首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过运行4个不同温度条件下(30、25、20和15℃)的自养型同步脱氮反应器,研究了不同温度下自养型同步脱氮工艺处理猪场废水厌氧消化液的性能差异及其微生物机制.结果表明,30℃条件下反应器脱氮性能最佳.当温度由30℃降为25℃时,反应器总氮去除率从73%降低到66%,总氮去除速率从2. 29 kg·(m~3·d)~(-1)降低到1. 72 kg·(m~3·d)~(-1),污泥的形态和粒径变化不明显(SMD由80. 85μm降为79. 95μm).当温度低于20℃时,总氮去除率降低到42%,总氮去除速率降低到1. 18 kg·(m~3·d)~(-1),同时发现污泥出现解体现象,粒径减小(SMD为63. 21μm).而当温度为15℃时,总氮去除率降低至37%,总氮去除速率低至1. 00 kg·(m~3·d)~(-1),反应器运行困难.微生物群落结构分析表明,温度对厌氧氨氧化细菌的影响明显大于氨氧化细菌,因此低温条件下反应器脱氮性能下降的主要原因是厌氧氨氧化细菌对温度更敏感.  相似文献   

2.
林兴  王凡  袁砚  李祥  黄勇  顾澄伟 《环境科学》2017,38(7):2947-2952
采用部分亚硝化-厌氧氨氧化一体化反应器研究了含氨废气原位脱氮处理的可行性.结果表明,在控制低溶解氧(0.2~1 mg·L~(-1)),pH为7.9~8.2,中温(30~35℃)条件下,经过60 d的运行,成功地实现部分亚硝化-厌氧氨氧化一体化反应器的启动,总氮去除率达到88%,氮去除速率由0.05 kg·(m~3·d)~(-1)上升并稳定在0.7 kg·(m~3·d)~(-1).在含氨废气处理研究中,当含氨废气浓度低于2.59%,废气中原有的氧过量,导致硝态氮大量累积;当含氨废气体积分数为2.59%~4.2%时,废气中氧满足反应器脱氮的需求;当含氨废气体积分数高于4.2%,需要额外通入空气,补充反应器内的氧需求.经过60 d的运行,氨气的去除率达100%,总氮去除率达90.06%,总氮去除负荷为0.51 kg·(m~3·d)~(-1).说明基于厌氧氨氧化反应的一体化反应器可实现含氨废气稳定去除.  相似文献   

3.
周同  于德爽  李津  吴国栋  王骁静 《环境科学》2017,38(5):2044-2051
采用ASBR反应器,研究了不同温度对海洋厌氧氨氧化菌处理含海水污水脱氮效能的影响,并利用修正的Logistic模型模拟不同温度下海洋厌氧氨氧化菌的动力学特性.结果表明,在25~35℃之间,温度对反应器的脱氮效能影响不大,总氮去除率(TNRE)基本保持在(82±2)%,总氮容积负荷去除速率(TNRR)稳定在(0.62±0.01)kg·(m~3·d)~(-1);在20℃时,TNRE从起始的59%经过13d上升到79%,说明在此温度下,海洋厌氧氨氧化菌仍然具有较强的脱氮能力,反应器在较低温处理含海水污水具有较好的发挥潜能;然而当温度降到15℃和10℃时,反应器的脱氮效能受到明显的抑制,TNRE分别下降至(40±8)%和(11±4)%,TNRR也下降至(0.30±0.04)kg·(m~3·d)~(-1)和(0.08±0.03)kg·(m~3·d)~(-1).根据Arrhenius方程得到,在25~35℃时,海洋厌氧氨氧化反应的活化能为26 k J·mol~(-1),在10~25℃时,海洋厌氧氨氧化反应的活化能为76 k J·mol~(-1).此外,通过Logistic模型对海洋厌氧氨氧化脱氮进行动力学分析,得到不同温度下NRE和出水总氮浓度(ceff)的预测公式,相关系数R2在0.966 8~0.995 7之间.  相似文献   

4.
1 概述聚氯乙烯生产由制备氯乙烯单体和氯乙烯聚合两步组成。氯乙烯 ( CH2 =CHCl)是有毒的易燃气体。爆炸极限 3 .6%~ 2 6.4% ,自燃点 472℃ ,相对密度 2 .1 5 (空气 =1 )。氯乙烯易于液化 ,液体相对密度 0 .91 2 (水 =1 ) ,沸点 -1 3 .9℃ ,凝固点-1 60℃。聚氯乙烯虽然是化学惰性聚合物 ,但遇热分解 ,遇火引起燃烧 ,在无空气条件下也能燃烧 ,灭火的唯一途径是降温。氯乙烯制备——合成氯乙烯的工艺主要有乙炔的氯化氢加成和乙烯的氧氯化。乙炔的氯化氢加成反应式为 :CH≡ CH HCl Hg Cl2 CH2 =CHCl它在转化器中完成。生成的粗氯…  相似文献   

5.
污水处理厂厌氧氨氧化工艺小试   总被引:5,自引:3,他引:2  
在市政污水处理厂进行厌氧氨氧化工艺小试实验.试验以A/O除磷和亚硝化工艺处理后的生活污水为基质,室外启动并运行上向流厌氧氨氧化生物滤柱.第109 d时,连续15 d氨氮和亚硝氮去除率大于90%,总氮去除率大于70%,厌氧氨氧化生物滤柱启动成功.第245~333 d,运行进入冬季,滤料生物量(以VSS计,下同)为12.24 mg·g~(-1),平均总氮去除率为54.3%.第461 d对滤柱进行反冲洗,滤料生物量降低至8.01 mg·g~(-1).第605~693 d,运行再次进入冬季,滤料生物量为10.41 mg·g~(-1),平均总氮去除率为69.7%.生物量小于去年同期水平,但总氮去除负荷提高了23%.在整个运行过程中,高温(30℃)污泥厌氧氨氧化速率基本保持不变,低温(15℃)厌氧氨氧化速率(以MLSS计)从1.5 kg·(kg·d)~(-1)增长到3.6kg·(kg·d)~(-1).结果表明,长期低温驯化有利于提高厌氧氨氧化工艺低温处理效果,实现冬季厌氧氨氧化工艺高效运行.  相似文献   

6.
苏瑜  王为东 《环境科学学报》2017,37(9):3519-3527
氨氧化古菌(ammonia-oxidizing archaea,AOA)与氨氧化细菌(ammonia-oxidizing bacteria,AOB)是目前已知的两类好氧氨氧化微生物,广泛分布于各类生态系统中.采用双氰胺(dicyandiamide;DCD)和1-辛炔(1-octyne)抑制剂的方法对我国北方湿地、草原、农田、沙漠4类生态系统的土壤中AOA和AOB的氨氧化速率(ammonia oxidation rate,AR)分别进行定量测定,剖析AOA、AOB对不同土壤中氨氧化的贡献.结果表明:在氨氮含量较高的湿地土壤((32.58±1.38)mg·kg~(-1))中氨氧化速率由AOB主导(ARAOB占AR的86.19%),而在氨氮含量较低的草原土壤((10.40±0.69)mg·kg~(-1))、农田土壤((5.09±0.25)mg·kg~(-1))中氨氧化速率则由AOA主导(ARAOA分别占AR的65.50%、62.20%).氨氮含量是影响AOA、AOB相对活性的主要限制性因素.湿地土壤中氨氧化速率最高,为3.22 mg·kg~(-1)·d~(-1)(以N计),其次是草原土壤和农田土壤,其AR分别为1.11、1.00 mg·kg~(-1)·d~(-1),沙漠土壤中未检测到氨氧化速率.对氨氧化古菌、细菌的amoA基因进行定量分析的结果表明:在氨氮含量最高的湿地土壤和最低的沙漠土壤((1.27±0.05)mg·kg~(-1))中AOA丰度高于AOB丰度,在草原、农田土壤中AOB丰度高于AOA丰度.amoA基因生物多样性分析表明,377个古菌amoA序列以85%相似度可以划分为19个独立操作单元(operational taxonomic unit,OTU),具有较高的生物多样性,其Shannon指数为1.51~1.73.直接通过氨氧化微生物amoA基因丰度来推测AOA、AOB的活性具有一定的缺陷,而依靠AOA、AOB分别的氨氧化速率能够准确地衡量其在不同生态系统中对氨氮去除的相对贡献,对于理解不同生态系统中氨氮去除过程和效应有着重要的意义.  相似文献   

7.
1理化性质与燃爆特性 本品为无色无臭气体.熔点-205℃,沸点-191.5℃,相对密度(水=1)0.79,相对密度(空气=1)0.97,临界温度-140.2℃,临界压力3.50MPa.微溶于水,溶于乙醇、苯等多数有机溶剂.本品易燃,闪点<-50℃,爆炸下限12.5%,爆炸上限74.2%,引燃温度610℃,最大爆炸压力0.72MPa.  相似文献   

8.
本研究采用沸石序批式反应器(ZSBR)在常温(25℃±1℃)下实现快速稳定的亚硝化,亚硝酸盐氮积累率维持在90.0%以上,并且考察了在进水氨氮500 mg·L~(-1)时,4个不同碱度(以CaCO_3计)对ZSBR亚硝化的影响.结果表明,ZSBR实现快速亚硝化的关键是游离氨(FA)对亚硝酸盐氧化菌(NOB)的抑制作用远大于其对氨氧化菌(AOB)的抑制作用,并且经此过程转化后的含氨氮的废水,可以作为厌氧氨氧化的进水,进一步脱除水中的氨氮与总氮,当系统投加碱度(以CaCO_3计)为2 500mg·L~(-1)时,ZSBR亚硝化效果最好,平均氨氮转化率为66.7%,平均亚硝酸盐氮积累率为98.1%,平均亚硝酸盐氮产率为0.74 kg·(m~3·d)~(-1).高通量测序分析表明ZSBR长时间运行后微生物群落发生显著变化,AOB得到富集,NOB在FA的抑制作用下不断被淘洗出反应器.  相似文献   

9.
厌氧铁氨氧化(ammonium oxidation coupling with iron reduction,Feammox)反应是一种在厌氧条件下,由厌氧铁氨氧化菌驱动,以三价铁为电子受体,氧化氨氮的生物化学途径,它可以用于去除水体中的氨氮.为提高厌氧铁氨氧化菌对氨氮废水处理效果,采用"氢氧化钠共沉淀-溶胶-凝胶"法制备粒径为1~5mm的磁性壳聚糖凝胶球(magnetic chitosan hydrogel beads,MCHBs),将厌氧铁氨氧化菌固定,研究其对废水中氨氮去除效果和影响因素,并与游离厌氧铁氨氧化菌对废水氨氮去除效率作对比.制备的MCHBs进行X射线衍射(XRD)和振动样品磁强(VSM)等表征分析.结果表明,MCHBs为铁磁性、结晶度高,饱和磁化强度达29.46 emu·g~(-1).MCHBs固定厌氧铁氨氧化菌比游离菌具有更高的氨氧化和铁还原速率,平均增幅为42.96%和20.75%,以MCHBs(1~2 mm)固定厌氧铁氨氧化菌的效果最显著(P0.05).进一步研究发现,不适宜氨氮浓度、温度和pH下,MCHBs(1~2 mm)固定厌氧铁氨氧化菌氧化氨氮的能力均比游离菌高.初始氨氮浓度60.00 mg·L~(-1)、温度25℃和pH 4.50时,厌氧铁氨氧化效果较好,主要产物为硝态氮和二价铁,16 d时MCHBs(1~2 mm)固定厌氧铁氨氧化菌对氨氮去除率高达53.62%.这些结果都表明以MCHBs固定厌氧铁氨氧化菌后,能起到增强厌氧铁氨氧化反应去除废水氨氮的目的.  相似文献   

10.
不同COD浓度下低基质厌氧氨氧化的启动特征   总被引:1,自引:0,他引:1  
采用厌氧序批式反应器(ASBR)处理NH4+-N和NO2--N浓度分别为(25. 00±0. 40) mg·L~(-1)和(33. 00±0. 60) mg·L~(-1)的模拟废水,在温度为30℃时,投加乙酸钠控制COD浓度分别为5. 00、15. 00、30. 00和50. 00 mg·L~(-1),研究对厌氧氨氧化启动的影响.结果表明:①4种COD浓度下分别经过74、94、106和129 d均能成功启动厌氧氨氧化. COD浓度为15. 00 mg·L~(-1)和30. 00 mg·L~(-1)时,反应器脱氮性能较好,稳定运行后,平均出水NH4+-N浓度分别为1. 98 mg·L~(-1)和1. 89 mg·L~(-1),平均出水NO2--N浓度低于0. 62 mg·L~(-1),平均出水TN浓度分别为2. 37、2. 28 mg·L~(-1);②启动过程中反硝化对脱氮的平均贡献率逐渐降低至4. 78%、9. 59%、10. 21%和36. 50%,厌氧氨氧化对脱氮的平均贡献率逐渐上升至95. 22%、90. 41%、89. 79%和63. 50%;③厌氧氨氧化活性分别在第44、76、86和114 d时超过反硝化活性,最后分别达到0. 700、0. 690、0. 670和0. 510mg·(g·h)~(-1),反硝化活性分别为0. 110、0. 130、0. 240和0. 410 mg·(g·h)~(-1).该研究结果可为厌氧氨氧化技术在实际工程中的应用提供参考.  相似文献   

11.
目的是评价某办公接室内装修后空气中有害物质污染水平.方法用随机抽取不同类型,布点39个,对空气中甲醛、苯、氨进行监测.结果为该办公楼室内甲醛、苯、氨平均浓度均超过国家(GB/T18883~2002)卫生标准,平均超标分别为1.1倍、1.7倍、0.3倍.苯监测合格率最高,为36%;甲醛最低,为12.8%.不同楼层甲醛、苯、氨浓度无显著性差异(P>0.05),同一楼层不同类型房间室内甲醛、苯、氨浓度有显著性差异(P<0.05).结论是控制室内装修污染要选用绿色环保材料,加强室内通风换气,选择合适的装修季节.  相似文献   

12.
溶氧(dissolved oxygen,DO)是影响氨氧化过程的一个重要环境因素.为探究DO对氨氧化过程的影响程度及其作用机制,本研究对驯化培养河口湿地表层沉积物所得到的氨氧化菌富集培养物进行DO处理实验,利用PCR-DGGE分子指纹图谱技术比较不同DO条件下氨氧化菌多样性,确定DO对氨氧化速率、氨氧化菌多样性的影响规律.结果表明,在饱和及好氧条件下氨氧化细菌(ammonia-oxidizing bacteria,AOB)群落多样性指数(Shannon index)达到2.00和2.05,氨氧化古菌(ammonia-oxidizing archaea,AOA)为2.49和2.03,氨氧化速率分别达到14.20 mg·(L·d)-1和13.36 mg·(L·d)-1,NH4+-N转化率达到93.8%和88.2%.而在缺氧和厌氧条件下AOB群落多样性指数分别为1.76和1.80,AOA为1.27和2.21,氨氧化速率仅为7.82 mg·(L·d)-1和5.66 mg·(L·d)-1,NH4+-N转化率为51.7%和37.4%.相关性分析结果表明,DO浓度与氨氧化速率呈极显著正相关,与AOB多样性指数亦呈显著正相关;DO和氨氧化速率与AOA群落各指数都无相关关系.  相似文献   

13.
中试SAD-ASBR系统处理含盐废水的启动与工艺特性   总被引:2,自引:2,他引:0  
采用ASBR(530 L)接种A~2/O厌氧污泥,考察了厌氧氨氧化(ANAMMOX)的启动及其与反硝化耦合处理含盐废水的脱氮特性,并对菌群结构进行了分析.结果表明,温度35℃±1℃、反应时间为14 h,160 d可实现ANAMMOX的成功启动.稳定运行阶段,ANAMMOX与反硝化耦合(SAD)使得总氮(TN)去除率和去除负荷分别达91.1%和0.45 kg·(m~3·d)~(-1);污泥呈浅红色颗粒状,厌氧氨氧化菌为优势菌,且主要菌属为Candidatus Brocadia(10.6%).此外,采用按梯度逐步提高盐度的驯化方式,可实现SAD对高盐(Cl-浓度8 000 mg·L-1)模拟火电厂废水的高效脱氮除碳,COD和TN去除率分别达93.2%和90.0%.推测SAD中反硝化主要为NO_3~--N→N_2,部分反硝化(NO_3~--N→NO_2~--N)仅占30.3%.  相似文献   

14.
在市政污水处理厂进行同步厌氧氨氧化反硝化(SAD)工艺小试.以A/O除磷和亚硝化工艺处理后的生活污水为基质,启动厌氧氨氧化滤柱.反应器启动成功后,基质中分别投加葡萄糖和丙酸钠启动SAD工艺.结果表明,常温条件(13~22℃)下,进水投加30 mg·L~(-1)葡萄糖,SAD工艺耦合效果良好,平均出水总氮浓度为6.41 mg·L~(-1).相较于厌氧氨氧化工艺,SAD工艺出水总氮浓度降低了42%;低温环境(10~13℃)中,投加30 mg·L~(-1)葡萄糖,SAD工艺稳定性受到破坏并向反硝化工艺转变;常低温环境(10~22℃)中,基质中投加30 mg·L~(-1)丙酸钠,SAD工艺均有良好的处理效果,平均出水总氮浓度为6.54mg·L~(-1),丙酸钠对低温SAD工艺影响较小.  相似文献   

15.
不同基质浓度对ANAMMOX菌短期储存的影响   总被引:2,自引:1,他引:1  
高雪健  张杰  李冬  曹正美  郭跃洲  李帅 《环境科学》2018,39(12):5587-5595
在15℃±1℃条件下,将厌氧氨氧化菌混培物分别置于基质浓度为0、60、120 mg·L~(-1)添加比例为1∶1的NH+4-N和NO-2-N环境中短期(15 d)储存,探究不同基质浓度对厌氧氨氧化污泥短期保存及恢复的影响.经过短期储存后进行恢复实验,结果表明,1、2、3号反应器(分别对应0、60、120 mg·L~(-1)基质浓度中储存的厌氧氨氧化菌混培物)中的厌氧氨氧化活性分别下降41. 8%、17. 4%、33. 4.%,1、3号分别由于过度内源呼吸和高基质浓度抑制,导致活性下降较大,2号反应器由于基质浓度相对合适,避免了过度内源呼吸和高基质浓度抑制,使得菌种活性在该基质浓度下保留较好;储存期间,3个反应器内均发生内源呼吸消耗自身有机物的情况,导致EPS含量下降50. 9%、41. 7%、23. 7%和粒径下降31. 6%、16. 7%、8. 2%,表明在基质匮乏期菌体通过内源呼吸的方式维持自身的活性,较高的基质浓度可以在一定程度上延缓内源呼吸过程;在恢复期间,3个反应器分别经过15、10、7 d实现脱氮性能和厌氧氨氧化活性的恢复,表明同菌种增殖富集相比,原系统通过菌种活性增强的方式脱氮性能恢复更快.  相似文献   

16.
ABR工艺ANAMMOX耦合短程硝化协同脱氮处理城市污水   总被引:2,自引:2,他引:0  
厌氧氨氧化技术如能替代市政污水厂的主流工艺,将大幅降低市政污水处理能耗.故采用ABR反应器,构建除碳系统、短程硝化系统和厌氧氨氧化系统,将三者耦合成一体化短程硝化-厌氧氨氧化反应器进行城市污水脱氮.结果表明,ABR除碳系统的HRT为4.5 h时,其出水COD平均浓度为80 mg·L~(-1),不会对后续短程硝化系统产生不利影响,出水TN平均浓度为10mg·L~(-1),厌氧氨氧化系统TN容积负荷为0.36 kg·(m~3·d)~(-1).当控制DO为1~2 mg·L~(-1)时,亚硝化率能长时间维持在90%左右,有利于保证后续厌氧氨氧化系统的稳定运行.当控制温度为30℃左右,好氧区DO为1~2 mg·L~(-1)良时,短程硝化-ANAMMOX一体化ABR工艺可以对城市污水稳定高效地脱氮.  相似文献   

17.
有机碳源作用下厌氧氨氧化系统的脱氮效能   总被引:3,自引:2,他引:1  
采用ASBR厌氧氨氧化反应器,研究不同有机碳源及浓度变化对厌氧氨氧化菌活性与反应器脱氮性能的影响.实验结果表明,当葡萄糖浓度为200 mg·L~(-1)时,厌氧氨氧化活性下降84.2%;当乙酸钠浓度低于120 mg·L~(-1)时不但不会抑制厌氧氨氧化菌的活性,还在一定程度上促进了厌氧氨氧化反应的进行;蔗糖对厌氧氨氧化的促进作用与乙酸钠类似,当浓度为80mg·L~(-1)时,最大比厌氧氨氧化速率提高了25.0%;柠檬酸三钠对厌氧氨氧化反应几乎没有影响,当有机物浓度为80 mg·L~(-1)时,最大比厌氧氨氧化速率达到最大.有机碳源对厌氧氨氧化的促进作用由大到小为:蔗糖乙酸钠柠檬酸三钠葡萄糖.有机碳源作用下,厌氧氨氧化反应可协同反硝化反应去除系统中的硝态氮,提高了系统总氮的去除率.  相似文献   

18.
纯硝酸是无色液体 ,带有刺鼻的窒息性气味。分子式 :HNO3,分子量 :63,沸点 :86℃ (无水 ) ,熔点 :-4 2℃ (无水 ) ,相对密度 (水 =1 ) :1 .50 (无水 )。硝酸是一种强酸 ,强氧化剂 ,能使铁钝化而不能继续被腐蚀。发烟硝酸是红褐色液体 ,在空气中猛烈发烟并吸收水分。硝酸大量用于制造无机肥料 ,如硝酸铵、硝酸铵钙、硝酸磷肥 ,还广泛用于其他工业生产。国防工业常用以制造三硝基甲苯、硝化甘油、硝化棉、乙二醇二硝酸酯等。生产方法硝酸生产分稀硝酸与浓硝酸两类。稀硝酸生产有常压法、加压法和综合法 ,生产过程分两步 :第一步是氨的接触氧…  相似文献   

19.
以低温域(0~15 ℃)下黄菖蒲(Iris pseudacorus)、菖蒲(Acorus calamus)和香蒲(Typha orientalis)3种湿地植物为研究对象,分别取其根际土壤测定硝化强度,并采用FISH(荧光原位杂交)技术,考察植物根际AOB(氨氧化细菌)、AOA(氨氧化古菌)的数量变化规律. 结果表明:低温条件下,香蒲根际土壤的硝化强度最高,平均值为1.40 mg/(kg·h),黄菖蒲和菖蒲的平均值均为0.96 mg/(kg·h). 湿地植物根际土壤中的细菌数量(数量级为1010)远高于古菌(数量级为108),其中AOB为优势菌种,3种湿地植物的AOA数量分别约占总古菌数量的46.0%、47.9%和49.7%. 3种湿地植物根际AOB的数量(以湿土计,下同)排序为香蒲(2.57×109 g-1)>黄菖蒲(1.23×109 g-1)≈菖蒲(1.14×109 g-1),AOA的数量(以湿土计)排序为黄菖蒲(2.78×108 g-1)>香蒲(2.57×108 g-1)>菖蒲(1.15×108 g-1). 微生物分布特性和硝化作用效果均表明,不同植物根际氨氧化过程的主要作用微生物具有一定差异,AOA和AOB对于湿地土壤氮转化均具有不可忽视的作用,并与植物本体、土壤硝化过程微环境之间有一定的耦合关系.   相似文献   

20.
间歇式液相本体法生产聚丙烯工艺,具有流程简单、设备少、操作方便、三废较少等优点.但所用原料丙烯和氢气,属易燃易爆物质,其沸点分别为-47.7℃和-252.7℃,丙烯的闪点为-108℃,与空气混合均能形成爆炸性混合气体,而且爆炸范围宽,分别为2%~11%和4.1%~74%,最低引爆能量只需0.28mJ(在空气中).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号