High surplus of oxygen was necessary for almost complete oxidation of the added So. The maximum Me solubilization was reached at an oxygen supply of 7.5 mol O2 mol So (-1). Thus, the oxygen input during solid-bed bioleaching can be reduced considerably by controlling the gas flow without loss of metal removal efficiency. Oxygen consumption rates, ranging from 0.4 x 10(-8) to 0.8 x 10(-8) Kg O2 Kg dm (-1) S(-1), are primarily attributed to high reactivity of the sulfur flower and high tolerance of indigenous autotrophic bacteria to low oxygen concentrations. The So related oxygen consumption was calculated assuming a molar yield coefficient Y O2/S of 1.21. The oxygen conversion degree, defined as part of oxygen feed consumed by So oxidation, increased from 0.7% to 68% when the oxygen supply was reduced from 150 to 0.5 mol O2 mol So (-1).  相似文献   

13.
Phthalic acid esters (PAE) are commonly found in the sludge generated in the wastewater treatment plants. Anaerobic digestion followed by land application is a common treatment and disposal practice of sludge. To date, many studies exist on the anaerobic biodegradation rates of PAE, especially of the easily biodegradable ones, whereas the higher molecular weight PAE have reported to be non-biodegradable under methanogenic conditions. Furthermore, there is no information on the effect of the PAE on the performance of the anaerobic digesters treating sludge. In this study, the anaerobic biodegradation of di-n-butyl phthalate (DBP), di-ethyl phthalate (DEP) and di-ethylhexyl phthalate (DEHP) was investigated and their relative rates of anaerobic degradation were calculated. Also, the biological removal of PAE during the anaerobic digestion of sludge in bench-scale digesters was investigated using DBP and DEHP as model compounds of one biodegradable and one recalcitrant PAE respectively. The degradation of all the PAE tested in this study (DEP, DBP and DEHP) is adequately described by first-order kinetics. Batch and continuous experiments showed that DEP and DBP present in sludge are rapidly degraded under mesophilic anaerobic conditions (a first-order kinetic constant of 8.04 x 10(-2) and 13.69 x 10(-2)-4.35 day(-1) respectively) while DEHP is degraded at a rate between one to two orders of magnitude lower (0.35 x 10(-2)-3.59 x 10(-2) day(-1)). It is of high significance that experiments with anaerobic sludge of different origin (US and Europe) showed that degradation of DEHP occurs under methanogenic conditions. Accumulation of high levels of DEHP (more than 60 mg/l) in the anaerobic digester has a negative effect on DBP and DEHP removal rates as well as on the biogas production.  相似文献   

14.
Organic contaminants that decrease the surface tension of water (surfactants) can have an effect on unsaturated flow through porous media due to the dependence of capillary pressure on surface tension. We used an intermediate-scale 2D flow cell (2.44 x 1.53 x 0.108 m) packed with a fine silica sand to investigate surfactant-induced flow perturbations. Surfactant solution (7% 1-butanol and dye tracer) was applied at a constant rate at a point source located on the soil surface above an unconfined synthetic aquifer with ambient groundwater flow and a capillary fringe of approximately 55 cm. A glass plate allowed for visual flow and transport observations. Thirty instrumentation stations consist of time domain reflectometry probes and tensiometers measured in-situ moisture content and pressure head, respectively. As surfactant solution was applied at the point source, a transient flow perturbation associated with the advance of the surfactant solution was observed. Above the top of the capillary fringe the advance of the surfactant solution caused a visible drainage front that radiated from the point source. Upon reaching the capillary fringe, the drainage front caused a localized depression of the capillary fringe below the point source because the air-entry pressure decreased in proportion to the decrease in surface tension caused by the surfactant. Eventually, a new capillary fringe height was established. The height of the depressed capillary fringe was proportional to height of the initial capillary fringe multiplied by the relative surface tension of the surfactant solution. The horizontal transport of surfactant in the depressed capillary fringe, driven primarily by the ambient groundwater flow, caused the propagation of a wedge-shaped drying front in the downgradient direction. Comparison of dye transport during the surfactant experiment to dye transport in an experiment without surfactant indicated that because surfactant-induced drainage decreased the storage capacity of the vadose zone, the dye breakthrough time to the water table was more than twice as fast when the contaminant solution contained surfactant. The extensive propagation of the drying front and the effect of vadose zone drainage on contaminant breakthrough time suggest the importance of considering surface tension effects on unsaturated flow and transport in systems containing surface-active organic contaminants or systems, where surfactants are used for remediation of the vadose zone or unconfined aquifers.  相似文献   

15.
The chemical fate and movement of pesticides may be subject to transient storage in unsaturated soils during periods of light rainfall, and subsequent release into shallow groundwater by increased rainfall. The objective of this study was to conduct field-scale experiments to determine the relative importance of transient storage and subsequent release of agrichemicals from the vadose zone into potential aquifers. Two field-scale experiments were conducted under a rain exclusion shelter. In the 1x experiment, atrazine and chlorpyrifos were applied at application-rate equivalents (1.6 kg ha(-1) and 1.3 kg ha(-1), respectively). In the 4x experiment, atrazine was applied in an amount that was four times greater than that usually applied to fields (6.7 kg ha(-1)). Water was either applied to simulate rain or withheld to simulate dry periods. In the 1x experiment, atrazine was detected in the water samples whereas chlorpyrifos was not detected in the majority of the samples. The dry period imposed on the treatment plot did not appear to result in storage of the chemicals, whereas the wet period resulted in greater leaching of atrazine, although the concentrations remained less than the Maximum Contaminant Level of 3 microg L(-1). Both chemicals were detected in soil samples collected from a 20- to 30-cm depth, but it appeared that both chemicals dissipated before the field experiment was concluded. It appeared that the one-time application of atrazine and chlorpyrifos at the label rates did not result in a sufficient mass to be stored and flushed in significant concentrations to the saturated zone. When atrazine was applied at 4x and a longer drought period was imposed on the treatment plot, the resulting concentrations of dissolved atrazine were still less than 3 microg L(-1) . Atrazine was detected in only the near-surface (0 to 15 cm) soil samples and the herbicide dissipated before the onset of the dry period in the treatment plot. The results of this field study demonstrated that atrazine and chlorpyrifos were not sufficiently persistent to be stored and then released in significantly large concentrations to the saturated zone. The dissipation half-life of atrazine in the 4x application was about 44 days. This study, in addition to others, suggested that atrazine may be less persistent in surface soil than has been generally reported.  相似文献   

16.
In situ sequenced bioremediation of mixed contaminants in groundwater   总被引:3,自引:0,他引:3  
A mixture of chlorinated solvents (about 0.5-10 mg/l), including tetrachloroethene (PCE) and carbon tetrachloride (CT), together with a petroleum hydrocarbon, toluene (TOL), were introduced into a 24 m long x 2 m wide x 3 m deep isolated section (henceforth called a gate) of the Borden aquifer and subjected to sequential in situ treatment. An identical section of aquifer was similarly contaminated and allowed to self-remediate by natural attenuation, thus serving as a control. The control presents a rare opportunity to critically assess the performance of the treatment systems, and represents the first such study for sequenced in situ remediation. The first treatment step was anaerobic bioremediation. This was accomplished using a modified nutrient injection wall (NIW) to pulse benzoate and a nutrient solution into the aquifer, maximizing mixing by dispersion and minimizing fouling near the injection wells. In the anaerobic bioactive zone that developed, PCE, CT and chloroform (CF), a degradation product of CT, degraded with a half-lives of about 59, 5.9 and 1.7 days, respectively. The second step was aerobic bioremediation, using a biosparge system. TOL and cis-1,2 dichloroethene (cDCE), from PCE degradation, were found to degrade aerobically with half-lives of 17 and 15 days, respectively. Compared to natural attenuation, PCE and TOL removal rates were significantly better in the sequenced treatment gate. However, CT and CF were similarly and completely attenuated in both gates. It is believed that the presence of TOL helped sustain the reducing environment needed for the reduction of these two compounds.  相似文献   

17.
Abstract

Vadose zone oxygen sensors can be effectively used to improve bioventing remediation design and monitoring. The capacity of the oxygen sensors for continuously monitoring oxygen concentrations unattended offers an improved approach for bioventing feasibility evaluation and respiration measurements. A new in-situ technique has been developed using these sensors for evaluating respiration rate at the startup of air injection or vapor extraction. This dynamic method imposes little restriction on the flowrate and soil conditions when the oxygen sensors are within the radius of influence, whereas a traditional in-situ oxygen uptake respiration test assumes a static condition. Oxygen uptake respiration tests measure a localized respiration rate. The dynamic method determines a spatially averaged respiration rate in the air flow path between injection point and a sensing point in air injection setup, or within the capture zone of a vapor extraction setup. Because respiration measurements can be made using the new technique at the startup of a remediation process, whether it is air injection or vapor extraction, it allows the process to run without interruption. Using the subsurface oxygen sensor, the dynamic method also allows the respiration rate to be continuously monitored. A case study at a site in Palm Springs, California is used to document the application of this new technique and its advantages. In addition to directly monitoring the radius of influence, the subsurface oxygen sensor can also provide necessary parameters to calculate a radius of influence for a given air injection rate. The Palm Springs case study demonstrates the application, as well as the limitation, of the radius of influence calculation.  相似文献   

18.
Fracturing, either pneumatic or hydraulic, is a method to improve the performance of soil vapor extraction (SVE) in relatively low permeability soils (< 10(-5) cm/s). A two-dimensional model is presented to simulate trichloroethylene (TCE) soil vapor extraction modified by fracturing. Flow and transport is modeled using mobile macropore and micropore networks, which also have been identified in the literature as dual porosity, dual permeability, or heterogeneous flow models. In this model, fluids can flow in both the macropore and micropore networks. This represents a more general model compared to immobile micropore, mobile macropore models presented thus far in the literature for vapor flow and transport in two dimensions. The model considers pressure- and concentration-driven exchange between the macropore and micropore networks, concentration-driven exchange between the gas and sorbed phases within each network, and equilibrium exchange between the gas and water and a sorbed phase within each network. The parameters employed in an example simulation are based on field measurements made at a fractured site. Considered in the simulations were the influence of the volume percentage of fractures, the length of fractures, the relative location of the water table, and the influence of pulsed pumping. For these simulations, internetwork concentration-driven exchange most significantly affected mass removal. The volume percentage of fractures more significantly influence flow and mass removal than the length of fractures. The depth of the water table below the contamination plume only significantly influenced flow and mass removal when the water table was within 60 cm of the bottom of the contaminated soil in the vadose zone for the parameters considered in this study. Pulsed pumping was not found to increase the amount of mass removed in this study.  相似文献   

19.
Monitored natural attenuation is widely accepted as a sustainable remediation method. However, methods providing proof of proceeding natural attenuation within the water-unsaturated (vadose) zone are still relying on proxies such as measurements of reactive and non-reactive gases, or sediment sampling and subsequent mineralisation assays, under artificial conditions in the laboratory. In particular, at field sites contaminated with hydrophobic compounds, e.g. crude oil spills, an in situ evaluation of natural attenuation is needed, because in situ methods are assumed to provide less bias than investigations applying either proxies for biodegradation or off-site microcosm experiments. In order to compare the current toolbox of methods with the recently developed in situ microcosms, incubations with direct push-sampled sediments from the vadose and the aquifer zones of a site contaminated with crude oil were carried out in conventional microcosms and in situ microcosms. The results demonstrate the applicability of the in situ microcosm approach also outside water-saturated aquifer conditions in the vadose zone. The sediment incubation experiments demonstrated turnover rates in a similar range (vadose, 4.7 mg/kg*day; aquifer, 6.4 mghexadecane/kgsoil/day) of hexadecane degradation in the vadose zone and the aquifer, although mediated by slightly different microbial communities according to the analysis of fatty acid patterns and amounts. Additional experiments had the task of evaluating the degradation potential for the branched-chain alkane pristane (2,6,10,14-tetramethylpentadecane). Although this compound is regarded to be hardly degradable in comparison to n-alkanes and is thus frequently used as a reference parameter for indexing the extent of biodegradation of crude oils, it could be shown to be degraded by means of the incubation experiments. Thus, the site had a high inherent potential for natural attenuation of crude oils both in the vadose zone and the aquifer.  相似文献   

20.
This paper presents an analytical model to describe pulse injection experiments. This model solves the advection-diffusion equation while taking into account back diffusion from the clay core to the inlet and from the outlet to the clay core. In most analytical models, back diffusion is neglected. For sufficiently high Péclet numbers, this is a good approximation. However, in experiments where the Péclet number is low, back diffusion is important and must be taken into account. An additional advantage of the present model is that both concentration and flux are conserved at the inlet and at the outlet of the clay core. This model is used to fit pulse injection experiments with iodide and tritiated water (HTO) in clay cores. The (new) model is required for fitting the experimental results since in clay layers advection is very slow leading to a low Péclet number. The experiments are performed on clay cores taken from different depths from the Boom Clay and the Ypres Clay layer under the site of the nuclear power plant of Doel (Belgium). The quality of all fits is excellent and the obtained parameter values are coherent. For HTO, the fitted value for the diffusion accessible porosity is consistent with measurements of the water content in Ypres Clay cores. In both types of clays, the apparent diffusion coefficient at zero flow is between 10(-10) and 2 x 10(-10) m(2)/s for iodide and between 2 x 10(-10) and 3 x 10(-10) m(2)/s for HTO. The dispersion length is in the order of 10(-3) m. The average value for the diffusion accessible porosity is between 0.35 and 0.4 for HTO and between 0.2 and 0.25 for iodide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号