首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An investigation into emergency potable water treatment technologies was conducted to investigate China’s water pollution situation. In order to confirm optimum parameters, the technological efficiency of each pollutant was obtained. About 100 contaminants were tested to find the emergency treatment technologies, most of which were found to be positive. This paper presents the three largest and most significant water pollution incidents in China to date, analyzing cases such as the nitrobenzene pollution incident in the Songhua River in November 2005, the cadmium pollution incident in the Beijiang River in December 2005, and the water crisis with odorous tap water in Wuxi City in May 2007.  相似文献   

2.
DetoxifyingmoniliforminingrainsandwaterZhangHong,LiJilunColegeofBiologicalSciences,ChinaAgriculturalUniversity,Beijing1000...  相似文献   

3.
ThreeIndustries and water consumption of Beijing   总被引:1,自引:0,他引:1  
ThreindustriesandwaterconsumptionofBeijingWangHongruiInstituteofEnvironmentalSciences,BeijingNormalUniversity,Beijing100875,...  相似文献   

4.
StudyonurbanwaterenvironmentalsupportcapacityGuoHuaicheng;YeWenhu(CenterofEnvironmentalSciences,PekingUniversity,Beijing10087...  相似文献   

5.
InChina,therehasbeenarapideconomicdevelopmentinthepasttwentyyears.Butitdependsmostlyonagreatinputofinvestmentandhighexploitat...  相似文献   

6.
The renovated water in the rapid infiltration system (RI) as area for fish and duck farming is feasible. The flesh of fish and duck is edible. The farming of fish for 5 months and duck for 120 - 130 days can be accepted. It is beneficial to environment and economy, especially in developing countries. The production of fish and duck can make up for the cost of wastewater treatment.  相似文献   

7.
In order to establish economic development region at Mawei districtwhich is nearby downstream of Minjiang river and to answer the question of impact of economic development on water quality of Minjiang estuary, the analyses of hydrologic and hydraulic characteristics of Mawei reach of Minjiang tidal river, a two-dimensional mathematical model has been established and simulation of water quality was studied. The results show that the flushing time of a conservative pollutant during dry and raining period are 12 and 7 days respectively from Mawei to Minjiang mouth, the decay rate constants of BOD and NH3-N are 0.1 to 0.4 and 0.18 to 0.45 d-1 respectively. The capacity of dilution and assimilation for pollutants is larger.  相似文献   

8.
Biogeochemical cycles of selenium in Antarctic water   总被引:2,自引:0,他引:2  
BiogeochemicalcyclesofseleniuminAntarcticwater¥XiaWeiping(DepartmentofOceanography,OldDominionUniversity,Norfolk,VA23529,USA)...  相似文献   

9.
Several stages, from eggs to adults, of the water strider, Aquarius paludum (Fabricius), inhabiting fresh water are sometimes conveyed by heavy flow in the rainy or typhoon seasons in Japan to lotic brackish water in the mouth of rivers. The water striders might then respond to salinity either by remaining to wait for extensive rainfall to reduce osmotic pressure locally before reproducing (“breed here and later tactic”) or by flying away to reproduce in fresh waters elsewhere (“breed elsewhere and later tactic”). All first instars died before the first molt when they were exposed to 1.75 and 3.5% NaCl solutions in a laboratory experiment. Living on 0.5 and 0.9% solutions through larval and adult stages slowed down larval growth and suppressed female reproduction. When exposed to the 0.5 and 0.9% solutions, 90 and 92% of males, respectively, showed histolysis of their flight muscles. Therefore, in brackish natural habitats, larvae and adults seem to follow the strategy “breed here and later.” When water striders were exposed to 0.9% solution either just after emergence or 20 days later, females showed a higher flight propensity than those kept on fresh waters throughout, and they delayed the deposition of eggs. Therefore, when conveyed to brackish water after emergence by stream flow after heavy rain, adults seem to leave the area by flight, demonstrating the strategy “breed elsewhere and later” tactic. We conclude that water striders use alternative tactics for responding to salinity, depending on the stage of exposure.  相似文献   

10.
1 IntroductionParticlesinnaturalwatersareoftentoosmalltobeeffectivelyremovedbytheseseparationtechniques.Theprocessofcoagulation/flocculationcausesfineparticlestoaggregateintolargerunits(flocs)whichcanbemoreeasilyseparated.Inwatertreatmentsaltsofalumi…  相似文献   

11.
Adsorptionanddesorptionareimportantprocessesthataffectatrazinetransport,transformation,andbioavailabilityinsoils.Inthisstudy,theadsorption–desorptioncharacteristicsofatrazinein three soils (laterite, paddy soil and alluvial soil) were evaluated using the batch equilibrium method. The results showed that the kinetics of atrazine in soils was completed in two steps: a “fast” adsorption and a “slow” adsorption and could be well described by pseudo-second-order model.In addition,the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models. It was found that the adsorption data on laterite, and paddy soil were better fitted by the Freundlich model;as for alluvial soil,the Langmuir model described it better. The maximum atrazine sorption capacities ranked as follows: paddy soil > alluvial soil > laterite. Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic. The desorption data showed that negative hysteresis occurred. Furthermore, lower solution pH value was conducive to the adsorptionofatrazineinsoils.Theatrazineadsorptioninthesethreetestedsoilswascontrolled by physical adsorption, including partition and surface adsorption. At lower equilibrium concentration, the atrazine adsorption process in soils was dominated by surface adsorption;while with the increase of equilibrium concentration, partition was predominant.  相似文献   

12.
A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite(IS) clay,sodium silicate and magnesium sulfate as the starting materials.In this process,IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52 m~2/g(about 8.7 folds higher than that of IS clay) and very negative Zeta potential(- 34.5 mV).The inert Si- O- Si(Mg,Al) bonds in crystal framework of IS were broken to form Si(Al)- O~- groups with good adsorption activity,which greatly increased the adsorption sites served for holding much CTC molecules.Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81 mg/g of CTC(only 159.7 mg/g for raw IS clay) and remove 99.3%(only 46.5%for raw IS clay) of CTC from 100 mg/L initial solution(pH 3.51;adsorption temperature 30℃;adsorbent dosage,3 g/L).The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model,Temkin equation and pseudo second-order kinetic model.The mesopore adsorption,electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties.As a whole,the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC.  相似文献   

13.
Na-rich birnessite (NRB) was synthesized by a simple synthesis method and used as a high-efficiency adsorbent for the removal of ammonium ion (NH4+) from aqueous solution. In order to demonstrate the adsorption performance of the synthesized material, the effects of contact time, pH, initial ammonium ion concentration, and temperature were investigated. Adsorption kinetics showed that the adsorption behavior followed the pseudo second-order kinetic model. The equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption models and the model parameters were evaluated. The monolayer adsorption capacity of the adsorbent, as obtained from the Langmuir isotherm, was 22.61 mg NH4+-N/g at 283 K. Thermodynamic analyses showed that the adsorption was spontaneous and that it was also a physisorption process. Our data revealed that the higher NH4+ adsorption capacity could be primarily attributed to the water absorption process and electrostatic interaction. Particularly, the high surface hydroxyl-content of NRB enables strong interactions with ammonium ion. The results obtained in this study illustrate that the NRB is expected to be an effective and economically viable adsorbent for ammonium ion removal from aqueous system.  相似文献   

14.
Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a(NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At p H 7.0, the maximum adsorption capacity of 1.03 mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31 mg/g at 35°C.Under both acidic conditions(part of the adsorption sites was consumed) and basic conditions(negative charges formed on the surface of NFS, which led to a static repulsion of PO43-and HPO42-), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25 mol/L Na OH. The activation energy was calculated to be above 8.0 k J/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process.  相似文献   

15.
The kinetics of adsorption and parameters of equilibrium adsorption of Methylene Blue(MB)on hybrid laponite-multi-walled carbon nanotube(NT)particles in aqueous suspensions were determined.The laponite platelets were used in order to facilitate disaggregation of NTs in aqueous suspensions and enhance the adsorption capacity of hybrid particles for MB.Experiments were performed at room temperature(298 K),and the laponite/NT ratio(X_l)was varied in the range of 0–0.5.For elucidation of the mechanism of MB adsorption on hybrid particles,the electrical conductivity of the system as well as the electrokinetic potential of laponite-NT hybrid particles were measured.Three different stages in the kinetics of adsorption of MB on the surface of NTs or hybrid laponite-NT particles were discovered to be a fast initial stage Ⅰ(adsorption time t=0–10 min),a slower intermediate stage Ⅱ(up to t=120 min)and a long-lasting final stage Ⅲ(up to t=24 hr).The presence of these stages was explained accounting for different types of interactions between MB and adsorbent particles,as well as for the changes in the structure of aggregates of NT particles and the long-range processes of restructuring of laponite platelets on the surface of NTs.The analysis of experimental data on specific surface area versus the value of X_l evidenced in favor of the model with linear contacts between rigid laponite platelets and NTs.It was also concluded that electrostatic interactions control the first stage of adsorption at low MB concentrations.  相似文献   

16.
Multiwall carbon nanotubes(MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(Ⅱ)binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared(FT-IR), Brunauer, Emmett and Teller(BET), Field Emission Scanning Electron Microscopy(FESEM) analysis, and the adsorption of Pb(Ⅱ) was studied as a function of p H,initial Pb(Ⅱ) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmaxwas calculated to be 104.2 mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ΔH0, ΔS0and ΔG0were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal(99.9%) of Pb(Ⅱ) are at p H 5, MWCNT dosage 0.1 g, agitation speed 160 r/min and time of 22.5 min with the initial concentration of 10 mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(Ⅱ) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium.  相似文献   

17.
A submerged internal circulating membrane coagulation reactor(MCR) was used to treat surface water to produce drinking water. Polyaluminum chloride(PACl) was used as coagulant,and a hydrophilic polyvinylidene fluoride(PVDF) submerged hollow fiber microfiltration membrane was employed. The influences of trans-membrane pressure(TMP), zeta potential(ZP) of the suspended particles in raw water, and KMnO_4 dosing on water flux and the removal of turbidity and organic matter were systematically investigated. Continuous bench-scale experiments showed that the permeate quality of the MCR satisfied the requirement for a centralized water supply, according to the Standards for Drinking Water Quality of China(GB 5749-2006), as evaluated by turbidity(1 NTU) and total organic carbon(TOC)(5 mg/L)measurements. Besides water flux, the removal of turbidity, TOC and dissolved organic carbon(DOC) in the raw water also increased with increasing TMP in the range of 0.01–0.05 MPa. High ZP induced by PACl, such as 5–9 mV, led to an increase in the number of fine and total particles in the MCR, and consequently caused serious membrane fouling and high permeate turbidity.However, the removal of TOC and DOC increased with increasing ZP. A slightly positive ZP, such as 1–2 mV, corresponding to charge neutralization coagulation, was favorable for membrane fouling control. Moreover, dosing with KMnO_4 could further improve the removal of turbidity and DOC, thereby mitigating membrane fouling. The results are helpful for the application of the MCR in producing drinking water and also beneficial to the research and application of other coagulation and membrane separation hybrid processes.  相似文献   

18.
To remove cesium ions from water and soil, a novel adsorbent was synthesized by following a one-step co-precipitation method and using non-toxic raw materials. By combining ammonium-pillared montmorillonite (MMT) and magnetic nanoparticles (Fe3O4), an MMT/Fe3O4 composite was prepared and characterized. The adsorbent exhibited high selectivity of Cs+ and could be rapidly separated from the mixed solution under an external magnetic field. Above all, the adsorbent had high removal efficiency in cesium-contaminated samples (water and soil) and also showed good recycling performance, indicating that the MMT/Fe3O4 composite could be widely applied to the remediation of cesium-contaminated environments. It was observed that the pH, solid/liquid ratio and initial concentration affected adsorption capacity. In the presence of coexisting ions, the adsorption capacity decreased in the order of Ca2 + > Mg2 + > K+ > Na+, which is consistent with our theoretical prediction. The adsorption behavior of this new adsorbent could be expressed by the pseudo-second-order model and Freundlich isotherm. In addition, the adsorption mechanism of Cs+ was NH4+ ion exchange and surface hydroxyl group coordination, with the former being more predominant.  相似文献   

19.
Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca–Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca–Mg/biochar was rich in organic functional groups and in CaO and MgO nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca–Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360 min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid–liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca–Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca–Mg/biochar could reduce the negative interaction effects of coexisting ions. The P releasing amounts of postsorption Ca–Mg/biochar were in the order of Ca–Mg/B600 > Ca–Mg/B450 > Ca–Mg/B300. Results revealed that postsorption Ca–Mg/biochar can continually release P and is more suitable for an acid environment.  相似文献   

20.
A study on the removal of Co(Ⅱ) from aqueous solutions by water treatment residuals(WTR)was conducted in batch conditions. The sorption process of Co(Ⅱ) followed pseudosecondorder kinetics, with 30 hr required to reach equilibrium. Using the Langmuir adsorption isotherm model, a relatively high maximum sorption capacity of 17.31 mg/g Co(Ⅱ) was determined. The adsorption of Co(Ⅱ) was dependent on pH values and was affected by the ionic strength. Results show that Co(Ⅱ) adsorption was a spontaneous endothermic process and was favorable at high temperature. Most of the adsorbed Co(Ⅱ) stayed on the WTR permanently, whereas only small amounts of adsorbed Co(Ⅱ) were desorbed. The shifting of peaks in FT-IR spectra indicated that Co(Ⅱ) interacted with the WTR surface through strong covalent bond formation with Fe(Al)–O functional groups. It was concluded that WTR can be a suitable material from which to develop an efficient adsorbent for the removal of Co(Ⅱ) from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号