首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The hypothesis was tested that predation-disturbance by epibenthic macrofauna affects the abundance of sediment-dwelling harpacticoid copepods. The copepods inhabited a subtidal seagrass (Zostera marina L.) bed in British Columbia, Canada. The response of the harpacticoid community was observed in controlled field experiments in which epibenthic predators-disturbers were excluded from portions of the seagrass bed. Controlled, exclusion-cage (0.8 m2 area, 7-mm mesh) experiments were conducted within the seagrass bed from late March/early April to mid-June in both 1986 and 1987. Sampling was conducted biweekly. Exclusion of large epibenthic predators-disturbers had little effect on sediment-dwelling harpacticoid copepod density. Total harpacticoid numbers and abundances of dominant species generally did not increase in the exclusion treatment relative to the control. Shifts in species composition of the harpacticoid community did not occur. The treatment control was adequate in simulating the exclusion cage structure. It appears that large epibenthic predators-disturbers have little impact on the abundance of harpacticoid copepod populations at this study site.  相似文献   

2.
Maintenance of estuarine zooplankton populations in large river-dominated estuaries with short residence times has been an intriguing subject of investigation. During three different hydrological seasons, autumn 1990, summer 1991, and spring 1992, we intensively sampled zooplankton populations in the estuarine turbidity maxima (ETM) region of the Columbia River estuary of Oregon and Washington, USA. One of the principal objectives was to investigate retention mechanisms of the predominant zooplankton species, the harpacticoid copepod Coullana canadensis and the epibenthic calanoid copepod Eurytemora affinis. In the ETM, C. canadensis densities mirrored those of turbidity gradients and were almost always greater at the river bed, while E. affinis densities were greater higher in the water column during the flood and lower in the water column during the ebb. Cross-correlation and time-series analyses determined that C. canadensis densities were highly positively correlated with turbidity and that most of the variability was explained by the lunisolar diurnal (K1) and principal lunar (M2) tidal components occurring once every 23.93  h and once every 12.42 h, respectively. This indicates that C. canadensis populations are most probably maintained in the estuary through the same near-bottom circulation features that trap and concentrate particles in the ETM. In contrast, densities of the more motile species E. affinis were highly correlated with negative velocities, or ebb tide, and most of the variability in population densities could be explained by the principal lunar tidal component; therefore, we hypothesize that this species is probably vertically migrating on a tidal cycle into different flow layers to avoid population losses out of the estuary. Received: 7 April 1997 / Accepted: 22 April 1997  相似文献   

3.
A total of fifty-two foraminiferal species belonging to 23 genera and 16 families were recorded from Arasalar estuary for a period of one year (July 2000 to June 2001). Miliammina fusca, Quinqueloculina agglutinans, Q. seminula, Cibicides refulgens, Ammonia beccarii, Elphidium clavatum, E. incertum are the abundant species. Due to marine water influence the number and populations of foraminifera was high during summer and premonsoon seasons. The various ecological parameters such as temperature, salinity, pH, dissolved oxygen of bottom water and sediment organic matter were studied. Salinity is the key factor for governing distribution and abundance of foraminifera of this estuary.  相似文献   

4.
Twombly S  Wang G  Hobbs NT 《Ecology》2007,88(3):658-670
Understanding the processes that control species abundance and distribution is a major challenge in ecology, yet for a large number of potentially important organisms, we know little about the biotic and abiotic factors that influence population size. One group of aquatic organisms that defies traditional demographic analyses is the Crustacea, particularly those with complex life cycles. We used likelihood techniques and information theoretics to evaluate a suite of models representing alternative hypotheses on factors controlling the abundance of two copepod crustaceans in a small, tropical floodplain lake. Quantitative zooplankton samples were collected at three stations in a Venezuelan floodplain lake from June through December 1984; the average sampling interval was two days. We constructed a series of models with stage structure that incorporated six biotic and abiotic covariates in various combinations to account for temporal changes in abundance of these target species and in their population growth rates. Our analysis produced several novel insights into copepod population dynamics. We found that multiple forces affected the abundance of particular stages, that these factors differed between species as well as among stages within each species, and that biotic processes had the largest effects on copepod population dynamics. Density dependence had a large effect on the survival of Oithona amazonica copepodites and on population growth rate of Diaptomus negrensis.  相似文献   

5.
The composition and abundance of bladedwelling meiofauna was determined over a 15 mo period (1983–1984) from a Thalassia testudinum Banks ex König meadow near Egmont Key, Florida, USA. Harpacticoid copepods, copepod nauplii, and nematodes were the most abundant meiofaunal taxa on T. testudinum blades. Temporal patterns in species composition and population life-history stages were determined for harpacticoid copepods, the numerically predominant taxon. Sixteen species or species complexes of harpacticoid copepods were identified. Harpacticus sp., the most abundant harpacticoid, comprised 47.8% of the total copepods collected, and was present throughout the study. Copepodites dominated the population structures of the blade-dwelling harpacticoid species on most collection dates. Ovigerous females and/or copepodites were always present, indicating continuous reproductive activity. Results suggest that epiphytic algae influence meiofaunal abundance on seagrass blades, as densities of most meiofaunal taxa at Egmont Key were positively associated with percent cover of epiphytic algae throughout the study. The majority of significant correlations between meiofaunal density and cover of epiphytic algae involved filamentous algae, although encrusting algae dominated the epiphytic community. It appears that resources provided by epiphytic algae to seagrass meiofauna (additional food, habitat, and/or shelter from predation) may be associated with algal morphology.  相似文献   

6.
Spatial and temporal variability in zooplankton was studied at eight stations located in the Lesina Lagoon (South Adriatic Sea) Salinity, temperature, dissolved oxygen and chlorophyll a (in the lagoon) at these stations were also assessed. The zooplankton community was characterised by clear seasonal oscillations and mostly represented by copepods and their larvae. The dominant copepod species were Calanipeda aquaedulcis and Acartia tonsa, which exhibited spatial–temporal segregation in the lagoon. C. aquaedulcis copepodites seemed to be better adapted to oligotrophic and oligohaline conditions compared with the A. tonsa population. The invasive species A. tonsa has completely replaced the formerly abundant Acartia margalefi. A positive correlation was found between abundances, total species numbers and trophic state. An increasing abundance trend was shown from the lagoon towards the sea. The highest diversity indices were recorded at the two channel inlets, during high tide due to the absence of a clear dominance of one or more coastal species and the co-occurrence of species of lagoon and marine origin.  相似文献   

7.
2009年5月和10月对椒江口(121.35°E~121.85°E,28.50°N~28.80°N)浮游动物进行调查,分析其群落结构、生物量和丰度的时空分布特征及与主要环境因子的关系.结果表明,该海域浮游动物有明显的季节变化,春季鉴定到14大类50种,卡玛拉水母(Malagazzia carolinae)为绝对优势种,秋季鉴定到14大类73种,优势种分别为百陶箭虫(Sagitta bedoti)、双生水母(Diphyes chamissonis)、亚强真哲水蚤(Eucalanus subcrassus)、微刺哲水蚤(Canthocalanus pauper)、中华胸刺水蚤(Centropages sinensis)和肥胖箭虫(Sagitta enflata);多样性指数为秋季(2.59)高于春季(1.82),生物量和丰度为春季(972.66 mg/m3和1 743.54 ind/m3)远高于秋季(65.30 mg/m3和31.94 ind/m3).总生物量和丰度的空间分布由优势种决定,春季高值区出现在咸淡水交汇的出海口处;秋季有沿河口向外递增的趋势.典范对应分析(CCA)表明,营养盐、盐度和溶解氧为影响春秋季椒江口浮游动物分布的环境因子;浮游动物群落存在明显的季节和空间异质性;各物种适宜的生态环境不同.与类似河口的现状相比,椒江口的浮游动物种类丰富,可能与影响该河口的水团多样有关;与历史资料相比,椒江口4、10月份浮游动物的生物量、丰度及优势类群保持相对稳定.图9表6参44  相似文献   

8.
Spatial and temporal feeding patterns (determined from an index of gut fullness) are described for 10 typical species of calanoid copepods collected from the North Pacific central gyre (September 1968 to June 1977), an area where the zooplankton is food limited and there were a-priori reasons to suspect that feeding and competition for food were important in regulating zooplankton community structure. Over 100 samples from 11 cruises to the eastern part of the gyre were examined, and patterns of gut fullness were related to environmental variables and the copepod species structure. The copepods studied all tended to be omnivores and food generalists. Males had lower indices of gut fullness than females but both males and females of a species had similar spatial and temporal feeding patterns. Guts were usually fuller at night than during the day, even in nonmigrating species; however, within nighttime depth distributions, no depths were preferred for feeding. There were also differences between species in mean gut fullness, but different species tended to have similar spatial and temporal feeding patterns. There was considerable spatial variability, and locales could be identified in which most species had higher indices of gut fullness. The copepods were not necessarily more abundant in these locales, nor did these tend to be areas of above average chlorophyll concentration. These patterns were consistent with relatively nonselective feeding, and there was no evidence that these species separate their niches by feeding at differing places or times.  相似文献   

9.
The temporal and spatial patterns of species composition and abundance of fish larvae and juveniles in the Tanshui River mangrove estuary (Taiwan) were studied monthly using a drift bag-net in daylight. A total of 44591 individuals representing 55 families and 105 species were collected over 12 mo (August 1989 to July 1990). The community was dominated numerically by a few species. Sardinella melanura was most numerous, making up 70.15% of the total catch, followed by Stolephorus buccaneeri (19.59%), Thryssa kammalensis (2.96%), and Gerres abbreviatus (2.61%). These four species constituted ca. 95% of the total catch, the remaining 5% consisted of another 101 species. This estuary functions as a nursery and feeding area in the early life history of these fish. There was a separation in peak-immigration and seasonal utilization of the estuary by the dominant species. The abundance of fish larvae and juveniles decreased in an upstream direction.  相似文献   

10.
Little is known about temporal changes in the diversity and species composition of deep-sea metazoan meiofauna and their relationships with changes in the food supply. Those changes were studied for benthic copepod assemblages based on 2-year time-series data at a bathyal site in Sagami Bay (1430 m depth), central Japan, where annual fluctuation in the abundance of benthic foraminiferans was previously observed. Species diversity of benthic copepods at the site was as high as, or slightly higher than, that observed at other deep-sea sites, but did not fluctuate temporally through the study period. Multivariate analyses did not reveal any clear seasonal or directional change occurring over the longer term in their species composition, although there was some consistent pattern. These results indicate a lack of, or only weak, seasonality in the diversity and species structure of the deep-sea benthic copepod assemblages, even though the fresh organic food supply fluctuates seasonally. They also suggest that there are differences between copepods and foraminiferans in the response to changes in environmental factors, and that spatial differences in the composition of copepod communities are greater than temporal ones at this deep-sea site.Communicated by T. Ikeda, Hakodate  相似文献   

11.
In tallgrass prairie, disturbances such as grazing and fire can generate patchiness across the landscape, contributing to a shifting mosaic that presumably enhances biodiversity. Grassland birds evolved within the context of this shifting mosaic, with some species restricted to one or two patch types created under spatially and temporally distinct disturbance regimes. Thus, management-driven reductions in heterogeneity may be partly responsible for declines in numbers of grassland birds. We experimentally altered spatial heterogeneity of vegetation structure within a tallgrass prairie by varying the spatial and temporal extent of fire and by allowing grazing animals to move freely among burned and unburned patches (patch treatment). We contrasted this disturbance regime with traditional agricultural management of the region that promotes homogeneity (traditional treatment). We monitored grassland bird abundance during the breeding seasons of 2001-2003 to determine the influence of altered spatial heterogeneity on the grassland bird community. Focal disturbances of patch burning and grazing that shifted through the landscape over several years resulted in a more heterogeneous pattern of vegetation than uniform application of fire and grazing. Greater spatial heterogeneity in vegetation provided greater variability in the grassland bird community. Some bird species occurred in greatest abundance within focally disturbed patches, while others occurred in relatively undisturbed patches in our patch treatment. Henslow's Sparrow, a declining species, occurred only within the patch treatment. Upland Sandpiper and some other species were more abundant on recently disturbed patches within the same treatment. The patch burn treatment created the entire gradient of vegetation structure required to maintain a suite of grassland bird species that differ in habitat preferences. Our study demonstrated that increasing spatial and temporal heterogeneity of disturbance in grasslands increases variability in vegetation structure that results in greater variability at higher trophic levels. Thus, management that creates a shifting mosaic using spatially and temporally discrete disturbances in grasslands can be a useful tool in conservation. In the case of North American tallgrass prairie, discrete fires that capitalize on preferential grazing behavior of large ungulates promote a shifting mosaic of habitat types that maintain biodiversity and agricultural productivity.  相似文献   

12.
Nutrient inputs to estuaries are increasing worldwide, and anthropogenic contributions are increasingly complex and difficult to distinguish. Measurement of integrated effects of salinity and nutrient changes simultaneously can help ascertain whether N sources of similar magnitude and stable isotope (sigma15N) signatures are river dominated. We used Enteromorpha spp., an opportunistic macroalga, to obtain integrated measures of salinity, nutrient supply, and nutrient source in estuaries. We outplanted cultured algae in the field along spatial gradients within three southern California estuaries for 24 hours in wet and dry seasons. Tissue was analyzed for potassium (K+) to measure osmoregulatory changes, total nitrogen to examine changes in nutrient supply, and sigma15N to assess nutrient sources. Discrete measures of water salinity correlated with tissue K+ content; however, there was significant variability in the relationship, suggesting that the algae were subject to considerable variation in salinity over a tidal cycle. Tissue total N was not always related to snapshot measures of water column dissolved inorganic nitrogen (DIN), suggesting that integrated measures may be better at capturing the temporal and spatial complexity of nutrient availability. The combination of tissue K+, total N, and sigma15N measures revealed that inflowing rivers delivered N from watershed sources to Mugu Lagoon and Carpinteria Salt Marsh, while both the inflowing river and a mid estuary source were important sources of high sigma15N N in Upper Newport Bay. These experiments revealed complex patterns of supply and sources of N and demonstrate the usefulness of macroalgal indicators over water sampling to detect these patterns.  相似文献   

13.
Several harpacticoid copepod species are adapted to an epiphytic lifestyle. Previous studies on tropical seagrass meiofauna mainly focussed on the epiphytic communities and neglected the benthic component. The present study aims to document the benthic harpacticoid copepod communities sampled from different sediment depth horizons adjacent to five seagrass species in the intertidal and subtidal zone of a tropical seagrass bed (Gazi Bay, Kenya). Two benthic copepod communities could be identified mainly based on the tidal position of the samples: a first community was collected near the intertidal seagrasses Halophila ovalis and Halodule wrightii; a second community occurred near the subtidal seagrasses Thalassia hemprichii, Syringodium isoetifolium and Halophila stipulacea. The first community was mainly determined by sediment characteristics (e.g. skewness), while the second community was split off based on organic matter content (% TOM), nutrient and pigment values. A subtle combination of horizontal and vertical niche segregation was reported for the dominant copepod families. Species of the families Thalestridae, Laophontidae and Diosaccidae were structured by tidal position and showed a strong preference for the subtidal zone. The opposite strategy, i.e. a clear preference for the intertidal zone, was found for copepods belonging to the families Paramesochridae and Canuellidae. In addition, Apodopsyllus africanus (Paramesochridae) was well-adapted to stress and was concentrated in the deeper sediment layers near the subtidal seagrasses. On the other hand, Canuellidae, as filter feeders, were concentrated in the upper centimetres of the sediment. The families Ectinosomatidae and Cletodidae did not show any vertical or horizontal segregation. On the species level, however, clear horizontal niche segregation was detected for the family Cletodidae. In addition to the reported ecological results, the study material was used to evaluate different niche definitions. We found tidal position to be the most important factor forcing harpacticoids to specialise. Sediment depth horizon was less powerful in dividing the families into different guilds (from specialists to generalists) based on standardised niche breadth. The present study documents the subtle habitat partitioning of co-existing species in a limited area and its role in sustaining high biodiversity in the community.  相似文献   

14.
The sandy-bottom macrobenthic community of Mugu Lagoon, a relatively pristine southern California (USA) marine lagoon, demonstrated (1) nearly constant community composition over 37 months of observation, (2) relatively little temporal variability in the population densities of the most abundant species over 37 months, and (3) a pattern of depth stratification in which very little vertical overlap existed among the six most abundant species. The only two species whose vertical distributions overlapped broadly showed horizontal spatial segregation, each abundant in different areas within the sand habitat. These community characteristics imply the importance of biological factors in structuring the sand benthos. The relatively large volume required for living space by these macrofauna suggests that competition for space may be the biological factor most important in determining the observed temporal and spatial abundance patterns. The muddy-sand community and the mud community of Mugu Lagoon also revealed similar patterns of stratification: new abundant species replaced species at the same sedimentary level while not greatly affecting species populations at other non-overlapping levels. In the sand community of Tijuana Slough, two of the abundant species of Mugu Lagoon's sand community were nearly absent as an apparent result of human over-exploitation. Probably in response, densities of species living at the sedimentary levels normally occupied by the missing species were much higher than would be predicted if competition for space were unimportant. In field experiments, removal of the deposit feeder Callianassa californiensis resulted in high recruitment of Sanguinolaria nuttallii, whereas control areas showed no S. nuttallii recruitment. Experiments also suggest that negative intraspecific interactions between Cryptomya californica individuals may explain the observed rapid emigration from areas of artificially high density. Perhaps the relatively great environmental predictability of southern California lagoons has permitted competitive interactions to play a singnificant role in determining the temporal and spatial abundance patterns of the soft-bottom macrobenthos.  相似文献   

15.
近年来,随着茂名经济迅猛发展及涉海工程建设,其近海海域遭到日益严重的污染,海域环境日趋恶化。为更好地了解茂名近岸海域中小型浮游动物群落结构及其与环境因子的关系,摸清中小型浮游动物的种类组成及其空间分布状况,保护近岸海域生物多样性,分别于2019年夏季(6月)和秋季(9月)对茂名近海浮游动物进行调查。调查共发现浮游动物52种,以桡足类为主(达到40种,占比76.92%)。秋季浮游动物平均丰度和平均生物量(分别为29.82 ind·m-3和282.08 mg·m-3)均高于夏季(分别为15.71×103 ind·m-3和110.23 mg·m-3)。短角长腹剑水蚤(Oithona brevicornis)、小长腹剑水蚤(Oithona nana)、强额拟哲水蚤(Paracalanus crassirostris)和小拟哲水蚤(Paracalanus parvus)为茂名近岸海域春、夏季优势种。夏季和秋季浮游植物物种多样性指数平均值分别为3.06和2.69,丰富度指数平均值分别为3.65和3.38,均匀度指数平均值分别为0.71和0.66。运用BIO-ENV方法分析了浮游动物群落结构以及与浮游植物丰度、环境因子之间的关系,结果表明浮游植物丰度、溶解氧、盐度、水温、水深是影响夏季浮游动物群落的主要环境因子,水深、浮游植物丰度是影响秋季浮游动物群落的主要环境因子。  相似文献   

16.
Larval and post-larval crab distribution was surveyed in three different habitats in Kachemak Bay, Alaska to determine temporal and spatial variability. Distribution varied temporally and spatially from June 2005 to September 2006. Nine sites of varying habitat complexity were surveyed monthly using scuba surveys and light traps to measure habitat variables and quantify crab zoeae and megalopae. A total of 10,016 crabs belonging to seven families were identified. Four species comprised the majority (97%) of the total crab assemblages and included Cancer oregonensis, Fabia subquadrata, Telmessus cheiragonus, and Pugettia gracilis. Peak abundances occurred in summer but varied on small temporal scales with species. No single bay-wide variable determined the appearance of all species. Depending on species, appearance may be influenced by seasonality of environmental variables. Spatially, highest abundances occurred in habitats with less structural complexity. Spatial differences in crab abundance may have resulted from variability on large scale physical transport mechanisms and not kelp-mediated flow alterations.  相似文献   

17.
Denaturing gradient gel electrophoresis (DGGE) was used to elucidate spatial and temporal variations in bacterial community composition (BCC) from four locations along the central west coast of India. DNA extracts from 36 water samples collected from surface, mid-depth (-10 m) and dose to bottom (-20 m) during premonsoon, postmonsoon, monsoon were analyzed by PCRfor amplifying variable region of 16S rRNAgene and subsequently through DGGE. Prominent bands were excised, cloned and sequenced indicated the preponderance of gammaproteobacteria, bacteroidetes and cyanobacteria. Non-metric dimensional scaling of the DGGE gels indicated that the spatial variations in BCC were prominent among the sampling locations. Temporal variations in the BCC appear to be influenced by monsoonal processes. The canonical correspondence analyses suggest that the concentration of chlorophyll a and nitrate are two important environmental factors for both spatial and temporal variations in BCC. Chlorophyll a seems to be impart a top-down control of BCC while nitrate, the bottom-up control. Our results also suggest that BCC can vary over a small geographic distance in highly dynamic, seasonally predisposed tropical coastal waters.  相似文献   

18.
Growth rates of nutrient-depleted cells of Biddulphia sinensis Greville and Ceratium furca (Ehrenberg) Claparède et Lachmann as a function of phosphate and nitrate, follow the hyperbolic expression of the Michaelis-Menten equation. variations in the half-saturation constants (K s) for both species in each nutrient gave an index of their capacity to utilize these two nutrients when available either singly or in combination. The maximum growth rates (max) of the two species did not follow the trends shown by K s. Seasonal abundance of the two species in the Cochin Backwater (an Indian tropical estuary) showed that, at low concentrations of nutrients, C. furca becomes predominant; high nutrient concentrations present in the estuary during the monsoon months tend to increase the abundance of B. sinensis. The differences in the K s values of the two organisms seem to reflect their observed seasonal abundance in the estuary.  相似文献   

19.
The majority of survival analyses focus on temporal scales. Consequently, there is a limited understanding of how species survival varies over space and, ultimately, how spatial variability in the environment affects the temporal dynamics of species abundance. Using data from the Barents Sea, we study the spatiotemporal variability of the juvenile Atlantic cod (Gadus morhua) survival. We develop an index of spatial survival based on changes of juvenile cod distribution through their first winter of life (from age-0 to age-1) and study its variability in relation to biotic and abiotic factors. Over the 25 years analyzed (1980-2004), we found that, once the effect of passive drift due to dominant currents is accounted for, the area where age-0 cod survival was lowest coincided with the area of highest abundance of older cod. Within this critical region, the survival of age-0 cod was negatively affected by its own abundance, by that of older cod, and by bottom depth. Furthermore, during cold years, age-0 cod survival increased in the eastern and coldest portion of the examined area, which was typically avoided by older conspecifics. Based on these results we propose that within the examined area top-down mechanisms and predation-driven density dependence can strongly affect the spatial pattern of age-0 cod survival. Climate-related variables can also influence the spatial survival of age-0 cod by affecting their distribution and that of their predators. Results from these and similar studies, focusing on the spatial variability of survival rates, can be used to characterize species habitat quality of marine renewable resources.  相似文献   

20.
Regular daylight sampling over 13 mo (February 1985–February 1986) in and adjacent to intertidal forested areas, in small creeks and over accreting mudbanks in the mainstream of a small mangrove-lined estuary in tropical northeastern Queensland, Australia, yielded 112 481 fish from 128 species and 43 families. Species of the families Engraulidae, Ambassidae, Leiognathidae, Clupeidae and Atherinidae were numerically dominant in the community. The same species, with the addition ofLates calcarifer (Latidae).Acanthopagrus berda (Sparidae) andLutjanus agentimaculatus (Lutjanidae) dominated total community biomass. During high-tide periods, intertidal forested areas were important habitats for juvenile and adult fish, with grand mean (±1 SE) density and biomass of 3.5±2.4 fish m–3 and 10.9±4.5 g m–3, respectively. There was evidence of lower densities and less fish species using intertidal forests in the dry season (August, October), but high variances in catches masked any significant seasonality in mean fish biomass in this habitat. On ebb tides, most fish species (major families; Ambassidae, Leiognathidae, Atherinidae, Melanotaeniidae) moved to small shallow creeks, where mean (±1 SE) low-tide density and biomass were 31.3±12.4 fish m–2 and 29.0±12.1 g m–2, respectively. Large variances in catch data masked any seasonality in densities and biomasses, but the mean number of species captured per netting in small creeks was lowest in the dry season (July, August). Species of Engraulidae and Clupeidae, which dominated high-tide catches in the forested areas during the wet season, appeared to move into the mainstream of the estuary on ebbing tides and were captured over accreting banks at low tide. Accreting banks supported a mean (±1 SE) density and biomass of 0.4±0.1 fish m–2 and 1.7±0.3 g m–2, respectively, at low tide. There were marked seasonal shifts in fish community composition in the estuary, and catches in succeeding wet seasons were highly dissimilar. Comparison of fish species composition in this and three other mangrove estuaries in the region revealed significant geographic and temporal (seasonal) variation in fish-community structure. Modifications and removal of wetlands proposed for north Queensland may have a devastating effect on the valuable inshore fisheries of this region, because mangrove forests and creeks support high densities of fish, many of which are linked directly, or indirectly (via food chains) to existing commercial fisheries.Contribution No. 493 from the Australian Institute of Marine Science  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号