首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Objective: Impact speed is one of the most important factors explaining the severity of injuries to cyclists when they collide with passenger cars. To reduce injury severity (especially for vulnerable road users), since 2008, Swedish municipalities have the authority to lower the speed limit to 30 or 40?km/h in urban areas as appropriate. The aim of this study was to evaluate how this speed limit reduction has influenced the injury severity for cyclists in this type of collision.

Method: Data from 1,953 collisions between bicycles and passenger cars were collected using information from third-party-liability insurance claims from 2005 to 2017. The change of speed limit distribution, influenced by the reduction of speed limits in urban areas, where car-to-cyclist collisions occurred was studied. Following that, injury severity for cyclists was evaluated regarding collisions occurring in areas with different speed limits.

Results: The results show that, in collisions with cars, cyclists have a significantly lower risk of a moderate-to-fatal (MAIS 2+) injury when the speed limit is 30–40?km/h compared to 50–60?km/h. During the last decade, while the speed-limit has been lowered on many road-sections in urban areas from 50–60?km/h to 30–40?km/h the risk of a cyclist getting a MAIS 2+ injury decreased by 25%. In 2005 to 2011, 16% of the crashes happened on a road with a speed limit of 30–40?km/h; in 2016–2017, this percentage had increased to approximately 50%. Thus, in recent years more crashes occurred on roads with lower speed limits, and in these crashes, there was a lower risk of severe injuries to cyclists. Unfortunately, it was not possible to evaluate the risk of a crash for specific speed limits; since one limitation of this study was the lack of exposure data, nor do we know the impact speed or the actual speed of the vehicles.

Conclusions: This study is an important follow-up on the implementation of measures that can influence bicycle safety. The insurance data used, made it possible to quantify a positive effect on injury severity for cyclists in passenger car-to-cyclist collisions when the speed limit was reduced in urban areas. Insurance claims cover collisions of all crash severity, so they include data covering all types of injuries—not just the most severe/fatal ones. This aspect is especially important in the speed intervals evaluated here, since moderate (MAIS 2) injuries are very frequent in lower-speed crashes and even these injuries can result in long-term consequences.  相似文献   

2.

Problem

Side impacts are a serious automotive injury problem; they represent about 30% of all fatalities for passenger vehicle occupants. This literature review focuses on occupant injuries resulting from real lateral collisions. It emphasizes the interaction between injury patterns and crash factors, taking into account type of injuries and their severity. It highlights what is known on the subject and suggests further studies.

Method

We reviewed papers identified by searches in two electronic databases for the 1996-2009 publication period, and in specific journals and conference proceedings.

Results

Studies on the Primary Direction of Force (PDOF) have revealed that fatal crashes occur most frequently when the PDOF is at 3 or 9 o'clock. The risk of serious injury is two to three times higher for the near-side occupant than for the far-side occupant. Head injuries predominate in oblique impacts and thoracic injuries in perpendicular ones. A few results are also reported on side airbag protection.

Conclusions

This literature review presents an overall picture of the injuries caused by lateral collisions, though each of the papers or articles examined focuses mostly on some particular aspect of the problem. The incidence of specific injuries depends on the data source used. Very few population-based analyses of lateral collision injuries were found.

Impact on industry

New studies are needed to evaluate new protective devices (e.g., lateral airbags, inflatable curtains). Without interfering with their care duties, Emergency Medical Technicians could be systematically trained to observe the collision's specific characteristics and to report all their relevant observations to the emergency physicians to increase the likelihood of prompt diagnosis and proper care.  相似文献   

3.
OBJECTIVE: The aim of this study was to investigate head injuries, injury risks, and corresponding tolerance levels of children in car-to--child pedestrian collisions. METHODS: An in-depth accident analysis was carried out based on 23 accident cases involving child pedestrians. These cases were collected with detailed information about pedestrians, cars, and road environments. All 23 accidents were reconstructed using the MADYMO program with mathematical models of passenger cars and child pedestrians developed at Chalmers University of Technology. The contact properties of the car models were derived from the European New Car Assessment Program (EuroNCAP) subsystem tests. RESULTS: The accident analysis demonstrated that the head was the most frequently and severely injured body part of child pedestrians. Most accidents occurred at impact speeds lower than 40 km/h and 98% of the child pedestrians were impacted from the lateral direction. The initial postures of children at the moment of impact were identified. Nearly half (47%) of the children were running, which was remarkable compared with the situation of adult pedestrians. From accident reconstructions it was found that head impact conditions and injury severities were dependent on the shape and stiffness of the car front, impact velocity, and stature of the child pedestrian. Head injury criteria and corresponding tolerance levels were analyzed and discussed by correlating the calculated injury parameters with the injury outcomes in the accidents. CONCLUSIONS: Reducing head injuries should be set as a priority in the protection of child pedestrians. HIC is an important injury criterion for predicting the risks of head injuries in child pedestrian accidents. The tolerance level of head injuries can have a considerable variation due to individual differences of the child pedestrians. By setting a suitable speed limit and improving the design of car front, the head injury severities of child pedestrians can be reduced.  相似文献   

4.
OBJECTIVES: To evaluate the factors that might influence an occupant's injury severity during a left turn movement. METHODS: We used the National Automotive Sampling System Crashworthiness Data System (1995-2005) to compare crash characteristics and injury outcome between intersection and midblock left turn collisions. RESULTS: A total of 7,396 collisions were evaluated. Traffic control devices were present in 82% of intersection and 10% of mid-block collisions. After adjustment for potential confounding variables, drivers' injury severity was not significantly associated with the crash location. However, front seat passengers in mid-block collisions had 72% higher odds of experiencing an injury with injury severity score > or =9 (odds ratio: 1.72, 95% confidence interval: 1.09-2.69). Our analysis did not show that drivers or passengers in larger vehicles, e.g., sport utility vehicles and mini-vans, were at lower risk of more severe injuries in comparison to the car occupants in sedans. CONCLUSION: We found that in comparison to intersection-related left turn collisions, mid-block crashes are associated with more severe injuries for front seat passengers. Furthermore, size of the turning vehicle was not significantly associated with injury severity for drivers or front seat passengers.  相似文献   

5.
BackgroundBackground: Pallets are key components of domestic supply chains, and yet present unique hazards when used by homeowners and retailers for unintended uses. No previous works have investigated non-occupational injuries that occur due to unintentional contact with pallets. This study sought to describe the incidence and epidemiology of non-occupational pallet-related injuries as seen in United States emergency departments (EDs). Method: The National Electronic Injury Surveillance System database was used to derive national, weighted estimates of pallet-related injuries by age, sex, injured body part, and location where injury occurred. Data for the years 2014 to 2018 were analyzed with all relevant narratives reviewed. Results: From 2014 to 2018, there were an estimated 30,493 persons who visited an ED for a pallet-related injury. The yearly incidence of pallet injuries rose during this period. The 35–44 age group (n = 5,481) was most likely to be injured, but about 3,000 children and youth under 18 years of age were injured and more than 4,000 persons 65 years of age or older suffered injuries. The elderly were especially likely to suffer injuries from slip, trip and fall incidents. The lower extremities were the most commonly injured body parts. An estimated 3,964 persons, accounting for approximately 14% of all pallet-related injuries, were treated for injuries incurred while at a retail establishment. African Americans, Hispanics, and the elderly appeared to be disproportionately more likely to have pallet-related injuries in retail locations. Conclusions: Non-occupational pallet-related injuries affect a wide range of patients and cause a variety of injuries, with the elderly being especially vulnerable to tripping incidents. Retailer prevention strategies should focus on the misuse of pallets for merchandising purposes. Industry should maintain control of pallets so they are not used for unintended purposes. Practical applications: Retailers should limit the use of pallets for floor-level merchandising purposes and remove pallets from customer-facing locations where unintentional contact could occur. Owners of pallets should maintain them in a controlled supply chain so that they don’t leak out into the hands of homeowners. Policy-makers should educate the public about the dangers of used pallets.  相似文献   

6.
7.
Introduction: Although public buses have been demonstrated as a relatively safe mode of transport, the number of injuries to public bus passengers is far from negligible. Existing studies of public bus safety have focused primarily on injuries caused by collisions. Surprisingly, limited effort has been devoted to identifying factors that increase the severity of passenger injuries in non-collision incidents. Method: Our study therefore investigated the injury risk of public bus passengers involved in collision incidents and non-collision incidents comparatively, based on a police-reported dataset of 17,383 passengers injured on franchised public buses over a 10-year period in Hong Kong. A random parameters logistic model was established to estimate the likelihood of fatal and severe injuries to passengers as a function of various factors. Results: Our results indicated substantial inconsistences in the effects of risk factors between models of non-collision injuries and collision injuries. The severity of passenger injuries tended to increase significantly when non-collision incidents occurred due to excessive speed of bus drivers, on double-decker buses, in less urbanized areas, in winter, in heavy rains, during daytime, and at night without street lighting. Elderly female passengers were also found more likely to be fatally or severely injured in non-collision incidents if they lost their balance while boarding, alighting from, or standing on a bus. In comparison, the following factors were associated with a greater likelihood of fatal or severe injuries in collision incidents: elderly female passengers, standing passengers who lost balance, buses out of driver control, double-decker buses, collisions with vehicles or objects, and less urbanized areas. Practical Applications: Based on our comparative analysis, more targeted countermeasures, namely “4E” (engineering, enforcement, emergency, and education) and “3A” (awareness, appreciation, and assistance), were recommended to mitigate collision injuries and non-collision injuries to public bus passengers, respectively.  相似文献   

8.
OBJECTIVE: The purpose of this study was to determine a mechanism of injury of the forefoot due to impact loads and accelerations as noted in some frontal offset car crashes. METHODS: The impact tests conducted simulated knee-leg-foot entrapment, floor pan intrusions, whole-body deceleration, muscle tension, and foot/pedal interaction. Specimens were impacted at speeds of up to 16 m/s. To verify this injury mechanism research was conducted in an effort to produce Lisfranc type injuries and metatarsal fractures. A total of 54 lower legs of post-mortem human subjects were tested. Two possible mechanisms of injury were investigated. For the first mechanism the driver was assumed to be braking hard with the foot on the brake pedal and at 0 deg plantar flexion (Plantar Nominal Configuration) and the brake pedal was in contact with the foot behind the ball of the foot. The second mechanism was studied by having the ball of the foot either on the brake pedal or on the floorboard with the foot plantar-flexed 35 to 50 deg (Plantar Flexed Configuration). RESULTS: The Plantar Nominal injury mechanism yielded few injuries of the type the study set out to produce. Out of 13 specimens tested at speeds of 16 m/s, three had injuries of the metatarsal (MT) and tarsometatarsal joints. The Plantar Flexed Configuration injury mechanism yielded 65% injuries at high (12.5-16 m/s) and moderate (6-12 m/s) speeds. CONCLUSION: It is concluded that Lisfranc type foot injuries are the result of impacting the forefoot in the Plantar Flexed Configuration. The injuries were consistent with those reported by physicians treating accident victims and were verified by an orthopedic surgeon during post impact x-ray and autopsy. They included Lisfranc fractures, ligamentous disruptions, and metatarsal fractures.  相似文献   

9.
PROBLEM: The expected substantial increase in people aged 65 or older is important for those concerned about transportation injuries. However, much of the previous research concentrates on older drivers and overlooks the fact that vehicle and crash factors may provide significant explanations of older occupant injury rates. METHOD: Differences across age groups are explored using two nationwide travel surveys, crash involvement, fatalities, and injuries from crash databases and an ordered probit model of injury severity. RESULTS AND DISCUSSION: Two noticeable differences that help explain injury risk are that older people are more likely to travel in passenger cars than younger people who frequently use light trucks, and that seriously injured older occupants are more likely to be involved in side-impact crashes than their younger counterparts. IMPACT: Increased attention to vehicle engagement in side-impact crashes and to vehicle technologies that can help drivers avoid side collisions would be particularly helpful for older occupants.  相似文献   

10.
PROBLEM: While several management practices have been cited as important components of safety programs, how much does each incrementally contribute to injury reduction? This study examined the degree to which six management practices frequently included in safety programs (management commitment, rewards, communication and feedback, selection, training, and participation) contributed to a safe work environment for hospital employees. METHOD: Participants were solicited via telephone to participate in a research study concerning hospital risk management. Sixty-two hospitals provided data concerning management practices and employee injuries. RESULTS: Overall, the management practices reliably predicted injury rates. A factor analysis performed on the management practices scale resulted in the development of six factor scales. A multiple regression performed on these factor scales found that proactive practices reliably predicted injury rates. Remedial measures acted as a suppressor variable. DISCUSSION: While most of the participating hospitals implemented reactive practices (fixing problems once they have occurred), what differentiated the hospitals with low injury rates was that they also employed proactive measures to prevent accidents. IMPACT ON INDUSTRY: The most effective step that hospitals can take is in the front-end hiring and training of new personnel. They should also ensure that the risk management position has a management-level classification. This study also demonstrated that training in itself is not adequate.  相似文献   

11.
Objective: Although electric bicycle-related injuries have become the most common reason for hospitalization due to a road crash in China, no study has comprehensively investigated electric bicycle collisions and their impact on orthopedic injuries; such a study may provide evidence to support a new road safety policy.

Methods: A retrospective review of orthopedic injuries from electric bicycle collisions was performed in an urban trauma center. We collected variables including age, gender, location of fracture, presence of open or closed fractures, concomitant vascular, and neurologic injuries.

Results: A total of 2,044 cases were involved in electric bicycle collisions. The orthopedic injury victims were predominantly male and middle aged. The most common orthopedic injury was a femur fracture. Open fractures frequently involved the forearm and tibia/fibula. Male patients were more likely to suffer from multiple fractures and associated injuries than female patients. Fewer patients age 60 years old or older wore helmets at the time of the accident compared to those in other age groups.

Conclusions: Orthopedic injuries from electric bicycle-related accidents cause patients substantial suffering that could lead to serious social consequences. Helmet use and protective clothing or similar safety gear, especially for electric bicycle users, should be required to provide greater protection.  相似文献   


12.
In vehicle–pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   

13.
Objective: This study aimed at investigating the effects of vehicle impact velocity, vehicle front-end shape, and pedestrian size on injury risk to pedestrians in collisions with passenger vehicles with various frontal shapes. Method: A series of parametric studies was carried out using 2 total human model for safety (THUMS) pedestrian models (177 and 165?cm) and 4 vehicle finite element (FE) models with different front-end shapes (medium-size sedan, minicar, one-box vehicle, and sport utility vehicle [SUV]). The effects of the impact velocity on pedestrian injury risk were analyzed at velocities of 20, 30, 40, and 50?km/h. The dynamic response of the pedestrian was investigated, and the injury risk to the head, chest, pelvis, and lower extremities was compared in terms of the injury parameters head injury criteria (HIC), chest deflection, and von Mises stress distribution of the rib cage, pelvis force, and bending moment diagram of the lower extremities. Result: Vehicle impact velocity has the most significant influence on injury severity for adult pedestrians. All injury parameters can be reduced in severity by decreasing vehicle impact velocities. The head and lower extremities are at greater risk of injury in medium-size sedan and SUV collisions. The chest injury risk was particularly high in one-box vehicle impacts. The fracture risk of the pelvis was also high in one-box vehicle and SUV collisions. In minicar collisions, the injury risk was the smallest if the head did not make contact with the A-pillar. Conclusion: The vehicle impact velocity and vehicle front-end shape are 2 dominant factors that influence the pedestrian kinematics and injury severity. A significant reduction of all injuries can be achieved for all vehicle types when the vehicle impact velocity is less than 30?km/h. Vehicle designs consisting of a short front-end and a wide windshield area can protect pedestrians from fatalities. The results also could be valuable in the design of a pedestrian-friendly vehicle front-end shape. [Supplementary materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention for the following free supplemental resource: Head impact conditions and injury parameters in four-type vehicle collisions and validation result of the finite element model of one-box vehicle and minicar. ].  相似文献   

14.
Objective: Serious head and cervical spine injuries have been shown to occur mostly independent of one another in pure rollover crashes. In an attempt to define a dynamic rollover crash test protocol that can replicate serious injuries to the head and cervical spine, it is important to understand the conditions that are likely to produce serious injuries to these 2 body regions. The objective of this research is to analyze the effect that impact factors relevant to a rollover crash have on the injury metrics of the head and cervical spine, with a specific interest in the differentiation between independent injuries and those that are predicted to occur concomitantly.

Methods: A series of head impacts was simulated using a detailed finite element model of the human body, the Total HUman Model for Safety (THUMS), in which the impactor velocity, displacement, and direction were varied. The performance of the model was assessed against available experimental tests performed under comparable conditions. Indirect, kinematic-based, and direct, tissue-level, injury metrics were used to assess the likelihood of serious injuries to the head and cervical spine.

Results: The performance of the THUMS head and spine in reconstructed experimental impacts compared well to reported values. All impact factors were significantly associated with injury measures for both the head and cervical spine. Increases in impact velocity and displacement resulted in increases in nearly all injury measures, whereas impactor orientation had opposite effects on brain and cervical spine injury metrics. The greatest cervical spine injury measures were recorded in an impact with a 15° anterior orientation. The greatest brain injury measures occurred when the impactor was at its maximum (45°) angle.

Conclusions: The overall kinetic and kinematic response of the THUMS head and cervical spine in reconstructed experiment conditions compare well with reported values, although the occurrence of fractures was overpredicted. The trends in predicted head and cervical spine injury measures were analyzed for 90 simulated impact conditions. Impactor orientation was the only factor that could potentially explain the isolated nature of serious head and spine injuries under rollover crash conditions. The opposing trends of injury measures for the brain and cervical spine indicate that it is unlikely to reproduce the injuries simultaneously in a dynamic rollover test.  相似文献   

15.
In vehicle-pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   

16.
OBJECTIVE: The lower extremity is among the most frequently injured body regions for children restrained by forward facing child restraint systems (FFCRS), accounting for 28% of their clinically significant injuries, defined as AIS 2 and greater injuries excluding concussions. Despite the prevalence of these injuries, the current U.S. Motor Vehicle Safety Standard governing FFCRS (FMVSS 213) does not provide a direct assessment of the biomechanical risk of lower extremity fracture nor do the current pediatric test devices provide adequate instrumentation to detect the risk of such injuries. Before improvements can be made to the anthropometric test devices (ATDs) or test procedures to address these limitations, understanding of the sources and mechanisms of these injuries is necessary. Therefore, the objective of this study was to document location, source, and crash circumstances of lower extremity injuries in children seated in FFCRS. METHODS: Utilizing two sources of data, PCPS and CIREN, 20 in-depth investigations of crashes involving children seated in FFCRS with lower extremity injuries were reviewed to determine the nature of the injuries and the circumstances under which they occurred. RESULTS: Injuries below the knee were the most common, particularly to the tibia/fibula, and they most often occurred due to interaction with the vehicle seatback in front of the child's seating position. These injuries were sustained most commonly in frontal impacts although interaction with the seatback also occurred in other crash types. This interaction with the seatback was exacerbated by possible contributing factors such as intrusion of the front seatback into the child's occupant space or FFCRS misuse resulting in increased excursion of the child during impact. CONCLUSIONS: This review of cases of children in FFCRS with AIS 2 and greater lower extremity injury points to the role of the seatback in the occurrence of these injuries, suggesting the need to consider this interaction in the seatback design process and to adequately represent this interaction in regulatory procedures assessing the performance of child restraints.  相似文献   

17.
OBJECTIVE: The objective of the study was to determine which vehicle factors are significantly related to pelvic injury in side impact collisions. Identification of relevant parameters could aid in the reduction of these injuries. METHOD: Side impact crashes from the CIREN database were separated into those in which the occupant sustained a pelvic fracture and those in which no pelvic fracture occurred, although all occupants had serious injuries. A multibody MADYMO model was created of a USDOT SINCAP (U.S. Department of Transportation Side Impact New Car Assessment Program) test of a vehicle with a large center console. RESULTS: From a study of 113 side impact crashes in the ciren database, nearside occupants with pelvic fractures (n = 78) had (i) more door intrusion (mean, 37 vs. 32 cm, p = 0.02) than those who had serious injuries, but not pelvic fractures (ii) a greater likelihood that the lower border of the door intruded more than the upper part (40% vs. 18%, p < 0.025); and (iii) a greater likelihood that their vehicle had a center console (47 vs. 17%, p < 0.005). Other parameters such as occupant age, weight, gender, vehicle weight, and struck vehicle speed change were not significantly different. MADYMO modeling showed that with a center console, an initial positive pelvic acceleration occurred at about 30 msec, followed at about 45 msec by a second acceleration peak in the opposite direction. Reducing console stiffness reduced the second acceleration but not the initial peak. Allowing the seat to translate laterally when contacted by the door reduced the initial pelvic acceleration by 50% and eliminated the second acceleration peak. CONCLUSIONS: Redesigning the center console using less stiff materials and allowing some lateral translation of the seat could aid in reducing pelvic injuries in side impact collisions.  相似文献   

18.
Current occupant protection assessment for side impact is focused on struck side occupants sitting alone. In a representative sample of tow-away side collisions from the UK, only one-third of front seat occupants in side collisions were alone, on the struck side of the car. The other two-thirds were either a non-struck side occupant alone or a situation where the adjacent seat was also occupied. In terms of restraint protection for non-struck side occupants, belts appeared to be less effective in perpendicular compared to oblique side crashes. Front seat occupancy had bearing on injury outcome. With both front seats occupied, there was a reduction in AIS 27+ injury to belted non-struck side occupants due to a reduction in chest and lower limb injuries. Struck side occupants sustained increased injury rates to the extremities when accompanied by a belted non-struck side occupant but no notable increases in moderate to serious injury to the head, chest, abdomen or pelvis.  相似文献   

19.
Objective: Though autonomous emergency braking (AEB) systems for car-to-cyclist collisions have been under development, an estimate of the benefit of AEB systems based on an analysis of accident data is needed for further enhancing their development. Compared to the data available from in-depth accident data files, data provided by drive recorders can be used to reconstruct car-to-cyclist collisions with greater accuracy because the position of cyclists can be observed from the videos. In this study, using data from drive recorders, the performance and limitations of AEB systems were investigated.

Method: Data of drive recorders involving taxi-to-cyclist collisions were collected. Using the images collected from the drive recorders of those taxis, 40 cases of 90° car-to-cyclist intersection collisions were reconstructed using PC-Crash. Then, the collisions were reconstructed again utilizing car models with AEB systems installed while changing the sensor’s field of view (FOV) and the delay time of initiating vehicle deceleration.

Results: The angle of FOV has a significant influence on avoiding car-to-cyclist collisions. Using a 50° FOV with a braking delay time of 0.5?s resulted in avoiding 6 collisions, and using a 90° FOV resulted in avoiding an additional 14 collisions. Even when installing an ideal AEB system providing 360° FOV and no delay time for braking, 8 collisions were not avoided, though the impact velocities were reduced for all of these remaining collisions. These collisions were caused by the cyclists’ sudden appearance in front of cars, and the time-to-collision (TTC) when the cyclists appeared was less than 0.9?s.

Conclusion: The AEB systems were effective for mitigating collisions that occurred due to driver perception delay. Because cyclists have a traveling velocity, a wide-angle FOV is effective for reduction of car-to-cyclist intersection collisions. The reduction of delay time in braking can reduce the number of collisions that are close to the braking performance limit. The collisions that remained even with an ideal AEB system in the PC-Crash simulation indicate that such collisions could still occur for autonomous cars if the traffic environment does not change.  相似文献   

20.
Objective: Powered mobility devices (PMDs) are commonly used as aids for older people and people with disabilities, subgroups of vulnarable road users (VRUs) who are rarely noted in traffic safety contexts. However, the problem of accidents involving PMD drivers has been reported in many countries where these vehicles have become increasingly popular.

The aim of this study is to extract and analyze national PMD-related accident and injury data reported to the Swedish Traffic Accident Data Acquisition (STRADA) database. The results will provide valuable insight into the risks and obstacles that PMD drivers are exposed to in the traffic environment and may contribute to improving the mobility of this group in the long term.

Methods: The current study is based on data from 743 accidents and 998 persons. An analysis was performed on a subset of data (N?=?301) in order to investigate the development of accidents over a period of 10 years. Thereafter, each accident in the whole data set was registered as either single (N?=?427) or collision (N?=?315).

Results: The results show that there was a 3-fold increase in the number of PMD-related accidents reported to STRADA during the period 2007–2016.

With regard to single accidents, collisions, as well as fatalities, the injury statistics were dominated by males. Single accidents were more common than collisions (N?=?427 and N?=?316, respectively) and the level of injury sustained in each type of accident is on par.

The vast majority of single accidents resulted in the PMD driver impacting the ground (87%), due to either PMD turnover (71%) or the driver falling out of the PMD (16%). The reason for many of the single accidents was a difference in ground level (34%, typically a curb).

Cars, trucks, or buses were involved in 67% of collision events; these occured predominantly at junctions or intersections (70%).

Abbreviated Injury Scale (AIS) 3+ injuries were dominated by hip and head injuries in both single accidents and collision events.

Conclusions: The present study shows that further research on PMD accidents is required, with regard to both single accidents and collision events. To ensure that appropriate decisions are made, future work should follow up on injury trends and further improve the quality of PDM-related accident data. Improved vehicle stability and design, increased usage of safety equipment, proper training programs, effective maintenance services, and development of a supporting infrastructure would contribute to increased safety for PMD drivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号