首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The possibility of using phytoremediation with weed plant species in Thailand to remove chromium (Cr) from soil was investigated. Six plant species, Cynodon dactylon, Pluchea indica, Phyllanthus reticulatus, Echinochloa colonum, Vetiveria nemoralis, and Amaranthus viridis, were chosen for their abilities to accumulate total chromium (TCr) at tanning industry sites. These plant species were studied in pots at a nursery. Cynodon dactylon and Pluchea indica provided highest TCr accumulation capacities of 152.1 and 151.8 mg/kg of plant on a dry weight basis, respectively, at a pulse hexavalent Cr [Cr(VI)] input of 100 mg Cr(VI)/kg soil. Most of the Cr uptake occurred within 30 days after the input. The TCr accumulation by Pluchea indica was observed in roots, stems, and leaves at 27%, 38%, and 35% of the TCr mass uptake, respectively, whereas 51%, 49% and 0% of the TCr mass uptake accumulated in roots, stems, and leaves of Cynodon dactylon, respectively. The results on Cr accumulation and translocation in plant tissues suggest that Cr was removed mainly via phytoaccumulation and Pluchea indica is more suitable than Cynodon dactylon for the phytoremediation of Cr contaminated soil.  相似文献   

2.
Partly because of the low bioavailability of metals, the soil cleaning-up using phytoremediation is usually time-consuming. In order to enhance the amount of metals at the plant's disposal, the soil bioaugmentation coupled together with phytoextraction is an emerging technology. In this preliminary work, two agricultural soils which mainly differed in their Cr, Hg and Pb contents (LC, low-contaminated soil; HC, high-contaminated soil) were bioaugmented in laboratory conditions by either bacterial (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas fluorescens or Ralstonia metallidurans) or fungal inocula (Aspergillus niger or Penicillium simplicissimum) and incubated during three weeks. The LC soil pots bioaugmented with A. niger and P. aeruginosa contained higher concentrations of Cr (0.08 and 0.25 mg.kg−1 dw soil) and Pb (0.25 and 0.3 mg.kg−1 dw soil) in the exchangeable fraction F1 (extraction with MgCl2) by comparison with the non-bioaugmented soil where neither Cr nor Pb was detected. Conversely, immobilization of Cr and Pb in the soil were observed with the other microorganisms. The soil bioaugmentation not only modified the metal speciation for the most easily extractable fractions but also modified the distribution of metals in the other fractions, to a lesser extent nevertheless. The difference in microbial concentrations between the bioaugmented or not HC soils reached up to 1.8 log units. Thus the microorganisms that we chose for the soil bioaugmentation were competitive towards the indigenous microflora. The PCA analysis showed close positive relationships between the microorganisms which potentially produced siderophores in the soil and the amount of Cr and Pb in the fraction F1.  相似文献   

3.
Phytoremediation is a new technology that uses specially selected metal-accumulating plants as an attractive and economical method to clean up soils contaminated with heavy metals and radionuclides. The integration of specially selected metal-accumulating crop plants (Brassica juncea (L) Czern.) with innovative soil amendments allows plants to achieve high biomass and metal accumulation rates. In a recent study conducted at a lead-contaminated site in Trenton, New Jersey, the soil was treated with phytoremediation using successive crops of B. juncea combined with soil amendments. Through phytoremediation, the average surface soil lead concentration was reduced by 13 percent. In addition, the target soil concentration of 400 mg/kg was achieved in approximately 72 percent of the treated area in one cropping season.  相似文献   

4.
Chelate‐assisted metal uptake by plants has only recently been discovered in the remediation industry. The simultaneous accumulation of lead, arsenic, copper, and cadmium in plants after application of chelating agents to soil is a promising technology enhancement for phytoremediation. One of the most powerful and commonly used chelating agents is ethylene diamine tetra acetic acid (EDTA), which forms complexes with many of the metal contaminants within the natural environment. This study was conducted to determine the efficiency of an emergent wetland plant species Typha sp. and floating wetland macrophytes such as Pistia sp., Azolla sp., Lemna sp., Salvinia sp., and Eichhornia sp. in phytoremediation of various heavy metals with addition of a chelating agent such as EDTA. EDTA addition to the treatment systems increased the uptake of heavy metals by plants, which was much pronounced with lead and copper. However, the pattern of uptake by plants was similar as that of heavy metals without EDTA amendments. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The aim of the project is to study heavy metals accumulation by the selected plants in both laboratory and field conditions. Within the experiments the aspen (Populus tremula × tremuloides), sunflower (Helianthus annuus) and corn (Zea mays) plants were studied. The reasons for this selection were: a fast growth of these plants, an accumulation capacity and an ability to survive in different types of soils. The study was carried out on the aspen plantlets grown in vitro. The plants were exposed to the aqueous solutions having concentrations 0.1 mM, 0.5 mM of Pb2+ or Ni2+, respectively. The accumulation capacityfor aspen, was about 70% of Pb2+ originally present in the solution. The starting concentration of Pb2+ (0.5 mM) exhibited no negative impact on the growth. Besides in vitro expositions, a pilot-scale phytoremediation experiment was carried out at the polluted industrial area (Zn – 75000 mg/kg), (Pb – 16000 mg/kg), (Cr – 590 mg/kg), (Cd – 90 mg/kg) and (Cu – 1700 mg/kg).  相似文献   

6.
Plant species sorghum (Sorghum vulgar L.), clover (Trifolium pratense L.), panikum (Panicum antidotal), and canola (Brassica napus) were tested to determine their phytoremediation potential. After a period of about 90 days, plant samples (shoots and roots) and soil samples (before and after cultivation) were collected for zinc and cobalt analyses using atomic absorption spectrometry. The highest zinc uptake was observed in canola, while panikum grass showed a high zinc accumulation affinity compared to sorghum and clover. Calculation of the recovery percentage, based on the amount of zinc removed from the soil after cultivation, ranged between 12.8 and 36.3 percent of the total initial zinc. Canola shoots exhibited the highest cobalt uptake compared to the other plant species. Calculation of the recovery percentage based on cobalt removed from the soil after cultivation ranged between 10.1 and 40.7 percent of the total initial cobalt concentration. © 2007 Wiley Periodicals, Inc. *
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  •   相似文献   

    7.
    Two studies were conducted to determine a feasible and practical phytoremediation strategy for Zn-contaminated soils. The aim of the first study was to identify promising plant species capable of Zn remediation for the soils and climatic conditions of British Columbia. The purpose of the second study was to assess the effects of soil amendments in modifying the soil properties and providing the right conditions for the plants to immobilise Zn. Promising plants for phytostabilisation in the first study (Lolium perenne, Festuca rubra and Poa pratensis) were tested in the presence of soil amendments (lime, phosphate and compost, both individually and in combination) in the second study. The efficiency of treatments to stabilise Zn was based on Zn fractionation in the soil and on absorption and partitioning of Zn in plants. Maximum Zn immobilisation was achieved in the soil by a combination of lime, phosphate and compost, in conjunction with growth of P. pratensis.  相似文献   

    8.
    A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil‐gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert‐butyl ether concentrations have decreased in groundwater. Interpolations of free‐phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on‐site, even in a noncontaminated control area. All four Populus clones survived well at the site. © 2014 Wiley Periodicals, Inc.*  相似文献   

    9.
    Improper disposal and spills of spent engine oil into the environment can result in contamination, which eventually affects humans through the food chain. Mycoremediation is an effective and inexpensive alternative to clean up spent engine oil contamination. In recent work, the potential effectiveness of fungi for degrading spent engine oil was confirmed, with the species identified through molecular identification. Fungi that were able to grow in Bushnell Haas Broth supplied with spent engine oil were identified with the potential to utilize spent engine oil as a carbon source. Six species of fungi namely Penicillium simplicissimum, Aspergillus nidulans, Aspergillus niger, Trichoderma longibrachiatum, Aspergillus ustus, and Aspergillus flavus were successfully identified in this study. Over a course of seven days, P. simplicissimum (21.11 percent) was identified as the most effective fungi in degrading spent engine oil, followed by A. nidulans (17.75 percent), A. niger (15.85 percent), T. longibrachiatum (15.12 percent), A. ustus (15.02 percent), and A. flavus (11.80 percent). As these species of fungi were isolated from the natural environment in Peninsular Malaysia, the potential of using these fungi as mycoremediation of spent engine oil was therefore confirmed.  相似文献   

    10.
    Plant transpiration is a critical process that affects the water balance in phytoremediation plots. The desired effect is to remove contaminated water from the soils through the plant metabolism. Thus, the transpiration rate can be a major component in modeling the groundwater flow and solute transport for a phytoremediation project and ultimately can determine the time expected to achieve remedial goals. Two phytoremediation plots of black willows (Salix nigra) were planted during October 1996 over separate,shallow groundwater plumes at a site in southeastern Louisiana. Concentrations of less than 10 mg/l of the herbicide bentazon were present in the shallow groundwater. Field experiments were developed and performed during the 1998 and 1999 growing seasons to measure sap flow as an indicator of plant transpiration. The tree‐trunk heat balance method was used to measure sap flow. Sap flow was indexed to the cross‐sectional area of the stem, and the sum of the available stem area for each plot was used to calculate the monthly water use in each plot. Daily water use in the plots averaged between 6 to 13 l/day/m2 during the periods tested in 1998 and 1999. By applying growth‐rate observations with the daily water use, annual water use at tree plot maturity was estimated to be 3.6×106 l/year in Plot 1 and 11.39×106 l/year in Plot 2. Application of these data will allow groundwater modeling to be performed to measure the effectiveness of phytoremediation and to predict closure of remediation at the test site. © 2001 John Wiley & Sons, Inc.  相似文献   

    11.
    Four polyhydroxyalkanoate (PHA) depolymerases were purified from the culture fluid ofPseudomonas lemoignei: poly(3-hydroxybutyrate) (PHB), depolymerase A (M r , 55,000), and PHB depolymerase B (M r , 67,000) were specific for PHB and copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) as substrates. The third depolymerase additionally hydrolyzed poly(3-hydroxyvalerate) (PHV) at high rates (PHV depolymerase;M r , 54,000). The N-terminal amino acid sequences of the three purified proteins, of a fourth partially purified depolymerase (PHB depolymerase C), and of the PHB depolymerases ofComamonas sp. were determined. Four PHA depolymerase genes ofP. lemoignei (phaZ1,phaZ2,phaZ3, andphaZ4) have been cloned inEscherichia coli, and the nucleotide sequence ofphaZ1 has been determined recently (D. Jendrossek, B. Müller, and H. G. Schlegel,Eur. J. Biochem. 218, 701–710, 1993). In this study the nucleotide sequences ofphaZ2 andphaZ3 were determined.PhaZ1,phaZ2, andphaZ4 were identified to encode PHB depolymerase C, PHB depolymerase B, and PHV depolymerase, respectively.PhaZ3 coded for a novel PHB depolymerase ofP. lemoignei, named PHB depolymerase D. None of the four genes harbored the PHB depolymerase A gene, which is predicted to be encoded by a fifth depolymerase gene ofP. lemoignei (phaZ5) and which has not been cloned yet. The deduced amino acid sequences ofphaZ1–phaZ3 revealed high homologies to each other (68–72%) and medium homologies to the PHB depolymerase gene ofAlcaligenes faecalis T1 (25–34%). Typical leader peptide amino acid sequences, lipase consensus sequences (Gly-Xaa-Ser-Xaa-Gly), and unusually high proportions of threonine near the C terminus were found in PhaZ1, PhaZ2, and PhaZ3. Considering the biochemical data of the purified proteins and the amino acid sequences, PHA depolymerases ofP. lemoignei are most probably serine hydrolases containing a catalytical triad of Asp, His, and Ser similar to that of lipases. A comparison of biochemical and genetic data of various eubacterial and one eukaryotic PHA depolymerases is provided also.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.  相似文献   

    12.
    The phytoremediation of trinitrotoluene (TNT), nitroglycerine (NG) and pentaerytritoltetranitrate (PETN) using in vitrocultures of Rheum palmatum, Saponaria officinalisand Populus simonii were studied. All above mentioned explosives were degradated to less toxic products and finally probably bound to the cell wall or further involved in the metabolism. The formation of trinitrobenzene (TNB) during degradation of TNT which is a product of alternative degradation pathway was found too.  相似文献   

    13.
    The ability of poplar trees to resist chemical stress caused by chloroacetanilide herbicides was studied. Detached leaves of Lombardy poplar (Populus nigra L.) were exposed to seven chloroacetanilide herbicides via uptake through the cut petiole. The leaves showed high tolerance against the phytotoxicity of these compounds. Their tolerance was further enhanced by treatment with 2-oxothiazolidine-4-carboxylic acid (OTC, a precursor of the amino acid cysteine). High levels of glutathione (GSH) and GSH S-transferase (GST) activity were detected in poplar leaves. Treatments with chloroacetanilide herbicides left the GSH content in the leaves unchanged but strongly induced the GST activity. In contrast, in OTC-treated leaves increased GSH contents were measured, but GST activities remained unchanged. It therefore appears that a highly active and inducible GSH-conjugation Phase II detoxification system in their leaves may make poplar trees useful for phytoremediation of soils contaminated with chloroacetanilide herbicides. Based on these findings a phytoremediation project using different poplar hybrids at a site heavily polluted with such compounds in Hungary has been launched.  相似文献   

    14.
    Heavy metal contamination is of particular concern for human health and the environment. Phytoremediation is an emerging cost‐effective strategy to remediate heavy metal contaminated soil. However, this technique is limited by the small number of plants that are tolerant to heavy metals and are also accumulators. This study assayed zinc, lead, and cadmium tolerance and accumulation in Cistus libanotis, Cistus albidus, and Cistus salviifolius. The plants were cultivated in hydroponic conditions and exposed to different concentrations of Pb(NO3)2 (100 and 200 µM), ZnSO4 (100 and 200 µM), or CdCl2 (10 and 20 µM) for 3 weeks. Plant biomass and metal accumulation in roots and aboveground parts varied greatly among the species. All three species appeared to be sensitive to Zn. However, C. albidus displayed strong tolerance to Pb and accumulated large quantities of Pb and Cd in its roots. C. libanotis accumulated large quantities of Pb and Cd in its aboveground parts. C. libanotis can thus be classified as a Pb and Cd accumulator species. The study results show that C. albidus is suitable for phytostabilization of Pb‐contaminated soils, while C. libanotis can be used for phytoextraction of both Pb and Cd.  相似文献   

    15.
    The organic chemical composition of the fine fraction of atmospheric particulate matter in Athens has been studied, in order to establish emission sources. The results of the analyses of the aliphatic fraction indicate that all samples contain n-alkanes ranging from C14 to C32, with C25, C26, C27 and C29 being the more abundant congeners. Fossil fuels biomarkers such as extended tricyclic terpanes (hopanes, steranes) and isoprenoid hydrocarbons (pristane, phytane) were observed in our samples on a daily basis. Source reconciliation was conducted using molecular diagnostic ratios (such as the carbon preference index – CPI). The mean CPI value (1.84) indicates the mixed origin of the Athenian fine particles. The notable presence of an unresolved complex mixture or “hump” of hydrocarbons in our gas chromatograms is indicative of petrogenic hydrocarbon inputs. An approximate measure of this kind of contamination is the ratio of the concentrations of unresolved components to the resolved n-alkanes and other major compounds (U:R). The high U:R value of 25.25 further confirmed the major contribution of fossil fuels. Yet, the percent contribution of leaf wax n-alkanes (25.15%) indicated the parallel contribution of biogenic sources. This work supports the conclusion that vehicular emissions were the major source of aliphatic organic compounds with a smaller contribution of biogenic n-alkanes during the study period in Athens.  相似文献   

    16.
    Systematic screening of 45 soil fungi for degradation polyhydroxyalkanoic acids (PHAs) has led to the selection of 6 potent Aspergillus isolates belonging to A. flavus, A. oryzae, A. parasiticus, and A. racemosus. Degradation of PHAs as determined by tube assay method revealed that these Aspergillus spp. were more efficient in degrading poly(3-hydroxybutyrate) [P(3HB)] compared to copolymer of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (P3HB-co-16% 3HV). Moreover, the extent of degradation in mineral base medium was much better than those in complex organic medium. For all the Aspergillus spp. tested, maximum degradation was recorded at a temperature of 37°C with significant inhibition of growth. The optimum pH range for degradation was 6.5–7.0 with degradation being maximum at pH 6.8. The extent of polymer degradation increased with increase in substrate concentration, the optimum concentration for most of the cultures being 0.4% and 0.2% (w/v) for P(3HB) and P(3HB-co-16%3HV) respectively. Supplementation of the degradation medium with additional carbon sources exerted significant inhibitory effect on both P(3HB) and P(3HB-co-16%3HV) degradation.  相似文献   

    17.
    Polyethylene glycol (PEG) 3400-degrading aerobic bacteria were isolated from tap water and wetland sediments and then characterized. Only one Sphingomonas strain was obtained in enrichment cultures from each inoculum source whereas a total of 15 bacterial strains were isolated on agar plates. Nine of the 15 isolates were confirmed as PEG 3400 degraders. Three of the 9 PEG 3400 degraders were Gram-negative bacteria belonging to the genus Pseudomonas and genus Sphingomonas. The remaining six isolates were Gram-positive bacteria belonging to genera Rhodococcus, Williamsia, Mycobacterium and Bacillus. PEG 3400 was quantified at 194 nm spectrophotometrically and, at the same time, the growth of two Gram-negative (isolates P1 and P7) and five Gram-positive (isolates P2, P3, P4, P5 and P6) PEG 3400-degrading bacteria were assayed in liquid media and on agar plates amended with PEG 3400, and also on Nutrient Agar plates and pure agar plates without PEG 3400 addition. No growth was observed on the pure agar plates for all the tested strains for a period of 31 days. All tested PEG 3400 degraders showed much lower viability in liquid culture than on the corresponding agar plates in the presence of PEG 3400. Two Gram-negative isolates P1 and P7 did not show significant growth advantage over the Gram-positive isolates both on the agar plates and in the liquid medium amended with PEG 3400. Our results suggest that diversity of PEG degrading bacteria is high in the environments and culturing techniques affect the successful isolation of the bacteria responsible for degradation.  相似文献   

    18.
    Poly(hydroxyalkanoates) (PHAs) are a class of bacterially-derived polymers that are naturally biodegradable through the action of extracellular depolymerase enzymes secreted by a number of different bacteria and fungi. In this paper we describe the development of topographical imaging protocols (by both scanning electron microscopy; SEM, and confocal microscopy; CM) as a means of monitoring the biodegradation of solution cast films of poly(3-hydroxybutanoate-co-3-hydroxyhexanoate) (P3HB/3HHx) and medium-chain-length (mcl-) PHA. Pseudomonas lemoignei and Comamonas P37C were used as sources for PHA depolymerase enzymes as these bacteria are known to degrade at least one of the polymers in question. SEM revealed the bacterial colonization of the film surfaces while CM permitted the comparative assessment of the roughness of the film surfaces upon exposure to the two bacterial strains. By dividing the total surface area of the film (A′) by the total area of the scan (A) it was possible to monitor biodegradation by observing differences in the topography of the film surface. Prior to inoculation, P3HB/3HHx films had an A′/A ratio of 1.06. A 24-h incubation with P. lemoignei increased the A′/A ratio to 1.47 while a 48- and 120-h incubation with Comamonas resulted in A′/A ratios of 1.16 and 1.33, respectively. These increases in the A′/A ratios over time demonstrated an increase in the irregularity of the film surface, indicative of PHA polymer breakdown. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

    19.
    Bacteria capable of growing on poly(3-hydroxybutyrate), PHB, as the sole source of carbon and energy were isolated from various soils, lake water, activated sludge, and air. Although all bacteria utilized a wide variety of monomeric substrates for growth, most of the strains were restricted to degrade PHB and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Five strains were also able to decompose a homopolymer of 3-hydroxyvalerate, PHV. Poly(3-hydroxyoctanoate), PHO, was not degraded by any of the isolates. One strain, which was identified asComamonas sp., was selected, and the extracellular depolymerase of this strain was purified from the medium by ammonium sulfate precipitation and by chromatography on DEAE-Sephacel and Butyl-Sepharose 4B. The purified PHB depolymerase was not a glycoprotein. The relative molecular masses of the native enzyme and of the subunits were 45,000 or 44,000, respectively. The purified enzyme hydrolyzed PHB, P(3HB-co-3HV), and—at a very low rate—also PHV. Polyhydroxyalkanoates, PHA, with six or more carbon atoms per monomer or characteristic substrates for lipases were not hydrolyzed. In contrast to the PHB depolymerases ofPseudomonas lemoignei andAlcaligenes faecalis T1, which are sensitive toward phenylmethylsulfonyl fluoride (PMSF) and which hydrolyze PHB mainly to the dimeric and trimeric esters of 3-hydroxybutyrate, the depolymerase ofComamonas sp. was insensitive toward PMSF and hydrolyzed PHB to monomeric 3-hydroxybutyrate indicating a different mechanism of PHB hydrolysis. Furthermore, the pH optimum of the reaction catalyzed by the depolymerase ofComamonas sp. was in the alkaline range at 9.4.  相似文献   

    20.
    Cootes Paradise is a coastal wetland, adjacent to Hamilton Harbour at the western tip of Lake Ontario. The marsh has been considerably degraded due to the excessive sediment and nutrient input from sewage treatment plants (STPs), marsh tributaries and Combined Sewer Overflows (CSOs). Although there has been reduction in nutrient loadings from external sources, high nutrient levels, and a prolific algal growth remain a problem in Cootes Paradise. To assess the importance of external versus internal nutrient loadings to the marsh, nutrient fluxes from sediments were estimated using porewater profiles at three locations from 2001 and five additional sites from 2002. The fluxes varied between 0.27 and 5.25 mg P m−2 day−1, with sites receiving outfalls of STP and CSO having highest fluxes (∼5 mg P m−2 day−1). Mean phosphorus release rate of 2.02 mg P m−2 day−1 was calculated from the spatial distribution of the non-apatite inorganic phosphorus (NAI-P) in sediments, employing a relationship between the NAI-P and P fluxes. The results confirm that sediment P geochemistry is important in regulating the P pool in porewater which, consequently, governs the P fluxes from sediments.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号