首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Behavior in eusocial insects likely reflects a long history of selection imposed by parasites and pathogens because the conditions of group living often favor the transmission of infection among nestmates. Yet, relatively few studies have quantified the effects of parasites on both the level of individual colony members and of colony success, making it difficult to assess the relative importance of different parasites to the behavioral ecology of their social insect hosts. Colonies of Polybia occidentalis, a Neotropical social wasp, are commonly infected by gregarines (Phylum Apicomplexa; Order Eugregarinida) during the wet season in Guanacaste, Costa Rica. To determine the effect of gregarine infection on individual workers in P. occidentalis, we measured foraging rates of marked wasps from colonies comprising both infected and uninfected individuals. To assess the effect of gregarines on colony success, we measured productivity and adult mortality rates in colonies with different levels of infection prevalence (proportion of adults infected). Foraging rates in marked individuals were negatively correlated with the intensity of gregarine infection. Infected colonies with high gregarine prevalence constructed nests with fewer brood cells per capita, produced less brood biomass per capita, and, surprisingly, experienced lower adult mortality rates than did uninfected or lightly infected colonies. These data strongly suggest that gregarine infection lowers foraging rates, thus reducing risk to foragers and, consequently, reducing adult mortality rates, while at the same time lowering per-capita input of materials and colony productivity. In infected colonies, queen populations were infected with a lower prevalence than were workers. Intra-colony infection prevalence decreased dramatically in the P. occidentalis population during the wet season.An erratum to this article can be found at  相似文献   

2.
The maternally inherited bacterium Wolbachia pipientis generates strong reproductive incompatibilities between uninfected females and infected males (cytoplasmic incompatibility), significantly reducing both female and male reproductive success. Such fitness costs are thought to place selective pressure on hosts to evolve pre-copulatory preferences for mating with compatible mates, thereby enabling them to avoid the reproductive incompatibilities associated with Wolbachia. Therefore, uninfected females are predicted to prefer mating with uninfected males, whereas infected males are predicted to prefer mating with infected females. Despite these predictions, previous investigations of pre-copulatory mate preferences in Wolbachia-manipulated Drosophila have not found evidence of female preference for uninfected or compatible males. However, none of these studies utilised a design where focal individuals are provided with a simple choice in a relatively non-competitive situation. We examined both female and male pre-copulatory mate preference based on mate infection status in Drosophila simulans and D. melanogaster using simple choice assays involving between 30–50 replicates per treatment. Although we found no evidence of female pre-copulatory mate preferences in either species, male D. simulans exhibited some preference for mating with females of the same infection status. However, this preference was not evident when we repeated the experiment to confirm this finding. Consequently, we conclude that neither male nor female D. melanogaster and D. simulans exhibit significant Wolbachia-associated pre-copulatory mate preferences.  相似文献   

3.
The risk of disease transmission can affect female mating rate, and thus sexual conflict. Furthermore, the interests of a sexually transmitted organism may align or diverge with those of either sex, potentially making the disease agent a third participant in the sexual arms race. In Drosophila melanogaster, where sexual conflict over female mating rate is well established, we investigated how a common, non-lethal virus (sigma virus) might affect this conflict. We gave uninfected females the opportunity to copulate twice in no-choice trials: either with two uninfected males, or with one male infected with sigma virus followed by an uninfected male. We assessed whether females respond behaviorally to male infection, determined whether male infection affects either female or male reproductive success, and measured offspring infection rates. Male infection status did not influence time to copulation, or time to re-mating. However, male infection did affect male reproductive success: first males sired a significantly greater proportion of offspring, as well as more total offspring, when they were infected with sigma virus. Thus viral infection may provide males an advantage in sperm competition, or, possibly, females may preferentially use infected sperm. We found no clear costs of infection in terms of offspring survival. Viral reproductive success (the number of infected offspring) was strongly correlated with male reproductive success. Further studies are needed to demonstrate whether virus-induced changes in reproductive success affect male and female lifetime fitness, and whether virus-induced changes are under male, female, or viral control.  相似文献   

4.
Understanding how individuals modify their social interactions in response to infectious disease is of central importance for our comprehension of how disease dynamics operate in real-world populations. Whilst a significant amount of theoretical work has modelled disease transmission using network models, we have comparatively little understanding of how infectious disease impacts on the social behaviour of individuals and how these effects scale up to the level of the population. We experimentally manipulated the parasite load of female guppies (Poecilia reticulata) and introduced fish either infected with the ectoparasites Gyrodactylus spp. (experimental) or uninfected (control) into replicated semi-natural populations of eight size-matched female guppies. We quantified the behaviour and social associations of both the introduced fish and the population fish. We found that infected experimental fish spent less time associating with the population fish than the uninfected control fish. Using information on which fish initiated shoal fission (splitting) events, our results demonstrate that the population fish actively avoided infected experimental fish. We also found that the presence of an infected individual resulted in a continued decline in social network clustering up to at least 24 h after the introduction of the infected fish, whereas in the control treatment, the clustering coefficient showed an increase at this time point. These results demonstrate that the presence of a disease has implications for both the social associations of infected individuals and for the social network structure of the population, which we predict will have consequences for infectious disease transmission.  相似文献   

5.
Abstract: Developmental instability, measured as fluctuating asymmetry (FA), is often used as a tool to measure stress and the overall quality of organisms. Under FA, it is assumed that control of symmetry during development is costly and that under stress the trajectory of development is disturbed, resulting in asymmetric morphologies. Amphibian emergent infectious diseases (EIDs), such as Ranavirus and chytrid fungus, have been involved in several mortality events, which makes them stressors and allows for the study of FA. We analyzed nine populations of green frogs (Rana clamitans) for the presence or absence of Ranavirus and chytrid fungus. Individuals were measured to determine levels of FA in seven traits under the hypothesis that FA is more likely to be observed in individuals infected by the pathogens. Significantly higher levels of FA were found in individuals with Ranavirus compared with uninfected individuals among all populations and all traits. We did not observe FA in individuals infected with chytrid fungus for any of the traits measured. Additionally, we observed a significant association between Ranavirus infection and levels of FA in both males and females, which may indicate this viral disease is likely to affect both sexes during development. Altogether, our results indicate that some EIDs may have far‐reaching and nonlethal effects on individual development and populations harboring such diseases and that FA can be used as a conservation tool to identify populations subject to such a stress.  相似文献   

6.
D. Parker  A. J. Booth 《Marine Biology》2013,160(11):2943-2950
Cymothoa borbonica prevalence in the buccal cavity of Trachinotus botla was high, with 45 % of all fish sampled being infected. Smaller fish were more susceptible to infection with no parasites found in fish over 400 mm FL. The detrimental effects of parasite infection on their hosts include basihyal (the bone commonly known as the “tongue”) damage, a loss in buccal cavity volume as a result of female parasite attachment, and a severe impact on host growth. By combining short-term dietary analysis and medium-term stable isotope analysis, there was little evidence to suggest a modification in either the diet or feeding habits of infected fish where infected and uninfected fish occupied the same trophic niche. Inhibited growth in infected fish is hypothesized to be from respiratory distress from long-term oxygen deficiency through buccal obstruction.  相似文献   

7.
Threat-sensitive decision-making might be changed in response to a parasitic infection that impairs future reproduction. Infected animals should take more risk to gain energy to speed up their growth to achieve early reproduction and/or to strengthen their immune response. To avoid correlational evidence, we experimentally infected and sham-infected randomly selected immature three-spined sticklebacks with the cestode Schistocephalus solidus. For 7 weeks we determined the threat-sensitive foraging decisions and growth of individual sticklebacks in the presence of a live pike (Esox lucius). The experimenters were blind with respect to the infection status of the fish. In contrast to previous studies, our recently infected fish should have been almost unconstrained by the parasite and thus have been able to adopt an appropriate life history strategy. We found a strong predator effect for both infected and uninfected fish: the sticklebacks’ risk-sensitive foraging strategy resulted in significantly reduced growth under predation risk. Infected fish did not grow significantly faster under predation risk than uninfected fish. Since infected fish consumed much less prey in the presence of the predator than did infected fish in its absence, they obviously did not use the opportunity to maximize their growth rate to reach reproduction before the parasite impairs it. Received: 21 June 1999 / Revised: 27 November 1999 / Accepted: 5 September 2000  相似文献   

8.
The evolution and ecology of consistent behavioural variation, or personality, is currently the focus of much attention in natural populations. Associations between personality traits and parasite infections are increasingly being reported, but the extent to which multiple behavioural traits might be associated with parasitism at the same time is largely unknown. Here, we use a population of great tits, Parus major, to examine whether infection by avian malaria (Plasmodium and Leucocytozoon) is associated with three behavioural traits assayed under standardized conditions. All of these traits are of broad ecological significance and two of them are repeatable or heritable in our population. Here, we show weak correlations between some but not all of these behavioural traits, and sex-dependent associations between all three behavioural traits and parasite infection. Infected males showed increased problem-solving performance whereas infected females showed reduced performance; furthermore, uninfected females were four times more likely to solve problems than uninfected males. Infected females were more exploratory than uninfected females, but infection had no effect on males. Finally, infected males were more risk-averse than uninfected males but females were unaffected. Our results demonstrate the potential for complex interactions between consistent personality variation and parasite infection, though we discuss the difficulty of attributing causality in these associations. Accounting for complex parasite-behaviour associations may prove essential in understanding the evolutionary ecology of behavioural variation and the dynamics of host–parasite interactions.  相似文献   

9.
The detection and avoidance of parasitized males is a component of female mate choice. Here we show that female mice can distinguish between the odors of individual males infected with an ectoparasite, the murine louse, Polyplax serrata, and uninfected males. Female mice displayed aversive responses to, and avoided the odors of, parasitized males. A 15 min exposure to the urinary odors of infected males induced an endogenous opioid-peptide-mediated reduction in pain sensitivity or analgesia, while a brief 1 min exposure to the odors elicited a non-opioid-mediated analgesic response. These neuromodulatory mechanisms facilitate the expression of a variety of anxiety and stress associated responses of which pain inhibition is one component. Females further distinguished between novel and familiar infected males. Prior exposure to the odors of an infected males reduced the degree of analgesia expressed and the associated levels of anxiety and stress and their concomitant costs. In a Y-maze odor preference test females also displayed a marked overall preference for, and initial choice of, the odors of clean, uninfected males and an active discrimination against, and avoidance of, the odors of both familiar and novel infected males. These findings indicate that female mice can distinguish between males infected with an ectoparasite and clean uninfected males and display aversive and avoidance responses to infected males. They also show that females can discriminate between individual infected males and modulate their aversive responses to the odors of infected males on the basis of prior familiarity. This is likely part of the mechanisms whereby females can both reduce the transmission of ectoparasites, such as lice, to themselves and select for parasite-free males.  相似文献   

10.
Summary Females of the parasitic wasp Antrocephalus pandens can detect differences in the quality of their hosts (pupae of Corcyra cephalonica, a stored-product moth) and allocate offspring of either sex accordingly. Larger and younger hosts are accepted more often in both dead and live hosts; more female offspring emerge from the perceived better hosts, while more males emerge from the smaller, older ones. These patterns are consistent with a sex allocation strategy by the mother, since females from a given size host tend to be larger than males and larger females produce more eggs. However, when wasps lay their eggs in groups of hosts of different size and age rather than encountering them one at a time, no difference in number or sex ratio of offspring is detected between groups. This result and evidence from the change in offspring sex ratio with female age and with numbers of females foraging on a group of hosts are interpreted and discussed in the context of sex allocation (Charnov 1979) and local mate competition (LMC, Hamilton 1967) theories.  相似文献   

11.
Male crabs infected by parasitic barnacles (Rhizocephala) are known to be morphologically feminized. Here, we investigate morphological chances in green crabs, Carcinus maenas, induced by the parasitic barnacle Sacculina carcini. Infected males acquire a broader, longer and segmented abdomen, fringed with marginal setae. Copulatory appendages and pereopods are reduced in length, and the chelae become smaller. The feminization show great individual variation. Males with scars from lost externae, the parasites reproductive organ situated under the abdomen, are less modified than males carrying an externa, and the feminization is more pronounced in smaller than in larger males. No super-feminization is evident in female crabs that remain morphologically unaffected by infection. The protective value of a parasitically induced enlargement of the male abdomen may constitute an adaptation that increases parasite longevity. The additional effects on male morphology are viewed as pleiotropic side effects of the main adaptive value of enlarging the abdomen.  相似文献   

12.
Summary A recent model in sexual selection has proposed a role for parasites in maintaining heritable fitness variation. Females are envisaged as benefitting from preferentially mating with males that show resistance to infection. The post-copulatory guarding behaviour characteristic of many species of field cricket, has been envisaged as a means by which females assess male health and vigour. This hypothesis was tested in a field cricket, G. bimaculatus, which harbours a protozoan gut parasite. In enclosed arena trials, no direct correlations between female behaviours and levels of infection in males were found. However, there were significant correlations between the intensity of male guarding and the number of parasites found in the gut; infected males guarded more intensely in order to maintain contact with the female. In a second experiment simulating open field conditions, females left heavily parasitized males sooner than mildly or uninfected individuals. These data are discussed in relation to female choice for male health and vigour.  相似文献   

13.
Parasites can decrease male mating success in host species in various ways, in particular by affecting male competitive ability for access to females. However, male-male competition can take different forms (i.e. interference vs exploitation competition) and which type of competition is most affected by parasites is not always clear. We investigated the influence of two acanthocephalan parasites Pomphorhynchus laevis and Polymorphus minutus on the pairing success of their intermediate host, Gammarus pulex, using field-based studies and complementary laboratory-based studies. We first studied male pairing success in the field using four large samples of paired and unpaired individuals collected at different dates. In three of the samples, the effects of size and parasite infection were significant, whereas for one sample only male size had a significant effect. There was no difference in size distributions between infected and uninfected gammarids. Large males were paired more often than smaller males, and uninfected males were paired more frequently than infected males, the pairing success of P. minutus-infected males being more severely affected than that of P. laevis-infected males. We then experimentally tested the ability to enter into precopula with a receptive female in the presence or absence of competitors. In competitive situations, the pairing success of P. laevis- and P. minutus-infected males was significantly lower than that of uninfected males, with pairing success being more affected in P. laevis-infected than in P. minutus-infected males. In the absence of competition, males infected with P. laevis were significantly less likely to enter into precopula compared with uninfected males and P. minutus-infected males, whereas there was no difference between uninfected and P. minutus-infected males in their inclination to pair with a receptive female. However, for both parasites, latency time to pair formation was significantly shorter for uninfected than for infected males. In a third experiment, we tested for a potential effect of vertical segregation on the pairing success of infected and uninfected males, but found no evidence for it. We conclude that infected males may be less competitive than uninfected males in competition by exploitation between males for females.  相似文献   

14.
Gidgee skinks (Egernia stokesii) form large social aggregations in rocky outcrops across the Flinders Ranges in South Australia. Group members share refuges (rock crevices), which may promote parasite transmission. We measured connectivity of individuals in networks constructed from patterns of common crevice use and observed patterns of parasitism by three blood parasites (Hemolivia, Schellackia and Plasmodium) and an ectoparasitic tick (Amblyomma vikirri). Data came from a 1-year mark-recapture study of four populations. Transmission networks were constructed to represent possible transmission pathways among lizards. Two lizards that used the same refuge within an estimated transmission period were considered connected in the transmission network. An edge was placed between them, directed towards the individual that occupied the crevice last. Social networks, a sub-set of same-day only associations, were small and highly fragmented compared with transmission networks, suggesting that non-synchronous crevice use leads to more transmission opportunities than direct social association. In transmission networks, lizards infested by ticks were connected to more other tick-infested lizards than uninfected lizards. Lizards infected by ticks and carrying multiple blood parasite infections were in more connected positions in the network than lizards without ticks or with one or no blood parasites. Our findings suggest higher levels of network connectivity may increase the risk of becoming infected or that parasites influence lizard behaviour and consequently their position in the network. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. This contribution is part of the special issue “Social Networks: new perspectives” (Guest Editors: J. Krause, D. Lusseau and R. James).  相似文献   

15.
There is accumulating evidence that females may preferentially select parasite-free or -resistant males. Minimal attention has, however, been paid to the mate preferences and responses of the parasitized male hosts themselves. Here, we considered the effects of parasitic infection on male host mate responses, the neuromodulatory correlates of these responses, and the relations of these responses to female mate choice. Using an odor “preference” test, we examined the effects of different stages of an acute, sub-clinical infection with the naturally occurring, enteric, single host, protozoan parasite, Eimeria vermiformis, on the responses of male mice, Mus musculus domesticus, to the odors of estrous females along with the responses of uninfected females to the parasitized males. At 4 days post-infection (non-infective, pre-patent stage) E. vermiformis-infected male mice showed a significantly decreased preference for the odors of estrous females, whereas at 10 days post-infection (infective, patent stage) infected males showed a significantly increased preference for the odors of estrous females. Parasitized males displayed no significant changes in their responses to the odors of non-estrous females, supporting effects on the reproductively related responses of the host. In parallel, estrous females displayed a reduced interest in the odors of infected males. Least interest was expressed in the odors of the patent, infective males, consistent with the avoidance of contagion. Using selective opioid peptide receptor agonists and antagonists we found evidence that enhanced kappa opioid peptide (e.g., dynorphin) activity was related to the decreased sexual interest of the pre-infective males, while augmented delta opioid peptide (e.g., enkephalin) activity was associated with the enhanced responses of the infective males to females. We further showed that acute kappa opiate administration reduced the responses of uninfected males to females and that uninfected females displayed modified responses to the odors of uninfected males subject to acute modifications of opioid activity. We suggest that these differential shifts in endogenous opioid activity in the parasitized males are associated with and, or related to alterations in neuro-immune and endocrine functions. These findings show that parasitic infection can have, depending on the stage of infection and associated neuromodulatory changes, either significant facilitatory or inhibitory effects on male host preferences for and responses to females. Received: 22 April 1996 / Accepted after revision: 15 March 1997  相似文献   

16.
The distribution of organisms at small spatial scales and their use of microhabitats are important determinants of species-level interactions. In many ubiquitous rocky shore invertebrates, use of intertidal microhabitats has previously been studied with relation to thermal and desiccation stress, ontogenetic changes and predation. Here, the effects of parasitism on the microhabitat use and movement of two New Zealand littorinid hosts, Austrolittorina antipodum and A. cincta, were investigated by examining the effect of infection by a philophthalmid trematode parasite. Alterations in microhabitat use and movement of infected versus uninfected individuals were found during both field mark-recapture and laboratory experiments, carried out from August 2012 to March 2013 in Otago Harbour, New Zealand (45.83°S, 170.64°E). Specifically, a trend towards increased use of rock surface habitats and a reduction in the distance moved by infected snails was observed. In addition, decreased downward movement was observed for some infected individuals. This alteration in individual distribution is likely to increase the availability of infected individuals to predators, hence aiding the successful transmission of the trematode parasite. These results highlight the importance of including parasitism as a biotic factor in studies of gastropod movement and spatial distribution.  相似文献   

17.
Ormia ochracea is a parasitoid fly which lays its larvae on its hosts, the field crickets Gryllus integer and Gryllus rubens, in two distinct modes: (1) directly on the host and (2) around the host. In the field, 12.7% of male crickets were parasitized and 3.2% were super-parasitized. Despite the disadvantages of parasitizing infested hosts, there was no evidence that O. ochracea avoided superparasitism. This and other experiments suggest that the host assessment ability of O. ochracea is less than that reported for many hymenopteran parasitoids. by manipulating the number of larvae in each cricket, we determined that four to five larvae per host resulted in the largest number of adult flies. However, as larval number per host increased from one to six, pupal size, and hence adult size, declined. In the field, hosts were found with a mean of 1.7 ± 1.0 (SD) larvae per cricket, suggesting that there may be some selection pressure against larger clutch sizes. Nevertheless clutch sizes larger than the host can support were sometimes found in the field. During the first mode of larviposition, gravid flies deposited no more than three larvae directly onto the host. Larvae deposited directly on the host had a high probability of infesting it. During the second mode of larviposition, gravid flies laid a larger number of larvae around the host (6.1 ± 5.2). Larvae that were laid around the host were less likely to infest a cricket than were larvae that were deposited directly onto it. O. ochracea is unique in that its two different modes of larviposition have different probabilities of larval success. Even though the success rate for larvae laid during the second mode of larviposition was low, the possibility of parasitizing more hosts appears to have selected for flies laying more larvae (e.g. increasing clutch size) than is optimal if all the larvae successfully entered a single host.  相似文献   

18.
Forshay KJ  Johnson PT  Stock M  Peñalva C  Dodson SI 《Ecology》2008,89(10):2692-2699
When parasitic infections are severe or highly prevalent among prey, a significant component of the predator's diet may consist of parasitized hosts. However, despite the ubiquity of parasites in most food webs, comparisons of the nutritional quality of prey as a function of infection status are largely absent. We measured the nutritional consequences of chytridiomycete infections in Daphnia, which achieve high prevalence in lake ecosystems (>80%), and tested the hypothesis that Daphnia pulicaria infected with Polycaryum laeve are diminished in food quality relative to uninfected hosts. Compared with uninfected adults, infected individuals were smaller, contained less nitrogen and phosphorus, and were lower in several important fatty acids. Infected zooplankton had significantly shorter carapace lengths (8%) and lower mass (8-20%) than uninfected individuals. Parasitized animals contained significantly less phosphorus (16-18% less by dry mass) and nitrogen (4-6% less) than did healthy individuals. Infected individuals also contained 26-34% less saturated fatty acid and 31-42% less docosahexaenoic acid, an essential fatty acid that is typically low in cladocera, but critical to fish growth. Our results suggest that naturally occurring levels of chytrid infections in D. pulicaria populations reduce the quality of food available to secondary consumers, including planktivorous fishes, with potentially important effects for lake food webs.  相似文献   

19.
The costs of courtship and mating may include increased risks of predation, the transmission of pathogens, and a loss of foraging opportunities. Thus, a female's decision to tolerate a courting male will depend upon how these costs offset the benefits of mating, which will depend on her reproductive and nutritional status. While these costs may be similar for mated and unmated females, the benefits of mating will be less for mated than virgin females. However, the cost of lost foraging opportunities may be higher for females with fewer nutritional reserves necessary for forming eggs. We examined how these costs and benefits influence the courtship and mating behaviour of male and female orb-web spiders, Argiope keyserlingi. In the field, females on webs that also contained a courting male intercepted fewer prey items per hour than females on webs without a male. In the laboratory, the presence of a courting male at the hub also attracted mantid predators to the web, increasing the risk of predation for both male and female. Staged mating experiments in the laboratory revealed that the frequency of female attacks and pre-copulatory cannibalism was greater among mated than virgin females. Feeding history did not affect aggression in virgin females but, among mated females, food-deprived spiders attacked and cannibalized males more frequently than sated females and only the latter ever remated. These differences in female behaviour influenced male mating strategies. Choice experiments demonstrated that males preferred to venture onto the silk threads of virgin rather than those of mated females. Similar patterns of mate selectivity were observed in the field; females with narrow abdomens attracted more males to the webs than females with broad abdomens, and copulations were observed more frequently among females with narrow abdomens. These smaller females are likely to be virgins that have recently molted. Males that preferentially mate with virgin females will not only avoid potentially fatal attacks but also obtain, on average, a higher fertilization success.  相似文献   

20.
Summary Males of the solitary sweat bee, Nomia triangulifera, patrol over large areas where thousands of females emerge, searching for receptive females. The daily operational sex ratio is strongly male-biased. Males contact dead, frozen (untreated) females more frequently than they contact females which were washed in hexane, showing that olfactory cues are utilized in mate-finding. A major source of female sex pheromone is in the head. Male pouncing on females is temporally non-random, indicative of group stimulation. Bioassays show that newly emerged females are more attractive to males than are older pollen-collecting females. Female odors are individually distinctive, based on male responses, and there is much variation among females in their attractive properties. Male responses to female odors suggest that learning is important for mating in natural populations. In contrast, the following hypotheses are unlikely to account for the observed behavior: (1) dissipation of female odors; (2) site learning and avoidance behavior by males; (3) decay of male motivation; or (4) male-produced repellents effective against other males. Laboratory and field studies show that female Lasioglossum figueresi produce individually-distinctive odors, which are attractive to males. There is considerable inter-individual variation among females in their attractiveness to males among sexually immature females. Male responses to female odors decay over the course of the presentation, suggesting the importance of learning in natural populations, although several alternatives could not be tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号