首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Social parasites exploit their host’s communication system to usurp resources and reproduce. In the honeybee, Apis mellifera, worker reproduction is regulated by pheromones produced by the queen and the brood. Workers usually reproduce when the queen is removed and young brood is absent. However, Cape honeybee workers, Apis mellifera capensis, are facultative intraspecific social parasites and can take over reproduction from the host queen. Investigating the manner in which parasitic workers compete with host queens pheromonally can help us to understand how such parasitism can evolve and how reproductive division of labour is regulated. In A. m. capensis, worker reproduction is associated with the production of queen-like pheromones. Using pheromonal contest experiments, we show that Apis mellifera scutellata queens do not prevent the production of queen-like mandibular gland compounds by the parasites. Given the importance of these pheromones in acquiring reproductive status, our data suggest that the single invasive lineage of parasitic workers occurring in the range of A. m. scutellata was selected for its superior ability to produce these signals despite the presence of a queen. Such resistance was indeed less frequent amongst other potentially parasitic lineages. Resistance to reproductive regulation by host queens is probably the key factor that facilitates the evolution of social parasitism by A. m. capensis workers. It constitutes a mechanism that allows workers to evade reproductive division of labour and to follow an alternative reproductive option by acquiring direct fitness in foreign colonies instead of inclusive fitness in their natal nests.  相似文献   

2.
Colonies and isolated bees of the Cape honeybee, Apis mellifera capensis Esch., were observed for evidence of circadian rhythmicity under constant conditions. It was found that colonies develop free-running activity rhythms in self-selected light-dark cycles, which are slightly shorter than 24 h. The periods of the activity rhythms of individual isolated bees were longer than 24 h in self-selected light-dark and constant light, while they were shorter than 24 h in constant darkness. A greater variability in period was found in the isolated bees than in the colonies. When the rhythms of colonies and individual bees from these colonies were measured simultaneously, the activities of the isolated bees drifted with respect to that of the colonies, their period being either longer or shorter than that of their own colony. After 12 days of isolation of individual bees from their colony, all coincidence between the phases of the two rhythms was lost. We conclude that the periods of common activity and common rest of the bees within a colony result from a mutual (social) synchronization of the rhythms of the individual bees.  相似文献   

3.
With very rare exceptions, queenright worker honeybees (Apis mellifera L.) forego personal reproduction and suppress reproduction by other workers, preferring to rear the queens sons. This is in stark contrast to colonies that have lost their queen and have failed to rear a replacement. Under these conditions workers activate their ovaries and lay many eggs that develop parthenogenetically into a final brood of males (drones) before the colony perishes. Interestingly, not all workers contribute equally to this final generation of drones in queenless colonies. Some subfamilies (workers that share the same father) contribute a disproportionately greater number of offspring than other subfamilies. Here we explore some of the mechanisms behind this reproductive competition among subfamilies. We determined the relative contribution of different subfamilies present in colonies to laying workers, eggs, larvae and pupae by genotyping samples of all life stages using a total of eight microsatellite loci. Our colonies were headed by free-mated queens and comprised 8–17 subfamilies and therefore differed significantly from colonies used in an earlier study investigating the same phenomena where colonies comprised an artificially low number of subfamilies. We show that, first, subfamilies vary in the speed with which they activate their ovaries after queen-loss and, second, that the survival of eggs to the larval stage is unequal among subfamilies suggesting that some subfamilies lay eggs that are more acceptable than others. However, there is no statistically significant difference among subfamilies in the survival of larvae to pupae, indicating that ovary activation and egg survival are the critical components to reproductive competition among subfamilies of queenless honeybee workers.Communicated by R. Page  相似文献   

4.
In queen-right honeybee colonies workers detect and eat the vast majority of worker-laid eggs, a behaviour known as worker policing. However, if a colony becomes permanently queen-less then up to 25% of the worker population develops their ovaries and lay eggs, which are normally reared into a final batch of males. Ovary development in workers is accompanied by changes in the chemical secretion of the Dufour's gland with the production of queen-like esters. We show that ester production increases with the period that the colony is queen-less. The increased ester production also corresponds to an increase in persistence of worker-laid eggs in queen-right colonies, since the esters somehow mask the eggs true identity. However, in a rare queen-less colony phenotype, workers always eat eggs indiscriminately. We found that the egg-laying workers in these colonies were unusual in that they were unable to produce esters. This apparently maladaptive egg eating behaviour is also seen in queen-less colonies prior to the appearance of egg-laying workers, a period when esters are also absent. However, the indiscriminate egg eating behaviour stops with the appearance of ester-producing egg-laying workers. These observations suggest that esters are providing some contextual information, which affects the egg eating behaviour of the workers.  相似文献   

5.
Honeybee (Apis) workers cannot mate, but retain functional ovaries. When colonies have lost their queen, many young workers begin to activate their ovaries and lay eggs. Some of these eggs are reared, but most are not and are presumably eaten by other workers (worker policing). Here we explore some of the factors affecting the reproductive success of queenless workers of the red dwarf honeybee Apis florea. Over a 2-year period we collected 40 wild colonies and removed their queens. Only two colonies remained at their translocated site long enough to rear males to pupation while all the others absconded. Absconding usually occurred after worker policing had ceased, as evidenced by the appearance of larvae. Dissections of workers from eight colonies showed that in A. florea, 6% of workers have activated ovaries after 4 days of queenlessness, and that 33% of workers have activated ovaries after 3 weeks. Worker-laid eggs may appear in nests within 4 days and larvae soon after, but this is highly variable. As with Apis mellifera, we found evidence of unequal reproductive success among queenless workers of A. florea. In the two colonies that reared males to pupation and which we studied with microsatellites, some subfamilies had much higher proportions of workers with activated ovaries than others. The significance of absconding and internest reproductive parasitism to the alternative reproductive strategies of queenless A. florea workers is discussed.  相似文献   

6.
Workers of six colonies of the giant honeybee Apis dorsata from Sabah, Malaysia (five colonies) and Java (one colony) were genotyped using single locus DNA fingerprinting. The colonies from Sabah nested in colony aggregations of 5 and 28 nests respectively on two trees. Three DNA microsatellite loci (A14, A76, A88) with a total of 27 alleles provided sufficient genetic variability to classify the workers into distinct sub-families revealing the degree of polyandry of the queens. Queens mated on average with 30.17 ± 5.98 drones with a range from 19 to 53. The average effective number of matings per queen was 25.56 ± 11.63. In the total sample of 192 workers, 22 individuals were found that were not offspring of the colony's queen. Three of these were potentially drifted offspring workers from genotyped queens of colonies nesting on the same tree.  相似文献   

7.
The allocation to growth, defense and reproduction varies in social insects within a species' life cycle and between species. A life cycle model (Oster and Wilson 1978) generally failed to predict caste allocation in small litter-nesting colonies of Neotropical Pheidole. Two of its assumptions were often invalid: food was unlikely to be limiting in four of five populations, and sexual biomass production accelerated, not decelerated, with colony size in three of five populations. One of five Pheidole populations studied had higher caste ratios (soldiers /workers) in reproductive colonies as predicted, and in no species did caste functions conform to predictions. We also adapted three models from plant defense theory to study between-species patterns of caste allocation. Among 12 litter Pheidole the amount of sterile biomass devoted to soldiers varied from 18 to 62%. Queen size, growth rate, and soldier investment positively covaried. Only one model, the cost of replacement hypothesis (McKey 1979), correctly predicted that species with costly female alates invest more in defense. The two hypotheses linking apparency to defense may also be valid if fast-growing colonies are more likely to attract the attention of predators.  相似文献   

8.
One-day-old anarchistic (selected for successful worker reproduction) and wild-type honey-bee workers were introduced into queenright colonies of honey-bees of two treatments. In treatment 1, all eggs and larvae were offspring of queens from an anarchistic line. In treatment 2, all eggs and larvae were offspring of wild-type queens. In both treatments, adult workers were wild type. This experimental arrangement was used to test the importance of larval genotype on ovary activation in young adult workers. After 12 days, the introduced bees were dissected to determine the frequency of ovary activation. In those colonies provided with wild-type brood, 0% of introduced wild-type bees and 16% of anarchistic bees had activated ovaries. In those colonies provided with anarchistic brood, 13% of introduced wild-type bees and 41% of anarchistic bees had activated ovaries. These results strongly support the hypothesis that selection for high levels of worker reproduction in anarchistic stocks has reduced the amount or composition of brood pheromones produced by larvae that normally signal workers to refrain from reproduction. They also suggest that anarchistic workers have a higher threshold for these signals than wild-type bees.  相似文献   

9.
Previously we reported that there are subfamily differences in drone production in queenless honey bee colonies, but these biases are not always explained by subfamily differences in oviposition behavior. Here we determine whether these puzzling results are best explained by either inadequate sampling of the laying worker population or reproductive conflict among workers resulting in differential treatment of eggs and larvae. Using colonies composed of workers from electrophoretically distinct subfamilies, we collected samples of adult bees engaged in the following behavior: true egg laying, false egg laying, indeterminate egg laying, egg cannibalism, or nursing (contact with larvae). We also collected samples of drone brood at four different ages: 0 to 2.5-h-old eggs, 0 to 24-h-old eggs, 3 to 8-day-old larvae, and 9 to 14-day-old larvae and pupae. Allozyme analyses revealed significant subfamily differences in the likelihood of exhibiting egg laying, egg cannibalism, and nursing behavior, as well as significant subfamily differences in drone production. There were no subfamily differences among the different types of laying workers collected from each colony, suggesting that discrepancies between subfamily biases in egg-laying behavior and drone production are not due to inadequate sampling of the laying worker population. Subfamily biases in drone brood production within a colony changed significantly with brood age. Laying workers had significantly more developed ovaries than either egg cannibals or nurses, establishing a physiological correlate for the observed behavioral genetic differences. These results suggest there is reproductive conflict among subfamilies and individuals within queenless colonies of honey bees. The implications of these results for the evolution of reproductive conflict, in both queenright and queenless contexts, are discussed.  相似文献   

10.
Workers of a queenless honeybee colony can requeen the colony by raising a new queen from a young worker brood laid by the old queen. If this process fails, the colony becomes hopelessly queenless and workers activate their ovaries to lay eggs themselves. Laying Cape honeybee workers (Apis mellifera capensis) produce female offspring as an additional pathway for requeening. We tested the frequency of successful requeening in ten hopelessly queenless colonies. DNA genotyping revealed that only 8% of all queens reared in hopelessly queenless colonies were the offspring of native laying worker offspring. The vast majority of queens resulted from parasitic takeovers by foreign queens (27%) and invading parasitic workers (19%). This shows that hopelessly queenless colonies typically die due to parasitic takeovers and that the parasitic laying workers are an important life history strategy more frequently used than in providing a native queen to rescue the colony. Parasitism by foreign queens, which might enter colonies alone or accompanied by only a small worker force is much more frequent than previously considered and constitutes an additional life history strategy in Cape honeybees.  相似文献   

11.
Abstract: Although pollinator declines are a global biodiversity threat, the demography of the western honeybee (Apis mellifera) has not been considered by conservationists because it is biased by the activity of beekeepers. To fill this gap in pollinator decline censuses and to provide a broad picture of the current status of honeybees across their natural range, we used microsatellite genetic markers to estimate colony densities and genetic diversity at different locations in Europe, Africa, and central Asia that had different patterns of land use. Genetic diversity and colony densities were highest in South Africa and lowest in Northern Europe and were correlated with mean annual temperature. Confounding factors not related to climate, however, are also likely to influence genetic diversity and colony densities in honeybee populations. Land use showed a significantly negative influence over genetic diversity and the density of honeybee colonies over all sampling locations. In Europe honeybees sampled in nature reserves had genetic diversity and colony densities similar to those sampled in agricultural landscapes, which suggests that the former are not wild but may have come from managed hives. Other results also support this idea: putative wild bees were rare in our European samples, and the mean estimated density of honeybee colonies on the continent closely resembled the reported mean number of managed hives. Current densities of European honeybee populations are in the same range as those found in the adverse climatic conditions of the Kalahari and Saharan deserts, which suggests that beekeeping activities do not compensate for the loss of wild colonies. Our findings highlight the importance of reconsidering the conservation status of honeybees in Europe and of regarding beekeeping not only as a profitable business for producing honey, but also as an essential component of biodiversity conservation.  相似文献   

12.
There is a genetic component to plasticity in age polyethism in honey bee colonies, such that workers of some genotypes become precocious foragers more readily than do workers of other genotypes, in colonies lacking older bees. Using colonies composed of workers from two identifiable genotype groups, we determined that intracolony differences in the likelihood of becoming a precocious forager are a consequence of differences in rates of behavioral development that are also evident under conditions leading to normal development. An alternative hypothesis, that differences in the likelihood of becoming a precocious forager are due to differences in general sensitivity to altered colony conditions, was not supported. In three out of three trials, workers from the genotype group that was more likely to exhibit precocious foraging in single cohort colonies also foraged at relatively younger ages in colonies in which workers exhibited normal behavioral development. In contrast, in three out of three trials, workers from the genotype group that was more likely to exhibit precocious foraging in single-cohort colonies did not show disproportionately more overaged nursing in colonies in which workers exhibited delayed development. These results indicate that genotypic differences in plasticity in age-related division of labor are based on genotypic differences in rates of behavioral development.  相似文献   

13.
Honey-bee (Apis mellifera) colonies exhibit extreme reproductive division of labour. Workers almost always have inactive ovaries and the queen monopolises egg laying. Although extremely rare, ’anarchistic’ colonies exist in which workers produce male offspring despite the presence of the queen. By comparing the rates of ovary activation in anarchistic and wild-type bees fostered to host colonies of different genotype (i.e. anarchist and non-anarchist) and queen status (i.e. queenless and queenright), we investigated the factors involved in inhibiting ovary activation. Fostered anarchist workers always had a higher level of ovary development than fostered wild-type bees in both anarchist and non-anarchist host colonies. Fostered workers of both genotypes had more active ovaries in anarchistic than in wild-type hosts. Fostered workers of both strains also had more active ovaries in queenless than in queenright hosts. The results suggest that selection for worker reproduction in the anarchistic line has both reduced the effects of brood and queen pheromones on worker ovary inhibition and increased the likelihood that workers of the anarchistic line will develop ovaries compared to wild-type workers. Received: 14 June 2000 / Revised: 26 September 2000 / Accepted: 7 October 2000  相似文献   

14.
Carpenter bees (Xylocopa spp.) act as primary nectar thieves in rabbiteye blueberry (Vaccinium ashei Reade), piercing corollas laterally to imbibe nectar at basal nectaries. Honey bees (Apis mellifera L) learn to visit these perforations and thus become secondary nectar thieves. We tested the hypothesis that honey bees make this behavioral switch in response to an energetic advantage realized by nectar-robbing flower visits. Nectar volume and sugar quantity were higher in intact than perforated flowers, but bees (robbers) visiting perforated flowers were able to extract a higher percentage of available nectar and sugar so that absolute amount of sugar (mg) removed by one bee visit is the same for each flower type. However, because perforated flowers facilitate higher rates of bee flower visitation and the same or higher rates of nectar ingestion, they are rendered more profitable than intact flowers in temporal terms. Accordingly, net energy (J) gain per second flower handling time was higher for robbers on most days sampled. We conclude that the majority evidence indicates an energetic advantage for honey bees that engage in secondary nectar thievery in V. ashei.Communicated by R. Page  相似文献   

15.
The honey bee dance language, used to recruit nestmates to food sources, is regarded by many as one of the most intriguing communication systems in animals. What were the ecological circumstances that favoured its evolution? We examined this question by creating experimental phenotypes in which the location information of the dances was obscured. Surprisingly, in two temperate habitats, these colonies performed only insignificantly worse than colonies which were able to communicate normally. However, foraging efficiency was substantially impaired in an Asian tropical forest following this manipulation. This indicates that dance language communication about food source locations may be important in some habitats, but not in others. Combining published data and our own, we assessed the clustering of bee forage sites in a variety of habitats by evaluating the bees’ dances. We found that the indicated sites are more clustered in tropical than in temperate habitats. This supports the hypothesis that in the context of foraging, the dance language is an adaptation to the particular habitats in which the honey bees evolved. We discuss our findings in relation to spatial aggregation patterns of floral food in temperate and tropical habitats.  相似文献   

16.
In the annual bumblebee Bombus terrestris, the onset of queen-worker conflict over male production is seasonally and socially constrained. Workers will do better if they start to reproduce (the so-called competition phase) only after ascertaining that larvae are committed to gyne development but before the season ends because they gain more by rearing sister-gynes than their own sons. Here, we tested two nonmutually exclusive hypotheses as to what triggers the onset of worker reproduction: Workers can directly monitor larval development and/or workers eavesdrop on the queen signal that directs gyne development. Exposing workers to gyne larvae through a double mesh did not advance the competition phase compared to control colonies. However, when workers, but not the queen, were allowed contact with gyne larvae, both the competition phase and gyne production were advanced. Thus, while larvae do not emit a volatile pheromone that discloses their developmental route, the physical contact of workers with such larvae triggers early competition phase. However, workers exclusively exposed to worker larvae (colonies prevented from producing gyne larvae) started to reproduce at the same time as control colonies. Replacing the resident queen with an older queen (from gyne-rearing colonies) advanced the competition phase, irrespective of worker age. The results are consistent with the hypothesis that workers eavesdrop on the queen pheromones. This is adaptive because it allows workers a broader time-window for reproduction and thus to gain fitness from rearing both sister-gynes and sons before the season ends without affecting colony development.  相似文献   

17.
Colony integrity is fundamental to social insects and is threatened by the reproduction of non-nestmates. Therefore, discrimination between eggs derived from nestmates and non-nestmates would constitute an adaptation to prevent exploitation of the entire cooperative group by unrelated individuals. The removal of nestmate and non-nestmate queen and worker-laid eggs was evaluated in honeybees using colonies of Apis mellifera capensis to test female and of A. m. scutellata to test male eggs. The data show that honeybees can distinguish between nestmate and non-nestmate eggs of both sexes. Moreover, non-nestmate female queen-laid eggs were removed significantly faster than nestmate female worker-laid eggs in A. m. capensis, indicating that nestmate recognition cues can override caste-specific ones. While the experimental manipulation accounts for 37.2% (A. m. scutellata) or 1.6% (A. m. capensis) of variance in relation to egg removal, nestmate recognition explains 33.3% for male eggs (A. m. scutellata) and 60.6% for female eggs (A. m. capensis), which is almost twice as high as the impact of caste (16.7% A. m. scutellata; 25% A. m. capensis). Our data show a stronger effect of nestmate recognition on egg removal in the honeybee, suggesting that cues other than caste-specific ones (viability/kin) can dominate egg removal behavior. In light of intraspecific social parasitism, preventing the reproduction of unrelated individuals (group selection) rather than preferring queens’ eggs (kin selection) appears to be the driving force behind the evolution of egg removal behavior in honeybees.  相似文献   

18.
We conducted experiments designed to examine the distribution of foraging honey bees (Apis mellifera) in suburban environments with rich floras and to compare spatial patterns of foraging sites used by colonies located in the same environment. The patterns we observed in resource visitation suggest a reduced role of the recruitment system as part of the overall colony foraging strategy in habitats with abundant, small patches of flowers. We simultaneously sampled recruitment dances of bees inside observation hives in two colonies over 4 days in Miami, Florida (1989) and from two other colonies over five days in Riverside, California (1991). Information encoded in the dance was used to determine the distance and direction that bees flew from the hive for pollen and nectar and to construct foraging maps for each colony. The foraging maps showed that bees from the two colonies in each location usually foraged at different sites, but occasionally they visited the same patches of flowers. Each colony shifted foraging effort among sites on different days. In both locations, the mean flight distances differed between colonies and among days within colonies. The flight distances observed in our study are generally shorter than those reported in a similar study conducted in a temperate deciduous forest where resources were less dense and floral patches were smaller.  相似文献   

19.
Nest site selection in the open-nesting honeybee Apis florea   总被引:1,自引:0,他引:1  
We studied nest site selection by swarms of the red dwarf honeybee, Apis florea. By video recording and decoding all dances of four swarms, we were able to determine the direction and distances indicated by 1,239 dances performed by the bees. The bees also performed a total of 715 nondirectional dances; dances that were so brief that no directional information could be extracted. Even though dances converged over time to a smaller number of areas, in none of the swarms did dances converge to one site. As a result, even prior to lift off, bees performed dances indicating nest sites in several different directions. Two of four swarms traveled directly in what seemed to be the general direction indicated by the majority of dances in the half hour prior to swarm lift off. The other two traveled along circuitous routes in the general direction indicated by the dances. We suggest that nest site selection in A. florea has similar elements to nest site selection in the better-studied Apis mellifera. However, the observation that many more locations are indicated by dances prior to lift off also shows that there are fundamental differences between the two species.  相似文献   

20.
Transfer of information about food source characteristics within insect societies is essential to colony-foraging success. The food odor communicated within honeybee hives has been shown to be important for food source exploitation. When successful foragers return to the nest and transfer the collected nectar to hive mates through mouth-to-mouth contacts (trophallaxis), potential recruits receiving these samples learn the food odor by associative learning. The food then becomes rapidly distributed among colony members, which is mainly a consequence of the numerous trophallaxes between hive-mates of all ages during food processing. We tested whether the distribution of food among hive mates causes a propagation of olfactory information within the hive. Using the proboscis extension response paradigm, we show that large proportions of bees of the age groups representing the main worker castes, 4 to 9-day-old bees (nurse-aged bees), 12 to 16-day-old bees (food processor-aged bees), and actual foragers (about 17+ day old bees) associatively learn the food odor in the course of processing food that has been collected by only a few foragers. Results further suggest that the information is shared more or less equally between bees of the three age groups. This shows that olfactory information about the flower species exploited by foragers is distributed within the entire colony and is acquired by bees of all age groups, which may influence many behaviors inside and outside the hive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号