首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The fine particle size fraction of municipal solid waste incinerator bottom ash is often problematic because reuse applications for this material are limited. In these experiments incinerator bottom ash with a particle size of less than 8 mm was processed using conventional ceramic production techniques involving wet milling, drying, compacting and sintering. The effect of sintering temperature on the sintered density, microstructure, acid neutralization capacity (ANC) and the release of metal ions as a function of leachate pH are reported. Sintering at 1080 degrees C produced samples with maximum density. This material contained diopside (CaMgSi2O6), clinoenstatite (Mg2Si2O6) and wollastonite (CaSiO3) as the major crystalline phases. The acid neutralization capacity of sintered samples is significantly lower than milled bottom ash, and further reduces as the sintering temperature increases. This is associated with reduced leaching of Ca from sintered ash samples under all leachate pH conditions. Heavy metals present in the incinerator bottom ash included Cr, Cu, Ni, Zn, Cd and Pb. Sintering under optimum conditions reduced the leachable fraction of these metals under aggressive acid conditions (leachate pH 3) by factors ranging from 90% for Ni to greater than 99% for Cr, Cd, Zn and Pb.  相似文献   

2.
The fine fraction (<14mm) of incinerator bottom ash (IBA) obtained from a UK energy from waste plant has been milled and thermally treated at 600, 700, 800 and 880 degrees C. Treated materials have been activated with Ca(OH)(2) (10wt%) and the setting times and compressive strengths at different curing times measured. In addition to decomposition of CaCO(3) to CaO, thermal treatment increases the content of gehlenite (Ca(2)Al(2)SiO(7)), wollastonite (CaSiO(3)) and mayenite (Ca(12)Al(14)O(33)). Thermally treated samples were significantly more reactive than milled IBA and heating to 700 degrees C produced a material which rapidly set. Silica, gehlenite and wollastonite were the main crystalline phases present in hydrated samples and a mixed sulphate-carbonate AFm-type phase (Ca(4)Al(2)O(6)(CO(3))(0.67)(SO(3))(0.33).11H(2)O) formed. Significant volumes of gas were generated during curing and this produced a macro-porous microstructure that limited strength to 2.8MPa. The new materials may have potential for use as controlled low-strength materials.  相似文献   

3.
This research has applied different chemical activators to mechanically and thermally treated fine fraction (<14 mm) of incinerator bottom ash (IBA), in order to investigate the influences of chemical activators on this new pozzolanic material. IBA has been milled and thermally treated at 800 degrees C (TIBA). The TIBA produced was blended with Ca(OH)(2) and evaluated for setting time, reactivity and compressive strength after the addition of 0.0565 mole of Na(2)SO(4), K(2)SO(4), Na(2)CO(3), K(2)CO(3), NaOH, KOH and CaCl(2) into 100g of binder (TIBA+Ca(OH)(2)). The microstructures of activated IBA and hydrated samples have been characterized by X-ray diffraction (XRD) and thermogravimetry (TG) analysis. Thermal treatment is found to produce gehlenite (Ca(2)Al(2)SiO(7)), wollastonite (CaSiO(3)) and mayenite (Ca(12)Al(14)O(33)) phases. The thermally treated IBA samples are significantly more reactive than the milled IBA. The addition of Na(2)CO(3) can increase the compressive strength and calcium hydroxide consumption at 28-day curing ages. However, the addition of Na(2)SO(4), K(2)SO(4), K(2)CO(3), NaOH and KOH reduces the strength and hydration reaction. Moreover, these chemicals produce more porous samples due to increased generation of hydrogen gas. The addition of CaCl(2) has a negative effect on the hydration of TIBA samples. Calcium aluminium oxide carbonate sulphide hydrate (Ca(4)Al(2)O(6)(CO(3))(0.67)(SO(3))(0.33)(H(2)O)(11)) is the main hydration product in the samples with activated IBA, except for the sample containing CaCl(2).  相似文献   

4.
The sintering process offers an opportunity to combine detoxification and resource recovery for the treatment of municipal solid waste (MSW) incinerator fly ash. However, the chromium (Cr) in the sintered fly ash becomes more readily leachable with increasing sintering time and temperature, thus posing severe threats to the environment and human health when the sintered ash is recycled or reused. This study investigated the enhanced leachability of fly ash containing Cr, by heating the chromium (III) oxide (Cr2O3)-spiked fly ash to 800 degrees C in atmospheres containing air, nitrogen gas (N2), and 5% H2 + 95% N2, respectively. The results indicated that trivalent chromium was converted to its soluble hexavalent form during sintering in the air atmosphere; whereas sintering in a nitrogen atmosphere significantly reduced the leachability of Cr due to lack of oxygen (O2) to oxidize. The effects of the sintering temperature on the total chromium content and the leaching concentration in the toxicity characteristic leaching procedure (TCLP) extract are also discussed.  相似文献   

5.
Two new pre-treatment methods (water-washing/carbonation and carbonation/phosphate stabilization) of municipal solid waste (MSW) incinerator residues were evaluated by column leaching tests under aerobic conditions and anaerobic conditions (which were changed to aerobic conditions after 10 months). A mixture of bottom ash and fly ash (5:1 ratio) was pre-treated using each method. Shredded incombustible residues (SIR) were added to each ash preparation in proportions similar to the ratios present in landfills. For comparison, landfill wastes typical of Japan, namely, a mixture of bottom ash, chelating-pre-treated fly ash, and SIR, were also examined. Leachate samples were collected periodically and analysed over a 15-month period. When compared with chelating pretreatment, both water-washing/carbonation and carbonation/ phosphate stabilization reduced the leaching of Pb, Al, and Cu by about one to two orders of magnitude. Moreover, the initial concentrations of Ca and Pb in leachates from column of water-washing/carbonation were 56-57% and 84-96% less than those from the column of carbonation/phosphate stabilization. Therefore, water-washing/carbonation was considered to be a promising approach to obtain early waste stabilization and to reduce the release of heavy metals to near-negligible levels. The leaching behaviour of elements was also discussed.  相似文献   

6.
Three years of leachate emissions from municipal solid waste incineration bottom ash and crushed rock in a full-scale test road were evaluated. The impact of time, construction design, and climate on the emissions was studied, and the predicted release from standard leaching tests was compared with the measured release from the road. The main pollutants and their respective concentrations in leachate from the roadside slope were Al (12.8-85.3 mg l(-1)), Cr (2-125 microg l(-1)), and Cu (0.15-1.9 mg l(-1)) in ash leachate and Zn (1-780 microg l(-1)) in crushed rock leachate. From the ash, the initial Cl(-) release was high ( approximately 20 g l(-1)). After three years, the amount of Cu and Cl(-) was in the same range in both leachates, while that of Al and Cr still was more than one order of magnitude higher in ash leachate. Generally, the release was faster from material in the uncovered slopes than below the pavement. Whether the road was asphalted or not, however, had minor impacts on the leachate quality. During rain events, diluted leachates with respect to, e.g., salts were observed. The leaching tests failed to simulate field leaching from the crushed rock, whereas better agreement was observed for the ash. Comparisons of constituent release from bottom ash and conventional materials solely based on such tests should be avoided.  相似文献   

7.
8.
Water treatment plant sludge and municipal solid waste incinerator bottom ash are non-hazardous residues, and they can be reprocessed to produce useful materials for city public works. In this study, an effort was endeavored to investigate the properties of water permeable bricks made of water treatment sludge and bottom ash without involving an artificial aggregate step. The water treatment plant sludge was dried and ground, and the bottom ash was subjected to magnetic separation to remove ferrous metals. Both sludge and bottom ash were ground and sieved to a size of <2mm. Different contents of water treatment sludge (70-95% by weight) were mixed with bottom ash and the blocks were molded under a pressure of 110 kg/cm2. Thereafter, the molded blocks were sintered at temperatures of 900-1200 degrees C for 60-360 min. The compressive strength, permeability and water absorption rate of the sintered brick were examined and compared to relevant standards. The amount of bottom ash added in the mixture with water treatment sludge affects both the compressive strength and the permeability of the sintered bricks. The two effects are antonymous as higher bottom ash content will develop a beehive configuration and have more voids in the brick. It is concluded that a 20% weight content of bottom ash under a sintering condition of 1150 degrees C for 360 min can generate a brick with a compressive strength of 256 kg/cm2, a water absorption ratio of 2.78% and a permeability of 0.016 cm/s.  相似文献   

9.
To recycle municipal solid waste incinerator (MSWI) bottom ash, synthesis of hydrothermal minerals from bottom ash was performed to stabilize heavy metals. MSWI bottom ash was mixed with SiO(2), Al(OH)(3), and Mg(OH)(2) so its chemical composition was similar to that of hydrothermal clay minerals. These solid specimens were mixed with water at a liquid/solid ratio of 5. The reaction temperature was 200 degrees C, and reactions were performed for 24-240h. Generation of kaolinite/smectite mixed-layer clay mineral was found in the samples after the reaction of the mixture of bottom ash, SiO(2), and Mg(OH)(2). Calcium silicate hydrate minerals such as tobermorite and xonotlite were also generated. X-ray powder diffraction suggested the presence of amorphous materials. Leaching tests at various pHs revealed that the concentration of heavy metals in the leachates from MSWI bottom ash hydrothermally treated with SiO(2) and Mg(OH)(2) was lower than that in leachates from non-treated bottom ash, especially under acid conditions. Hydrothermal treatment with modification of chemical composition may have potential for the recycling of MSWI bottom ash.  相似文献   

10.
This study aimed to identify distribution of metals and to estimate the amount of these metals that can be potentially recovered from incineration residues. First, the partitioning behavior of Cr, Cu, Fe, Cd, Al, Zn, and Pb in bottom ash and fly ash was investigated in one large municipal waste incinerator in Taiwan. In addition, the material flow analysis (MFA) method was used to estimate the material flux of metals within incinerator plant, and to calculate the amount of metal recovery. According to the findings of this study, six metals (Fe, Al, Cu, Zn, Cr, and Pb) concentrated in bottom ash mostly, while Cd existed primarily in fly ash. The weight percentages of Fe (4.49%), Al (5.24%), Cu (1.29%), Zn (2.21%), and Pb (0.58%) in incinerator ash are high, and even higher than the compositions of natural minerals. Finally, the amount of Cr, Cu, Fe, Cd, Al, Zn and Pb that can be potentially recovered from incineration residues will reach 2.69 x 10(2), 1.46 x 10(4), 4.91 x 10(4), 6.92 x 10(1), 5.10 x 10(4), 1.85 x 10(4) and 4.66 x 10(3) ton/yr, respectively.  相似文献   

11.
采用"打浆水洗除Cr(Ⅵ)—电渗析除Cr(Ⅵ)—碱浸提铝—碳酸化分解法精制Al_2O_3"的新工艺处理含铬铝泥(以下简称铝泥),并回收Al_2O_3。实验结果表明:铝泥在70℃下经3次打浆水洗后,w(Na_2CrO_4)(以干铝泥计)降至5.0%;采用电渗析除Cr(Ⅵ)工艺可有效去除铝泥中以结合态和结晶态形式存在的Na_2CrO_4,在55 V直流电压下电渗析6h后铝泥中的w(Na_2CrO_4)降至0.98%;在碱浸温度为100℃、碱浸时间为3 h、NaOH质量浓度为150 g/L的优化碱浸条件下,铝浸出率(以Al_2O_3计)高达90.0%;经3次碳酸化分解处理后,Al_2O_3产品的纯度达98.65%,满足GB/T 24487-2009《氧化铝》中的一级标准,Al_2O_3回收率为96.37%。  相似文献   

12.
The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is of concern in many countries and may inhibit the beneficial reuse of this secondary material. Previous studies have focused on the role of dissolved organic carbon (DOC) on the leaching of copper. Recently, a study of the Energy Research Centre of The Netherlands (ECN) showed fulvic acid-type components to exist in the MSWI bottom ash leachates and to be likely responsible for the generally observed enhanced copper leaching. These findings were verified for a MSWI bottom ash (slashed circle 0.1-2 mm) fraction from an incinerator in Flanders. The filtered leachates were subjected to the IHSS fractionation procedure to identify and quantify the fractions of humic acid (HA), fulvic acid (FA) and hydrophilic organic carbon (Hi). The possible complexation of fulvic acid with other heavy metals (e.g., lead) was also investigated. The identified role of fulvic acids in the leaching of copper and other heavy metals can be used in the development of techniques to improve the environmental quality of MSWI bottom ash. Thermal treatment and extraction with a 0.2 M ammonium-citrate solution were optimized to reduce the leaching of copper and other heavy metals. The effect of these techniques on the different fractions of organic matter (HA, FA, Hi) was studied. However, due to the obvious drawbacks of the two techniques, research is focused on finding other (new) techniques to treat MSWI bottom ash. In view of this, particle size-based separation was performed to evaluate its effect on heavy metal leaching and on HA, FA and Hi in MSWI bottom ash leachates.  相似文献   

13.
In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl2 or CaSO4, which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl2 exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect on mechanical strength was also observed when CaSO4 was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature.  相似文献   

14.
The use of the fluidized bed technique for the combustion of municipal solid waste is a rather new concept. This type of combustor produces ash residues with somewhat different properties than the residues generated from the traditional mass burn techniques. Therefore, chemical characterization and the investigation of toxic metals behavior during ash water reactions are necessary for the safe disposal of these residues. In the present work, the total elemental composition, mineralogy and leaching behavior of ashes from the combustion of municipal solid waste in a fluidized bed combustion boiler have been investigated. The cyclone ash and, in particular, the filter ash contained considerable amounts of soluble substances, thus giving leachates with high levels of Cl-, Na+, K+, Ca2 + and Al(IIl). On the other hand, the two ash fractions taken in the boiler, the bottom and hopper ashes, were much more stable with respect to the release of salts and heavy metals. Since Cr(VI) is mobile and toxic its release from combustion residues can pose environmental problem. Even though the total Cr contents were similar in all ashes studied, the bottom ash gave about a thousand times higher levels of Cr(VI) in test leachates than the hopper, cyclone and filter ashes. However, it was found that the leached amount of Cr(VI) from the bottom ash decreased significantly when bottom ash was mixed with the hopper ash. The most probable cause for this decrease is the coupled oxidation of Al(0) to Al(III) and reduction of dissolved Cr(VI) to Cr(III). This finding that the mixing of two ash streams from the same boiler could result in the immobilization of Cr may point at a simple stabilization method. Selective extraction of water soluble, exchangeable and sparingly soluble forms of Cr(VI) was also investigated. Extraction methods were evaluated for their suitability for ash matrixes. It was found that interferences due to the presence of reducing substances in some ash materials may occur.  相似文献   

15.
In Japan the volume of municipal solid waste is reduced by incineration, with fly ash and bottom ash disposed in controlled landfills. The leachability of anions and heavy metal cations, Zn, Cu and Pb, from MSW fly ash and bottom ash at different pHs was examined using batch- and column-leaching tests. The MSW ashes had a high capacity for neutralizing acids. Behaviour during leaching depended on the pH of the solution. For the volumes applied, the leachabilities of MSW fly ash were very similar at pHs from 3 to 6. Due to its amphoteric nature, Pb is leachable at pHs of approximately 10 or more, with leachate concentrations of about 3 and 3-10mg/L for the fly ash and bottom ash, respectively, much higher than for Zn and Cu. Pb concentrations for most leaching solutions were 1 and 3mg/L for the fly ash and bottom ash, respectively. Zn, and Cu leached at low concentrations for solutions of pH 3-6. Na and K ions leached at high concentrations of approximately 5000 mg/L in the first batch leaching test, decreasing to 10mg/L by the fourth leach. Ca and Mg ions leached more gradually than Na and K. Cl(-) and SO(4)(2+) ions were the major anions in the MSW ash. The high pH and cation leaching are expected to have negative impacts on the performance of clay liners.  相似文献   

16.
This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al0, as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al0 are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.  相似文献   

17.
This paper investigates the changes of mineralogical composition of bottom ash in the environment. The chemical and mineralogical bulk composition was determined by X-ray fluorescence (XRF) and X-ray powder diffraction (XRPD) Rietveld method. Single bottom ash particles were investigated by optical microscopy, scanning electron microscopy with quantitative energy-dispersive X-ray microanalysis (SEM/EDX) and electron probe micro analysis (EPMA). SEM/EDX and EPMA are valuable complement to bulk analysis and provide means for rapid and sensitive multi-elemental analysis of ash particles. The fresh bottom ash consists of amorphous (>30 wt.%) and major crystalline phases (>1 wt.%) such as silicates, oxides and carbonates. The mineral assemblage of the fresh bottom ash is clearly unstable and an aging process occurs by reaction towards an equilibrium mineral phase composition in the environmental conditions. The significant decrease of anhydrite and amorphous contents was observed in the aged bottom ash, leading to the formation of ettringite, hydrocalumite and rosenhahnite under atmospheric conditions. In the water-treated sample, the calcite contents increased significantly, but ettringite was altered by the dissolution and precipitation processes in part, to produce gypsum, while the remaining part reacted with chloride to form hydrocalumite. Gypsum and other Ca based minerals may take up substantial amounts of heavy metals and subsequently control leaching behaviour of bottom ash.  相似文献   

18.
The characterization of the bottom ashes produced by two Portuguese municipal solid waste incinerators (MSWI) was performed with the aim of assessing the feasibility of using this waste as raw material in the production of glass that can be further processed as glass-ceramics for application in construction. Density and particle size distribution measurements were carried out for physical characterization. Chemical characterization revealed that SiO(2), a network glass former oxide, was present in a relatively high content (52-58wt%), indicating the suitability for this waste to be employed in the development of vitreous materials. CaO, Na(2)O and K(2)O, which act as fluxing agents, were present in various amounts (2-17wt%) together with several other oxides normally present in ceramic and glass raw materials. Mineralogical characterization revealed that the main crystalline phases were quartz (SiO(2)) and calcite (CaCO(3)) and that minor amounts of different alkaline and alkaline-earth aluminosilicate phases were also present. Thermal characterization showed that the decomposition of the different compounds occurred up to 1100 degrees C and that total weight loss was <10wt%. Heating both bottom ashes at 1400 degrees C for 2h resulted in a melt with suitable viscosity to be poured into a mould, and homogeneous black-coloured glasses with a smooth shiny surface were obtained after cooling. The vitrified bottom ashes were totally amorphous as confirmed by X-ray diffraction. The results from the present experimental work indicate that the examined bottom ashes can be a potential material to melt and to obtain a glass that can be further processed as glass-ceramics to be applied in construction.  相似文献   

19.
By utilising MSW fly ash from the Shanghai Yuqiao municipal solid waste (MSW) incineration plant as the main raw material, diopside-based glass-ceramics were successfully synthesized in the laboratory by combining SiO(2), MgO and Al(2)O(3) or bottom ash as conditioner of the chemical compositions and TiO(2) as the nucleation agent. The optimum procedure for the glass-ceramics is as follows: melting at 1500 degrees C for 30 min, nucleating at 730 degrees C for 90 min, and crystallization at 880 degrees C for 10h. It has been shown that the diopside-based glass-ceramics made from MSW fly ash have a strong fixing capacity for heavy metals such as lead (Pb), chromium (Cr), cadmium (Cd) etc.  相似文献   

20.
Two bottom ashes, one air pollution control (APC) residue and one fly ash from three different Swedish municipal solid waste incineration (MSWI) plants were characterised regarding the leaching of environmentally relevant components. Characterisation was performed using a diffusion tank leaching test. The impact of carbonation on the release of eight critical components, i.e., Cl(-), Cr, Cu, Mo, Pb, Sb, Se, SO(4)(2-) and Zn, was assessed at a lab-scale and showed carbonation to have a more pronounced demobilising effect on critical components in bottom ashes than in APC residue and fly ash. From grate type incinerator bottom ash, the release of Cr decreased by 97%, by 63% for Cu and by 45% for Sb. In the investigated APC residue, the releases of Cr, Se and Pb were defined as critical, although they either remained unaffected or increased after carbonation. Cl(-) and SO(4)(2-) remained mobile after carbonation in all investigated residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号