首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
The highly efficient inorganic polymer flocculants (IPFs) of the ferric-silica system is a new and promising coagulant. Interactions between ferric species and silica play a large part in the coagulation of suspensions. These effects are quite distinct from those associated with polymeric or colloid silica. However, although these species are key to coagulation efficiency, they have not been comprehensively discussed. A new type of coagulant, poly-silica-ferric-chloride (PFSC), was synthesized by co-polymerization and characterized by time complexation spectroscopy and photon correlation spectroscopy. Compared with traditional ferric salt, the results indicated that PFSC had a higher molecular weight, lesser positive charge, lower Feb and higher Fec. The higher the Si/Fe ratio, the higher the silica and lower the silicac found. The PFSC with appropriate polysilica acid not only obtained better coaguiation/fiocculation efficiency in turbidity removal, enhanced the flocculation index (FI) and provided less residual ferric, it also lowered water treatment costs compared to traditional ferric salt. Results showed that PFSC could remove colloid particles in water by charge neutralization and sweeping,adsorption bridging mechanism.  相似文献   

2.
Pure nano-Al13 and aggregates at various concentrations were prepared to examine the particle size e ect of coagulation with inorganic polymer flocculant. The property and stability of various species formed were characterized using Infrared, 27Al-NMR, photo correlation spectroscopy (PCS), and Ferron assay. Results showed that concentration and temperature exhibited di erent roles on the stability of Al13. The quantity of Alb species analyzed by ferron assay in the initial aging period corresponded well with that of Al13, which has been confirmed in a dimension range of 1–2 nm by PCS. Al13 solutions at high concentrations (0.5–2.11 mol/L) were observed to undergo further aggregation with aging. The aggregates with a wide particle size distribution would contribute to the disappeared/decreased Al13 basis on the 27Al-NMR spectrum, whereas a part of Al13 would still remain as Alb. At low concentrations, Al13 solution was quite stable at normal temperature, but lost its stability quickly when heating to 90°C.  相似文献   

3.
仅以IPF 颗粒物 水溶液的相互作用为例 ,对混凝研究中二界面过程化学领域的进展加以介绍 .研究结果表明 ,经过预制的聚合铝在混凝过程中表现出较好的形态稳定性 ,而传统混凝剂则强烈地受溶液化学过程 ,尤其是溶液pH值的影响 .混凝剂水解聚合形态倾向于在颗粒物表面吸附沉积 ,而直接引发混凝作用 .单体形态则通过转化为聚合、沉淀形态起混凝作用  相似文献   

4.
IPF混凝过程的定量计算模式(I):PCNM的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
水处理过程IPF的混凝作用机理研究逐渐向半定量乃至定量化发展 .以典型IPF 颗粒物 水溶液体系的相互作用为例 ,对PCNM模式的应用从混凝剂的形态分布、投药量、pH以及其它影响因素加以研究讨论 .结果表明 ,经适当改进的PCNM能够较好地预测聚合铝的混凝特征 ,实验结果与模式预测值基本吻合 .对PCNM模式中存在的若干问题亦进行了详细讨论  相似文献   

5.
颗粒物微界面的物理化学过程在混凝工艺中起着十分重要的决定作用.有关界面过程化学的研究构成了混凝技术研究与发展的重要内容和理论基础.本文仅以颗粒物/AOM-IPF-水溶液的相互作用为例,从水体颗粒物的稳定性、高效纳米絮凝剂的研究、微界面形态与过程以及混凝作用机理等诸方面,对该领域的研究与进展加以系统介绍.  相似文献   

6.
Mobilization of arsenic under anaerobic conditions is of great concern in arsenic contaminated soils and sediments. Bacterial reduction of As(V) and Fe(Ⅲ) influences the cycling and partitioning of arsenic between solid and aqueous phase. We investigated the impact of bacterially mediated reductions of Fe(Ⅲ)/Al hydroxides-bound arsenic(V) and iron(Ⅲ) oxides on arsenic release. Our results suggested that As(V) reduction occurred prior to Fe(Ⅲ) reduction, and Fe(Ⅲ) reduction did not enhance the release of arsenic. Instead, Fe(Ⅲ) hydroxides retained their dissolved concentrations during the experimental process, even though the new iron mineral-magnetite formed. In contrast, the release of reduced As(Ⅲ) was promoted greatly when aluminum hydroxides was incorporated. Thus, the substitution of aluminum hydroxides may be responsible for the release of arsenic in the contaminated soils and sediments, since aluminum substitution of Fe(Ⅲ) hydroxides universally occurs under natural conditions.  相似文献   

7.
The electrokinetic characteristics and coagulation behaviors of polyaluminum silicate chloride(PASiC)and polyaluminum chloride (PAC) were studied and compared by streaming current(SC) measurement and jar test method.The experimental results showed that the interaction between polysilicic acid characterized negative charge and hydrolyzed aluminum species result in a decrease of the charge-neutralizing ability of PASiC, compared to PAC.The decrease has a close relationship with the basicity(B) and Al/Si molar ratio in PASiC.The less the B value and the Al/Si molar ratio,the lower the change-neutralizing ability of PASiC is.In contrast,the preparation technique for PASiC affects the charge-neutralization of PASiC to a smaller extent.In addition, compared with PAC, PASiC may enhance aggregating efficiency and give better coagulating effects.  相似文献   

8.
聚硅酸硫酸铁混凝剂的性能研究   总被引:58,自引:3,他引:58  
以硅酸钠、硫酸和硫酸铁为原料制备聚硅酸硫酸铁混凝剂(简称PFSS),考察了PFSS在不同条件下水解产物表面的ζ电位变化情况,研究了Fe/SiO2摩尔比和投加量对PFSS除浊效果的影响,试验了PFSS的最佳混凝pH范围与Fe/SiO2摩尔比之间的关系,探讨了其混凝机理.结果表明,Fe/SiO2摩尔比对PFSS水解产物的ζ电位、PF-SS的混凝效果以及PFSS适宜的最佳pH值范围都有影响;当Fe/SiO2摩尔比达1.5左右时,PFSS的混凝除浊效果趋于最佳.  相似文献   

9.
混凝和强化混凝对印染废水中锑(Ⅴ)的去除特性   总被引:1,自引:0,他引:1  
印染废水中锑的排放标准日趋严格,是印染废水处理面临的新挑战.以混凝和强化混凝去除印染废水中锑(Ⅴ)为目标,发现聚硫酸铁(PFS)混凝剂对印染废水中锑(Ⅴ)的去除效率显著优于铁铝复配混凝剂和铝盐混凝剂,去除效率达97.4%,出水锑(Ⅴ)浓度可达4μg·L~(-1).酸性条件(低水解度)有利于PFS生成Fe(a)活性组分和静电吸引、锑(Ⅴ)迁移,且絮体颗粒较小,促进PFS混凝除锑(Ⅴ)效率;酸性条件下PFS除锑(Ⅴ)效率是中性条件的1.27倍,处理出水中锑(Ⅴ)浓度仅为中性条件的33.3%.PFS投加量与除锑(Ⅴ)效率符合反比例模型.在较高锑(Ⅴ)浓度下,提升PFS投加量可提高除锑(Ⅴ)效率,但在较低锑(Ⅴ)浓度下,提升PFS投加量对除锑(Ⅴ)效率的促进较小.PFS絮体回流与混凝沉淀串联或耦合可显著提升印染废水中锑(Ⅴ)的去除效率,其除锑(Ⅴ)效率分别是单一PFS混凝沉淀的1.14倍和1.32倍,可有效降低出水锑(Ⅴ)浓度并节约PFS投加量和减少污泥生成量.其中混凝-絮体回流耦合工艺中,最佳絮体回流比例为100%.  相似文献   

10.
Polyferric silicate sulfate (PFSS) with high concentration was prepared using the composite-poly method. The coagulation properties and mechanisms of this new complex were probed using TEM, Fe-Ferron timed complex-colorimetric method, and infrared spectrum method. The results showed that the flocculating effect of polyferric silicate sulfate had an advantage over polyferric sulfate (PFS), as the optimum coagulation effect could be obtained when the Si/Fe mole ratio was 0.75 in accordance with its macrostructure of PFSS. According to the Fe-Ferron timed complex-colorimetric method, the Si species was mainly Sic, whereas, the Fe species were Fea and Fec in the copolymerization system. The infrared spectra indicated that the structure of these new flocculants was formed by polymers, mainly by olation, which was different from polyferric sulfate, and the vibration of M-OH-M of around 1100 cm^-1, also proved that there existed Fe-OH-Fe and its polymers in some forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号