共查询到17条相似文献,搜索用时 62 毫秒
1.
基于支持向量机的煤与瓦斯突出预测研究 总被引:1,自引:0,他引:1
为准确预测矿井煤与瓦斯突出的危险性,针对煤与瓦斯突出样本的不足从一定程度上制约了基于知识的方法在煤与瓦斯突出预测中的应用这一问题,利用支持向量机在小样本情况下具有较强识别能力的特点,提出了煤与瓦斯突出的支持向量机预测方法。对煤与瓦斯突出影响因素进行灰关联分析,提取特征向量。选用典型突出矿井的煤与瓦斯突出实例作为学习样本,以云南恩洪煤矿的突出实例作为预测样本,将支持向量机预测结果与其他预测结果进行对比。结果表明支持向量机模型能够满足煤与瓦斯突出预测的要求。 相似文献
2.
支持向量机法在煤与瓦斯突出分析中的应用研究 总被引:2,自引:5,他引:2
通过分析采煤工作面煤与瓦斯涌出量与地质构造指标的对应关系,应用支持向量机(SVM)方法对煤与瓦斯涌出类型及涌出量进行分析。建立两类突出识别的SVM模型、多类型突出识别的H-SVMs模型以及预测瓦斯涌出量的支持向量回归模型。研究结果表明:SVM方法能够很好地对煤与瓦斯突出模式进行识别,所建立的采煤工作面瓦斯涌出量预测模型的精度高于应用BP神经网络预测精度;SVM理论基础严谨,决策函数结构简单,泛化能力强,并且决策函数中的法向量W可以反映突出模式识别的地质结构指标的权重。 相似文献
3.
为解决能用于煤与瓦斯突出预测模型的真实事故训练数据量小、数据集缺失严重的问题,提出采用数据挖掘多重填补(MI)算法填补事故数据中缺失参数,增大可用数据集,并将填补后的数据用于支持向量机(SVM)预测模型的训练与测试,选取K最近邻(KNN)算法与SVM进行对比.结果 表明:SVM数据填补前后的平均识别率分别为88.37%... 相似文献
4.
模糊支持向量机(FSVM)综合了模糊理论和支持向量机(SVM)的学习理论,不仅继承了SVM在小样本情况下所具有的较强识别能力的特点,并且比SVM拥有更好的学习能力。在FSVM算法中,每个样本被赋予一个隶属度值,使得构造目标函数时不同的样本有不同的贡献,达到最大限度的消除噪声或者孤立点的效果。运用了灰色关联分析(GRA)对煤与瓦斯突出指标进行提取,引入了一个合适的模糊隶属度函数,并在此基础上提出了基于FSVM的煤与瓦斯突出预测的模型,通过实际数据的验证和其他预测方法的对比,证明了FSVM模型能够满足煤与瓦斯突出预测的要求。最后,将FSVM和传统SVM对同一组数据进行训练,证明了FSVM相比较传统SVM拥有更高的精确度。 相似文献
5.
针对瓦斯涌出传统的线性预测方法存在的问题,根据瓦斯涌出时间序列固有的确定性和非线性,利用混沌动力系统的相空间延迟坐标重构理论,结合基于机器学习理论的支持向量机(SVM),建立基于SVM理论的瓦斯涌出混沌时间序列预测模型。经Ⅱ1024回采工作面瓦斯涌出时间序列仿真计算,仿真结果显示该预测模型具有比传统的回归方法更好的泛化能力,预测方法具有很高的预测精度。同时,该模型具有以往传统机器学习的瓦斯涌出预测模型建立简便、训练速度快等优点。由于充分考虑瓦斯涌出时间序列的混沌性,并利用SVM预测的优良特性,使得预测更科学。 相似文献
6.
为快速、有效地对煤与瓦斯突出类型作出预测,运用灰色关联和因子分析模型对所选主要的判别指标进行分析提取,利用量子遗传算法(QGA)对最小二乘支持向量机(LSSVM)的参数作寻优处理,最终建立QGA-LSSVM煤与瓦斯突出预测模型。选取从砚石台矿区历史实测的数据,以96∶20的比例对该模型进行训练与测试,并将预测结果与其他预测模型的预测效果进行了比较。研究结果表明:对判别指标进行灰色关联分析可以有效去除对煤与瓦斯突出影响作用小的指标;用因子分析进行公共因子提取,可以有效减少数据信息冗余;利用QGA优化的LSSVM模型能使结果避免陷入局部最优解,用该模型可以有效预测煤与瓦斯突出类型,误判率为0。 相似文献
7.
基于RS-SVM模型的煤与瓦斯突出多因素风险评价 总被引:2,自引:0,他引:2
为挖掘瓦斯突出风险与煤矿开采中各影响因素间的关系,应用支持向量机(SVM)理论从模式判别角度分析瓦斯突出风险与各地质因素组成的特征向量间的判别关系,基于粗糙集(RS)理论对待分析数据进行知识约简,提取核心判别指标,建立基于粗糙集-支持向量机(RS-SVM)的瓦斯突出风险判别模型。研究结果表明,RS知识约简方法可以很好地对原始数据中的冗余指标进行约简,通过对约简后指标数据进行SVM回归分析,可对煤与瓦斯突出模式进行很好的判别,所建立的瓦斯突出风险判别模型较一般SVM模型具有更高的预测精度,同时指标约简过程降低SVM运算中的复杂度,提高运算效率。 相似文献
8.
为提升煤与瓦斯突出预测准确度,减小数据缺失对煤与瓦斯突出预测的不利影响,提出1种基于链式多重填补马尔科夫链蒙特卡罗(MCMC)的麻雀搜索算法(SSA)优化支持向量机(SVM)预测模型。根据突出影响因素选取模型参数,运用MCMC对突出事故缺失值进行数据填补,采用SSA优化SVM,建立MCMC-SSA-SVM模型对填补后数据集进行预测,验证MCMC填补有效性和SSA优化性能;分别构建SVM、SSA-SVM、PSO-SVM、GAM-SVM、CMC-SVM、MCMC-PSO-SVM和MCMC-GA-SVM这7种模型进行突出预测,对比预测准确度,分析MCMC-SSA-SVM、MCMC-PSO-SVM和MCMC-GA-SVM的适应度。研究结果表明:MCMC填补后准确度均提升7.89个百分点以上,SSA的优化性能强于PSO和GA,MCMC-SSA-SVM预测准确度最高,为97.37%,泛化能力优于对比模型。研究结果可为煤与瓦斯突出预测研究提供借鉴和参考。 相似文献
9.
为了对煤层瓦斯含量进行准确预测,应用支持向量回归机(SVR)理论建立煤层瓦斯含量预测模型,结合现场实测数据利用支持向量机(SVM)工具箱进行模型的求解及预测,并从均方根误差、希尔不等系数和平均绝对百分误差3个不同误差指标与人工神经网络预测模型进行比较分析。研究结果表明:SVR模型其预测精度及可行性高于神经网络模型,而且运算快,实时性较好,用于煤层瓦斯含量的预测较理想,具有良好的应用前景,可以为煤矿瓦斯防治提供理论依据。 相似文献
10.
为降低煤矿井下煤与瓦斯突出事故中的人员伤亡和财产损失,提高突出事故中的应急救援能力,提出一种麻雀搜索算法(SSA)优化支持向量机(SVM)的煤与瓦斯突出事故应急救援能力评估模型。首先,依据相关文献与研究报告构建包括应急预防能力、应急准备能力、应急响应能力和恢复善后能力在内的4项一级指标,其中包括18项二级指标,并以各指标的得分数据作为模型训练数据集;然后,利用网络层次分析法(ANP)与熵权法(EWM)分别确定各评估指标在相互影响下的主客观权重,通过拉格朗日函数将各权重融合得到最优权重,运用SSA算法优化SVM的径向基核参数g和惩罚因子C,将最优权重计算得出的结果作为SSA-SVM模型的输入,期望值作为输出进行线性回归预测;最后,以河北省某矿为例,将SSA-SVM模型与传统SVM、粒子群优化算法(PSO)优化SVM、鲸鱼优化算法(WOA)优化SVM 3种不同模型的预测结果分别与期望值作对比分析。结果表明:SSA-SVM模型的预测结果与实际相符,平均绝对误差相较于其他模型分别下降8.04%、5.15%、4.82%,证明所建模型的优越性,可将其应用于矿山企业实际矿井煤与瓦斯突出事故应急救援能... 相似文献
11.
为提高煤与瓦斯突出强度的预测精度及预测速度,用最大最小蚂蚁系统和BP神经网络相结合的方法进行预测模型设计。根据煤与瓦斯突出强度及其主要影响因素之间的关系数据,建立其神经网络的预测模型。以网络的权值和阈值为自变量,网络误差为目标函数,通过蚁群算法的迭代运算,搜索出误差的全局最小值,以实现BP神经网络的初始权值、阈值优化,并用优化后的网络进行瓦斯突出强度的预测。实例结果表明,MMAS-BP算法的预测值均方差为0.089,约为BP神经网络的0.1倍,且输出稳定性好,适用于煤与瓦斯突出强度的预测。 相似文献
12.
利用实验测定的电磁辐射信号时间序列,用双向差分原理反导出一个非线性常微分方程;以其为微分动力核,运用动力系统数据机理自记忆模式构造自记忆方程并求出自记忆系数;利用该方程预测未来电磁辐射信号的变化,并与现场测定对比分析,用误差分析和距平分析法验证该模型正确性和预测准确率。实例表明:该自记忆模型预测与实测结果是一致的,相对误差均在6.7852%左右,距平符合率为90%;自记忆方法能有效应用于煤与瓦斯突出电磁辐射动态预测中;该模型与电磁辐射预测方法的有机结合能有效地提高预测准确性,从而为煤与瓦斯突出电磁辐射预测技术提供了一种新的研究途径。 相似文献
13.
一种新型的矿井突水分析与预测的支持向量机模型 总被引:2,自引:0,他引:2
针对矿井突水样本数少,信息不完整的特点,提出了矿井突水分析的线性核H-SVMs模型。推导模型的理论推广误差公式,设计自顶向下基于SVM最大间隔逐层分类构造H-SVMs的新方法,并应用于实际的矿井突水预测。实验结果表明,线性核H-SVMs模型结构简单、泛化能力强,不仅能很好地预测矿井突水,而且其层次结构能正确反映突水的等级关系,各判别函数的法向量还可以指示各突水影响因素的权重,通过判决函数能有效分析突水影响因素并提取突水预测规则,为矿井突水预测提供了新的方法。 相似文献
14.
人工神经网络在煤与瓦斯突出预测中的应用 总被引:4,自引:0,他引:4
由于煤与瓦斯突出发生机理的复杂性,传统预测方法的应用受到很大的限制,而人工神经网络理论以其高度非线性映射的特性为解决这一问题提供了新的途径。以突出预测指标为基础,利用多层反向传播神经网络(BP网络)模型实现对突出危险性的预测。实例分析表明,模型精度很高,可用于工作面煤与瓦斯突出危险性的预测。 相似文献
15.
基于神经网络建立煤与瓦斯突出的预测模型 总被引:9,自引:1,他引:9
基于神经网络,提出了建立煤与瓦斯突出预测模型的方法,给出了网络系统的构造方式及算法,预测结果表明该法具有很高的容错性和准确性 相似文献
16.
基于BP神经网络的煤与瓦斯突出预测系统开发 总被引:1,自引:0,他引:1
煤与瓦斯突出影响因素多,难以为其建立合适的多指标非线性预测模型,为提高突出预测的准确性和增强预测预报方法的实用性,采用改进的BP算法建立煤与瓦斯突出预测数学模型。通过研究不同算法的突出预测效果,对已建模型的泛化能力进行检验,利用Matlab GUI和神经网络工具箱设计开发煤与瓦斯突出预测系统,通过向系统输入已知的突出样本数据,经过学习、训练,实现对未知参数的预测。仿真结果表明:网络在训练300次后,误差训练曲线的均方差(MSE)可以达到10-15,实际预测误差也小于0.1,系统得到的5组数据预测结果与实际情况相符。 相似文献
17.
为了确定煤与瓦斯突出矿井的突出危险区域,威胁区域和安全区域,提出基于地质动力区划的多因素模式识别概率预测方法预测煤与瓦斯突出的新思路。以鸡西滴道矿立井为研究对象,利用地质动力区划方法确定不同尺度和级别构造运动的特征,建立板块构造学说与矿井工程实际的联系,将对矿井煤与瓦斯突出产生影响的因素为参数,采用多因素模式识别概率预测方法划分研究区域内的危险区域。研究表明该方法对煤与瓦斯突出区域预测的合理性与有效性,可以在实际工程中应用推广。 相似文献