首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An open-top chamber study was conducted to investigate the tissue and cellular-level foliar effects of ozone (O3) on a Mediterranean evergreen species, the mastic plant (Pistacia lentiscus L.). Plants were exposed at three different O3 levels, and leaf samples were collected periodically from the beginning of the exposure. Although no visible foliar injury was evident, alterations of the plastids and vacuoles in the mesophyll were observed. Senescence processes were accelerated with an anomalous stacking of tannin vacuoles, and a reduction in the size and number of the chloroplasts. Overall, most of the modifications induced by O3 were consistent with previously reported observations on deciduous broadleaf species, with the exception of alterations in the cells covering the secretory channels, reported here as a new finding. Comments on the feasibility of using microscopy to validate O3 related field observations and subtle foliar injury are also given.  相似文献   

2.
A research program was undertaken to develop information that could be used to estimate the risk of adverse effects of saline cooling tower drift on native and cultivated flora in the Indian Point, New York area. Eleven species of woody plants were exposed at 85 % relative humidity to a saline mist with 95% of the particles between 50 and 150 nm in diameter. Three biological factors—stage of development, species, and phenotype—determined the susceptibility of plants to saline aerosols when the occurrence of any lesion on the foliage was used as a measure of response. The effects of stage of development on the incidence and severity of foliar lesions depended upon the kind of plant. In deciduous woody species, the youngest leaves were most susceptible, but in conifers, the year-old needles were most susceptible. Canadian hemlock was the most susceptible species and witch hazel was the least susceptible. Median effective doses for these two species, although undetermined, could be more than 100-fold different (less than 2.4, the lowest used, and greater than 264 ng CI cm-2, respectively). Other species, ranked in decreasing order of susceptibility were: white ash, white flowering dogwood, forsythia, chestnut oak, silk tree, black locust, red maple, eastern white pine, and golden rain free. Phenofypic variation within a species was not so great—within a 10 to 20-fold increase in dose the incidence of injury went from 0 to 100%. Exposures with bush bean showed that the relative humidity (RH) during or after the exposure period affected the incidence of saline induced foliar injury. A change from 50 to 85% RH doubled the effectiveness of the saline mist. It was also found that compared to particles between 50 and 150 jum in diameter, an increase in the fraction of particles above 150 /xm increased the toxicity of the mist.  相似文献   

3.
The responses of ramets of hybrid poplar (Populus spp.) (HP) clones NE388 and NE359, and seedlings of red maple (Acer rubrum, L.) to ambient ozone (O(3)) were studied during May-September of 2000 and 2001 under natural forest conditions and differing natural sunlight exposures (sun, partial shade and full shade). Ambient O(3) concentrations at the study site reached hourly peaks of 109 and 98 ppb in 2000 and 2001, respectively. Monthly 12-h average O(3) concentrations ranged from 32.3 to 52.9 ppb. Weekly 12-h average photosynthetically active radiation (PAR) within the sun, partial shade and full shade plots ranged from 200 to 750, 50 to 180, and 25 to 75 micromol m(-2) s(-1), respectively. Ambient O(3) exposure induced visible foliar symptoms on HP NE388 and NE359 in both growing seasons, with more severe injury observed on NE388 than on NE359. Slight foliar symptoms were observed on red maple seedlings during the 2001 growing season. Percentage of total leaf area affected (%LAA) was positively correlated with cumulative O(3) exposures. More severe foliar injury was observed on plants grown within the full shade and partial shade plots than those observed on plants grown within the sun plot. Lower light availability within the partial shade and full shade plots significantly decreased net photosynthetic rate (Pn) and stomatal conductance (g(wv)). The reductions in Pn were greater than reductions in g(wv), which resulted in greater O(3) uptake per unit Pn in plants grown within the partial shade and full shade plots. Greater O(3) uptake per unit Pn was consistently associated with more severe visible foliar injury in all species and/or clones regardless of differences in shade tolerance. These studies suggest that plant physiological responses to O(3) exposure are likely complicated due to multiple factors under natural forest conditions.  相似文献   

4.
The deposition of atmospheric nitrogen can be enhanced at high altitude sites as a consequence of cloud droplet deposition and orographic enhancement of wet deposition on hills. The degree to which the increased deposition of nitrogen influences foliar nitrogen concentration in a range of upland plant species was studied in a series of field surveys in northern Britain. A range of upland plant species sampled along altitudinal transects at sites of known atmospheric nitrogen deposition showed marked increases in foliar nitrogen concentration with increasing nitrogen deposition and altitude (and hence with decreasing temperature). For Nardus stricta L., Deschampsia flexuosa (L.) Trin., Calluna vulgaris (L.) Hull, Erica cinerea L. and Hylocomium splendens (Hedw.) Br. Eur. on an unpolluted hill, foliar nitrogen increased by 0.07, 0.12, 0.15, 0.08 and 0.04% dry weight respectively for each 1 kg ha(-1) year(-1) increase in nitrogen deposition. Most species showed an approximately linear relationship between foliar nitrogen concentration and altitude but no trend with altitude for foliar phosphorus concentration. This provided evidence that the tissue nutrient status of upland plants reflects nutrient availability rather than the direct effects of climate on growth. However, differences in the relationship between foliar nitrogen concentration and atmospheric nitrogen deposition for N. stricta sampled on hills in contrasting pollution climates show that the possibility of temperature-mediated growth effects on foliar nitrogen concentration should not be ignored. Thus, there is potential to use upland plant species as biomonitors of nitrogen deposition, but the response of different species to nitrogen addition, in combination with climatic effects on growth, must be well characterised.  相似文献   

5.
Ozone impact on Mediterranean forests remains largely under-investigated, despite strong photochemical activity and harmful effects on crops. As representative of O3 impacts on Mediterranean vegetation, this paper reviews the current knowledge about O3 and forests in Italy. The intermediate position between Africa and European mid-latitudes creates a complex patchwork of climate and vegetation. Available data from air quality monitoring stations and passive samplers suggest O3 levels regularly exceed the critical level (CL) for forests. In contrast, relationships between O3 exposure and effects (crown transparency, radial growth and foliar visible symptoms) often fail. Despite limitations in the study design or underestimation of the CL can also affect this discrepancy, the effects of site factors and plant ecology suggest Mediterranean forest vegetation is adapted to face oxidative stress, including O3. Implications for risk assessment (flux-based CL, level III, non-stomatal deposition) are discussed.  相似文献   

6.
The impact of acidic deposition on interactions between the plant Encelia farinosa and the herbivorous beetle Trirhabda geminata (Chrysomelidae) was determined under greenhouse conditions. Acidic fogs (pH 2.75) did not significantly affect the overall foliar concentrations of water or soluble protein as compared with control fogs (pH 5.6). Nonetheless, E. farinosa foliage was altered by exposure to three 3-h acidic fogs such that growth and biomass gain by T. geminata increased by more than 30% as compared to beetles feeding on control-fogged plants. Thus, previous indications that changes in soluble proteins or water content were responsible for increased biomass gain and growth of T. geminata cannot be substantiated by this study. Additionally, changes in the plant defensive chemistry were not responsible for increased herbivore growth, as farinosin, encecalin, and euparin foliar concentrations did not vary significantly between fog treatments. Significant increases in CO2 assimilation rates of E. farinosa exposed to acidic fogs were documented at 3, 7, and 21 days following treatment, suggesting that carbohydrate-based products of increased plant metabolism may have played a role (e.g. soluble carbohydrates). However, the key factors responsible for increasing herbivore performance on acidic-fogged E. farinosa remain largely unknown.  相似文献   

7.
The goal of this study was to investigate the potential for atmospheric Hg degrees uptake by grassland species as a function of different air and soil Hg exposures, and to specifically test how increasing atmospheric CO(2) concentrations may influence foliar Hg concentrations. Four common tallgrass prairie species were germinated and grown for 7 months in environmentally controlled chambers using two different atmospheric elemental mercury (Hg major; 3.7+/-2.0 and 10.2+/-3.5 ng m(-3)), soil Hg (<0.01 and 0.15+/-0.08 micro g g(-1)), and atmospheric carbon dioxide (CO(2)) (390+/-18, 598+/-22 micro mol mol(-1)) exposures. Species used included two C4 grasses and two C3 forbs. Elevated CO(2) concentrations led to lower foliar Hg concentrations in plants exposed to low (i.e., ambient) air Hg degrees concentrations, but no CO(2) effect was apparent at higher air Hg degrees exposure. The observed CO(2) effect suggests that leaf Hg uptake might be controlled by leaf physiological processes such as stomatal conductance which is typically reduced under elevated CO(2). Foliar tissue exposed to elevated air Hg degrees concentrations had higher concentrations than those exposed to low air Hg degrees , but only when also exposed to elevated CO(2). The relationships for foliar Hg concentrations at different atmospheric CO(2) and Hg degrees exposures indicate that these species may have a limited capacity for Hg storage; at ambient CO(2) concentrations all Hg absorption sites in leaves may have been saturated while at elevated CO(2) when stomatal conductance was reduced saturation may have been reached only at higher concentrations of atmospheric Hg degrees . Foliar Hg concentrations were not correlated to soil Hg exposures, except for one of the four species (Rudbeckia hirta). Higher soil Hg concentrations resulted in high root Hg concentrations and considerably increased the percentage of total plant Hg allocated to roots. The large shifts in Hg allocation patterns-notably under soil conditions only slightly above natural background levels-indicate a potentially strong role of plants in belowground Hg transformation and cycling processes.  相似文献   

8.
Effects of vapours of two herbicides on plantlets of fourteen wild higher plant species and two bryophytes were screened in fumigation experiments using foliar injury, chlorophyll fluorescence and growth as response parameters. After vaporisation of the herbicides for 48 h, concentrations in the chambers reached 77 micrograms m-3 in the chlorpropham treatments and 184 ng m-3 in the ethofumesate treatments. Despite the higher concentrations of the volatile chlorpropham (vapour pressure, VP: 1.3 mP), plants showed no foliar injury, but vapours of this herbicide caused leaf crinkling in the agriophyte Agrostemma githago. The less volatile ethofumesate (VP: 0.56 mP) caused foliar injury in all higher species, with lowest no observed effect concentrations (NOECs) of 75 ng m-3. Chlorpropham affected growth only in Agrostemma, while ethofumesate reduced growth in one third of the higher plant species. Chlorophyll fluorescence proved to be a less suitable response parameter compared to foliar injury and growth. No adverse effects were observed in mosses, probably due to the slow growth and hence small doses of herbicides taken up. The extent of foliar injury due to ethofumesate showed a weak positive relationship to relative growth rates and specific leaf area in the tested higher plant species.  相似文献   

9.
Seedling growth and nutritional status have been shown to be sensitive to ozone, but the influence of multi-season ozone exposure on mature tree growth and nutrition has not been examined. To determine if seedlings and mature trees were similarly affected by ozone exposure, growth and nutrient concentrations in northern red oak (Quercus rubra L.) 4-year-old seedlings and 32-year-old mature trees were examined after treatment with subambient, ambient and twice ambient concentrations of ozone for three growing seasons. SUM00 values summed over the three growing seasons were 147, 255 and 507 ppm-h, respectively, for the subambient, ambient and twice ambient exposures. For mature trees, no influence of ozone treatment on lower stem diameter growth, stem growth within the mid-canopy and foliar biomass was observed. Seedling height was increased by ozone, but biomass and diameter were unaffected. A reduction in the specific leaf weight of leaves in response to ozone coincident with the loss of recurrent flushing was observed in seedlings. Ozone exposure reduced foliar nitrogen concentrations and increased woody tissue nutrient concentrations in seedlings and mature trees at the end of the third growing season. These results suggest an influence of ozone on retranslocation processes in seedlings and mature trees.  相似文献   

10.
Canton Ticino in southern Switzerland is exposed to some of the highest concentrations of tropospheric ozone in Europe. During recent field surveys in Canton Ticino, foliar symptoms identical to those caused by ozone have been documented on native tree and shrub species. In Europe, the critical ozone level for forest trees has been defined at an AOT40 of 10 ppm.h O3 (10 ppm.h accumulated exposure of ozone over a threshold of 40 ppb) during daylight hours over a six-month growing season. The objective of this study was to determine the amount of ambient ozone required to induce visible foliar symptoms on various forest plant species in southern Switzerland. Species were grown within eight open-top chambers and four open plots at the Vivaio Lattecaldo Cantonal Forest Nursery in Ticino, Switzerland. Species differed significantly in terms of the ppb.h exposures needed to cause visible symptoms. The most to least symptomatic species grown within open-plots in this study rank as Prunus serotina, Salix viminalis, Vibrnum lantana, Rhamnus cathartica, Betula pendula, Rumex obtusifolius, Sambucus racemosa, Morus nigra, Prunus avium, Fraxinus excelsior, Rhamnus frangula, Alnus viridis, Fagus sylvatica and Acer pseudoplatanus. Similar rankings were obtained in the non-filtered chamber plots. The ranking of species sensitivity closely follows AOT values for the occurrence of initial symptoms and symptom progression across the remainder of the exposure season. Species that first showed evidence of foliar injury also demonstrated the most sensitivity throughout the growing season, with symptoms rapidly advancing over ca. 25-30% of the total plant leaf surfaces by the end of the observation period. Conversely, those species that developed symptoms later in the season had far less total injury to plant foliage by the end of the observation period (1.5 to < 5% total leaf area injured). The current European ambient ozone standard may be insufficient to protect native plant species from visible foliar injury, and many more native species may be sensitive to ozone-induced foliar injury than are currently known.  相似文献   

11.
Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review   总被引:17,自引:0,他引:17  
At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4+ uptake occurs through the shoots, roots and through both pathways. However, NH4+ is immobile in the soil and is converted to NO3- (nitrate). In agricultural systems, additions of NO3- to the soil (initially as NH3 or NH4+) and the consequent increases in the emissions of N2O (nitrous oxide, a greenhouse gas) and leaching of NO3- into the ground and surface waters are of major environmental concern. At the ecosystem level NH3 deposition cannot be viewed alone, but in the context of total N deposition. There are a number of forest ecosystems in North America that have been subjected to N saturation and the consequent negative effects. There are also heathlands and other plant communities in Europe that have been subjected to N-induced alterations. Regulatory mitigative approaches to these problems include the use of N saturation data or the concept of critical loads. Current information suggests that a critical load of 5-10 kg ha(-1) year(-1) of total N deposition (both dry and wet deposition combined of all atmospheric N species) would protect the most vulnerable terrestrial ecosystems (heaths, bogs, cryptogams) and values of 10-20 kg ha(-1) year(-1) would protect forests, depending on soil conditions. However, to derive the best analysis, the critical load concept should be coupled to the results and consequences of N saturation.  相似文献   

12.
To study the biochemical mechanism of EDU protection against ozone injury, peroxidase, ascorbate-dependent peroxidase, and catalase activities, and the contents of ascorbic acid, dehydroascorbic acid, malondialdehyde and soluble protein were measured in Phaseolus vulgaris L. cv. Lit exposed to ozone and ethylenediurea (EDU) in open-top chambers. Plants not treated with EDU showed foliar bronzing due to ozone, while EDU-treated plants were not affected. EDU application modified the reaction of biochemical parameters to ozone. Soluble protein content was elevated by EDU. Peroxidase activity increased with ozone exposure in untreated plants only, while ascorbate-dependent peroxidase activity was lower in EDU treated plants. Catalase activity decreased in EDU-untreated plants. The ratio of ascorbic acid to dehydroascorbic acid was significantly increased in EDU treated plants. These results suggest that EDU might induce ascorbic acid synthesis and therefore provide the plant with a very potent antioxidant. Or the content of hydrogen peroxide was reduced due to other unknown processes and caused a delay in foliar senescence, regardless of whether these processes were ozone-induced or due to natural aging processes.  相似文献   

13.
Effects of VOCs on herbaceous plants in an open-top chamber experiment   总被引:1,自引:0,他引:1  
A selection of herbaceous plants representing the ground flora around a typical chemical installation in the UK was exposed continuously for 7 weeks to a mixture of six VOCs (acetone, acetonitrile, dichloromethane, ethanol, methyl t-butyl ether and toluene) in open-top chambers. Exposure concentrations were based on predictions of atmospheric dispersion from a single source, at a distance of approximately 2 km. The effects of continuous exposure, representing a worst-case, were measured in terms of uncontrolled water loss from leaves, leaf wettability, chlorophyll content and fluorescence, dry matter production and detailed observations of changes in plant growth and phenology. There were significant effects of VOC exposure on seed production, leaf water content and photosynthetic efficiency in some plant species. Such effects may be detectable in vegetation close to major industrial point sources of VOCs, or as a result of an accidental release of material during manufacture or transport. Some of the species tested e.g. birdsfoot trefoil (Lotus corniculatus L.) seem to be promising as potential bioindicators for VOCs, but there may be other even more sensitive species waiting to be discovered. However, the most obvious and conveniently measured response to VOCexposure in the birdsfoot trefoil (premature senescence i.e. advanced timing of seed pod production) could easily be confused in the field with climatic influences. It is also uncertain at this stage whether any of the effects observed would lead to longer term ecological changes in natural plant communities, through biased competition between sensitive and more tolerant species.  相似文献   

14.
Treatments with ethylenediurea (EDU) protect plants from ozone foliar injury, but the processes underlying this protection are poorly understood. Adult ash trees (Fraxinus excelsior), with or without foliar ozone symptoms in previous years, were treated with EDU at 450ppm by gravitational trunk infusion in May-September 2005 (32.5ppmh AOT40). At 30-day intervals, shoot growth, gas exchange, chlorophyll a fluorescence, and water potential were determined. In September, several biochemical parameters were measured. The protective influence of EDU was supported by enhancement in the number of leaflets. EDU did not contribute its nitrogen to leaf tissue as a fertiliser, as determined from lack of difference in foliar N between treatments. Both biochemical (increase in ascorbate-peroxidase and ascorbic acid, and decrease in apoplastic hydrogen peroxide) and biophysical (decrease in stomatal conductance) processes regulated EDU action. As total ascorbic acid increased only in the asymptomatic trees, its role in alleviating O(3) effects on leaf growth and visible injury is controversial.  相似文献   

15.
A series of fumigation experiments was conducted with bloodflower (Asclepias curassavica L.) in continuous-flow stirred reactors (CSTRs) to elucidate the effects of ozone on foliar concentrations of several primary and secondary plant metabolites relevant to herbivores. Plants 8 weeks of age were subjected to different ozone levels ranging from 0 to 134 nl liter(-1) for exposure periods up to 16 days. Leaves were analyzed for concentration of soluble carbohydrates, starch, free amino acids, soluble protein, total phenolics, and total cardenolides. Significant interactions between the linear effects of ozone concentration and exposure time were found for soluble carbohydrates, amino acids, cardenolides and phenolics. No significant treatment effects could be observed on foliar starch and protein concentration. The metabolic responses of plants to fumigation appeared to be altered by overall plant nutrition. It is possible that the metabolic changes observed in the host plant represent important changes in nutritional quality to insects.  相似文献   

16.
A review of ozone-induced effects on the forests of central Mexico   总被引:1,自引:0,他引:1  
The first report on oxidant-induced plant damage in the Valley of Mexico was presented over 30 years ago. Ozone is known to occur in the Mexico City Metropolitan Area and elsewhere as the cause of chlorotic mottling on pine needles that are 2 years old or older as observed in 1976 on Pinus hartwegii and Pinus leiophylla. Visible evidences for the negative effects of ozone on the vegetation of central Mexico include foliar injury expressed as chlorotic mottling and premature defoliation on pines, a general decline of sacred fir, visible symptoms on native forest broadleaved species (e.g. Mexican black cherry). Recent investigations have also indicated that indirect effects are occurring such as limited root colonization by symbiotic fungi on ozone-damaged P. hartwegii trees and a negative influence of the pollutant on the natural regeneration of this species. The negative ozone-induced effects on the vegetation will most likely continue to increase.  相似文献   

17.
A study was designed to examine responses of loblolly pine (Pinus taeda) to chronic exposure to ozone (O3) in the field. Seedlings of four full-sib families of loblolly pine were planted in a field near Raleigh, NC, and exposed daily (May 27 to October 24, 1985) in open-top chambers to O3 ranging from 0.5 to 1.96 times the O3 concentration in non-filtered (NF) air. One-fourth of the plants in each plot were removed during each of two harvests (August and October) to measure effects of O3 on plant growth. Plants of each family exhibited foliar symptoms characteristic of O3 injury after five months of exposure to any greater-than-ambient O3 concentration, and one family exhibited symptoms after five months of exposure to NF air. Ozone dose-plant response relationships were quantified by regression for stem height, stem diameter, biomass, and other plant morphological and yield characteristics. All relationships were linear for three families, but one family exhibited no significant growth response relationship of O3 dose. Dose-response equations suggest a maximum growth suppression of 10 percent for NF air compared to charcoal-filtered air (i.e., 0.5 × NF) in the first season of exposure.  相似文献   

18.
We designed a new gas exchange system that concurrently measures foliar H2O, O3, and CO2 flux (HOC flux system) while delivering known O3 concentrations. Stomatal responses of three species were tested: snapbean, and seedlings of California black oak (deciduous broadleaf) and blue oak (evergreen broadleaf). Acute O3 exposure (120-250 ppb over an hour) was applied under moderate light and low vapor pressure deficits during near steady state conditions. The rate of stomatal closure was measured when the whole plant was placed in the dark. An adjacent leaf on each plant was also concurrently measured in an O3-free cuvette. Under some conditions, direct measurements and calculated foliar O3 flux were within the same order of magnitude; however, endogenously low gs or O3 exposure-induced depression of gs resulted in an overestimation of calculated O3 fluxes compared with measured O3 fluxes. Sluggish stomata in response to light extinction with concurrent O3 exposure, and incomplete stomatal closure likewise underestimated measured O3 flux.  相似文献   

19.
A two-compartment exposure device for foliar uptake study   总被引:1,自引:0,他引:1  
An airtight two-chamber exposure devise was designed for investigating foliar uptake of polycyclic aromatic hydrocarbons (PAHs) by plants. The upper and the bottom chambers of the device were air-tightly separated by an aluminum foil and the plant aerial tissues and roots were exposed in the two chambers, respectively. The device was tested using maize exposed to several PAH species. Positive correlations between air and aerial tissue concentrations of the exposed PAH species were revealed. PAHs spiking in the culture solution had no influence on the leaf concentrations.  相似文献   

20.
Interspecific plant competition has been hypothesized to alter effects of early-season ozone (O3) stress. A phytometer-based approach was utilized to investigate O3 effects on growth and nutritive quality of Poa pratensis grown in monoculture and in mixed cultures with four competitor-plant species (Anthoxanthum odoratum, Achillea millefolium, Rumex acetosa and Veronica chamaedrys). Mesocosms were exposed during April/May 2000-2002 to charcoal-filtered air+25 ppb O3 (control) or non-filtered air+50 ppb O3 (elevated O3). Biomass production was not affected by O3, but foliar injury symptoms were observed in May 2002. Early-season O3 exposure decreased relative food value of P. pratensis by an average of 8%, which is sufficient to have nutritional implications for its utilization by herbivores. However, forage quality response to O3 was not changed by interspecific competition. Lack of injury and nutritive quality response in P. pratensis harvested in September may reflect recovery from early-season O3 exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号