首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Quercetin (3,3,4,5,7-pentahydroxyflavone) chemically bonded through pyran rearrangement on modified controlled pore silica glass (QCPSG) with a capacity 0.213 mmol/g was used for solid phase extraction of some toxic metal and metalloid ions. The newly designed QCPSG quantitatively sorbs As(V), Cd(II), Hg(II), and Pb(II) at the pH range 7.5–8.5 after 10 min of stirring. HCl (1 mol L???1) instantaneously elutes all the metal ions. The sorption capacity of the ion collector is 0.42, 0.46, 0.53, and 0.49 mmol g???1 for As(V), Cd(II), Hg(II), and Pb(II), respectively, whereas the preconcentration factor is 200. The effect of NaCl, Na2SO4, NaF, NaBr, Na3PO4, and other interfering salts on the sorption of metal ions (50 μg L???1) was reported. Analytical detection limits of As(V), Cd(II), Hg(II), and Pb(II) were 4.18, 2.44, 15.86, and 25.00 pg mL???1, respectively. QCPSG was used in the separation of the investigated metal ions from some natural water samples collected from diverse origins followed by determination by inductively coupled plasma–mass spectrometry. The data were compared with those obtained by the standard methods of determination using atomic absorption (hydride generation, HGAAS and after solvent extraction with ammonium pyrolidine dithiocarbamate/methyl isobutyl ketone). The suggested solid phase extraction method was found accurate with no random error.  相似文献   

2.
A differential pulse polarography (DPP) for the simultaneous determination of 2-nitrophenol and 4-nitrophenol was proposed. It was found that under optimum experimental conditions (pH = 5, scan rate = 5 mV/s, pulse amplitude = −50 mV), 2-nitrophenol and 4-nitrophenol had well-defined polarographic reduction waves with peak potentials at −317 and −406 mV, respectively. In the mixture of two compounds overlapping polarographic peaks were observed. In this study, support vector regression (SVR) was applied to resolve the overlapped polarograms. Furthermore, a comparison was made between the performance of SVR and partial least square (PLS) on data set. The results demonstrated that SVR is a better well-performing alternative for the analysis and modeling of DPP data than the commonly applied PLS technique. The proposed method was used for the determination of 2-nitrophenol and 4-nitrophenol in industrial waste water.  相似文献   

3.
The concentrations of ammonium NH4+, nitrate NO3-, and nitrite NO2- ions were recorded along with ammonia (NH(3)) emission from a fertilized rice field located in the Kwangju province in South Korea over a period of 4 months (June to October 2006). The highest magnitude of NH(3) flux was 20,754 microg m(-2) h(-1), while the average flux value over the entire sampling period was 2,395 microg m(-2) h(-1). The highest ionic concentrations were 1.67, 0.44, and 0.71 ppm for NH4+, NO3-, and NO2- ions, respectively. Possible effects of soil pH on NH(3) fluxes were detected, as they concurrently exhibited a gradual and periodic change during the sampling period. Positive correlations existed between concentrations of NH4+ and NO2- ions and the soil pH. Positive correlations also existed between NH(3) emission flux and ambient (and water) temperatures. Results indicated that fertilizer application to rice can lead to significant emission of NH(3) along with NH4+ and NO3- ions.  相似文献   

4.
Nitrate (NO3-), ammonium (NH4+) and pH were monitored with a novel flow cell equipped with ion-selective electrodes (ISEs) in a drainage pipe during one year. The high temporal resolution of the measurements (six measurements per hour) allowed the detection of diurnal oscillations in pH, NO3- and NH4+ concentrations, the relation of variations in concentrations to discharge rates changing during rain events, understanding of the processes resulting in such variations and tracing of unpredictable manure spills. Annual loads estimated from random samples collected every second day tended to underestimate the "true" loads calculated from quasi-continuous electrode measurements by 550% for NH4+ and 22% for NO3-.  相似文献   

5.
This paper considers the spatial and temporal variability in concentrations of the potentially acidifying ions in precipitation in Lithuania during the 1981-2004 period. Chemical analysis of precipitation included measurements of pH, conductivity, sulfate (SO4(2-)), nitrate (NO3-), chloride (Cl-), ammonium (NH4+), sodium (Na+), potassium (K+), and calcium (Ca2+). Temporal trends in the potentially acidifying ion concentrations in precipitation and wet deposition were evaluated using the non-parametric Mann-Kendall test and Sen's slope estimator. A statistically significant decline was observed in non-sea salt sulfate (nssSO4(2-)) and hydrogen (H+) ions concentrations (82% and 79%, respectively) and wet depositions (88% and 74%, respectively). Temporal trends both in concentration and wet deposition of nitrate and ammonium were not as pronounced as trends in sulfate concentration. Analysis of air mass backward trajectories was applied to reveal the influence of air mass originating in different regions on wet deposition of acidifying species in Lithuania. Sector analysis clearly showed that wet deposition of sulfur and nitrogen in Lithuania is to a large extent anthropogenic and the main source regions of acidifying species contributing to wet deposition in Lithuania are in South and Central Europe.  相似文献   

6.
针对铝材企业NH4HF2表面处理废水含有高浓度的NHs-N和F-等特点,采用气浮+磷酸铵镁(MAP)化学沉淀法对NH4HF2废水进行预处理,可达到目标处理效果,再引入氧化废水池进一步处理,继而达标排放.经验证,该方法是一种技术可行、经济合理的NH4 HF2废水处理方法.  相似文献   

7.
Three treatment media, used for the removal of arsenic from drinking water, were sequentially extracted using 10 mM MgCl2(pH 8), 10 mM NaH2PO4(pH 7) followed by 10 mM (NH4)2C2O4(pH 3). The media were extracted using an on-line automated continuous extraction system which allowed the arsenic in each of the extraction fluids to be speciated on-line using IC-ICP-MS. The 10 mM MgCl2 preferentially extracted As(III) from each of the media. The percentage of the arsenic extracted by the MgCl2, relative to a HNO3/H2O2 digestion of the media, ranged from 0.1-2.3% for the three solids. The next sequential extraction fluid, 10 mM NaH2PO4, extracted some of the residual As(III) remaining on each of the media but the predominant species extracted was As(V). The 10 mM NaH2PO4 extracted 15.3 to 42.8% of the total arsenic relative to a total digested concentration for each of the media. The As(III) and As(V) stability studies conducted in these two extraction fluids indicated that conversion between As(III) and As(V) was not significant for the short extraction fluid sample contact time associated with the on-line continuous flow extraction cell. Finally, the 10 mM (NH4)2C2O4 extraction fluid was utilized in an off-line analysis mode because the Fe and As concentrations extracted from the media were not compatible with direct ICP-MS detection. The (NH4)2C2O4 extracted 2.9-29% As(III) for all three media and caused an oxidation of As(III) to As(V) during the extraction period for one of the three media. The sum of the arsenic from each of the three extraction fluids represented 92%, 44% and 53% of the available total arsenic for the three media, respectively. The speciation results for each media were obtained by adding all the speciation results from all three extraction fluids together and the resulting distribution of As(III)/As(V) compared well with the speciation results obtained via XANES.  相似文献   

8.
Testing of metal compounds for solubility in artificial fluids has been used for many years to assist determining human health risk from exposure to specific compounds of concern. In lieu of obtaining bioavailability data from samples of urine, blood, or other tissues, these studies measured solubility of compounds in various artificial fluids as a surrogate for bioavailability. In this context, the measurement of metal "bioaccessibility" can be used as an in vitro substitute for measuring metal bioavailability. Bioaccessibility can be defined as a value representing the availability of metal for absorption when dissolved in in vitro surrogates of body fluids or juices. The aim of this study was to measure and compare the bioaccessibility of selected cobalt compounds in artificial human tissue fluids and human serum. A second aim was to initiate studies to experimentally validate an in vitro methodology that would provide a conservative estimate of cobalt bioavailability in the assessment of dose from human exposure to various species of cobalt compounds. This study evaluated the bioaccessibility of cobalt(II) from 11 selected cobalt compounds and an alloy in 2 physical forms in 5 surrogate human tissue fluids and human serum. Four (4) separate extraction times were used up to 72 hours. The effect of variables such as pH, dissolution time, and mass-ion effect on cobalt bioaccessibility were assessed as well. We found that the species of cobalt compound as well as the physico-chemical properties of the surrogate fluids, especially pH, had a major impact on cobalt solubility. Cobalt salts such as cobalt(II) sulfate heptahydrate were highly soluble, whereas cobalt alloys used in medical implants and cobalt aluminate spinels used as pigments, showed minimal dissolution over the period of the assay.  相似文献   

9.
A new electrochemical adsorptive stripping voltammetry method was developed for the determination of trace amounts of copper in food and water samples. The study of electrochemical behavior of Cu ion indicated that Cu(II) and Schiff base formed a complex in H3BO4–NaOH buffer solution (pH?=?7.25). An accumulation potential of ?100 mV (vs Ag/AgCl) was applied while the solution was stirred for 60 s. The response curve was recorded by scanning the potential, and the peak current of ?0.31 V (vs Ag/AgCl) was recorded. The peak current and concentration of copper accorded with linear relationship in the range of 0.04–120 ng mL?1. The relative standard deviation (for 12 ng mL?1 of copper) was 1.73 %, and the detection limit was 0.007 ng mL?1. The possible interference of some common ions was studied. The proposed method was applied to the determination of copper in water, rice, wheat, tea, milk, and tomato with satisfactory results.  相似文献   

10.
Novel catalytic adsorbent (ruthenium on carbon) was employed for the treatment of pulp mill effluent in the presence of hydrogen peroxide. Mathematical model and optimization of the process regarding the most favorable COD (%), TOC (%) and color (%) removal rates was developed and performed with experimental design taking into account catalytic adsorption process kinetics. As the initial experimental design, 3(3-1) half-fractional factorial design (H-FFD) was accomplished at two levels to study the significance of the main effects, such as catalytic adsorbent (g l(-1)) and hydrogen peroxide (ppm) concentrations using the response surface methodology (RSM). Finally, a four factor-three coded level central composite design (CCD) with 28 runs was performed in order to fit a second-order polynomial model. Validation of the model was accomplished by different criteria including coefficient of determination and the corresponding analysis of variance. The achieved removal rates for TOC (up to 75%), COD (up to 73%) and color (up to 68%) were observed for the defined optimal conditions: 1g l(-1) of ruthenium on carbon, 7 ppm of hydrogen peroxide, pH = 4 and ambient temperature. The proposed method benefited significantly improved TOC, COD and color removal efficiency, regenerability and reusability of the catalytic adsorbent and unaltered initial pH of an effluent in comparison to traditional adsorption or oxidation processes.  相似文献   

11.
秦云  姚文华 《干旱环境监测》2010,24(4):209-211,240
研究了8-羟基喹哪啶与钴的显色反应,在pH为8.0的氯化铵—氨水缓冲介质中,乳化剂-OP存在下,8-羟基喹哪啶与钴反应生成3∶1稳定的蓝紫色配合物,该配合物可被Waters Plus-C18固相萃取小柱萃取富集,小柱上富集的配合物用乙醇为洗脱剂洗脱后用光度法测定,在乙醇介质中,配合物最大吸收波长λmax为595 nm,ε为7.82×103L.mol-1.cm-1。钴含量在0.1~5.0 mg/L内符合比耳定律,方法用于生物样品中痕量钴的测定,结果令人满意。  相似文献   

12.
Despite its importance for understanding the behaviour of antimony in the environment, the oxidation kinetics of Sb(III) with natural oxidants is still not well understood. We have studied the oxidation of Sb(III) by hydrogen peroxide on a time scale of hours in the presence of some trace metals, Cu(II), Mn(II), Zn(II) and Pb(II), under pH and concentration conditions close to natural ones. The effects that these trace metals have on Sb(iii) oxidation by hydrogen peroxide vary. Zn(II) had no catalytic effect at all, but Cu(II), Mn(II) and Pb(II) did, though their effects were not uniform. Cu(II) significantly accelerated the reaction, which remained first-order with respect to Sb(III) at any Cu(II) concentration tested. Pb(II) and Mn(II) also enhanced the reaction rates, but the apparent order of the reaction with respect to Sb(III) changed to two. The trace metal effect observed was concentration dependent for Pb(II). The addition of the hydroxyl radical scavenger 2-propanol suggests that the trace metal catalytic effect observed involves the action of hydroxyl radicals, but that they are not responsible for the oxidation of Sb(III) by H2O2 in the absence of trace metals. The fact that Sb(III) can be oxidized by hydroxyl radicals present in water, even if it is not capable of producing them, has important environmental implications because hydroxyl radicals are known to be abundant in many natural waters such as seawater, humic-rich surface waters or rainwater.  相似文献   

13.
Contents of inorganic nitrogen (NH4(+)-N and NO3(-)-N) in soil profiles were measured in five typical zones ( including permanently flooded floodplain(B), 1-year floodplain (O), 5-year floodplain (F),10-year floodplain (T), and 100-year floodplain (H) )from Huolin River floodplain in Erbaifangzi, Jilin Province of China, in the soil-defrosted period (Mayof 1999). Contour maps and profile maps were constructed to describe the spatial distributions of NH4(+)-N and NO3(-)-N) in order to identify the influences of flood frequencies on them. Results showed that NH4(+)-N generally increased with depth in soil profiles from the five areas, but NH4(+)-N contents in T or H areas significantly differed from those in other areas. For NO3(-)-N, with the exception that there was a significant cumulative peak (6.77 +/- 0.08 mg kg(-1)) at 15-cm depth (10-20 cm) in B area, no significant difference was observed between NO3(-)-N contents in soil profiles from the other four areas. The horizontal distributions of NH4(+)-N and NO3(-)-N in top soils (0-10 cm) were different in the five areas,which were greatly influenced by flood frequencies. The highest content of NH4(+)-N or NO3(-)-N did not appear in B area but in the floodplain with certain flood frequency. For example, NH4(+)-N content (16.81 mg kg-(1)) in 5-year floodplain wetland was highest, and the highest content of NO3(-)-N(1.69 mg kg(-1)) appeared in 1-year floodplain wetland. In addition, NH4(+)-N contents were significantly correlated with soil pH, and NO3(-)-N contents had significant correlation with inorganic carbon, but there were no significant correlations between inorganic nitrogen and other selected soil properties.  相似文献   

14.
Total suspended particulate (TSP) samples were collected during wintertime from November 24, 1998 to February 12, 1999 in Beijing. Ionic species including Cl-, NO3(-), SO4(2-), Na+, NH4(+), K+, Mg2+ and Ca2+ were determined by Ion Chromatography (IC). The sum average concentration of all the determined ions accounted for 18.9% of the TSP concentration, and SO4(2-) appeared the dominant ion with an average concentration of 30.84 microg m(-3); the sum mass concentration of SO4(2-), NO3(-), Ca2+ and NH4(+) accounted for about 83.2% of all the eight ions measured. The study indicated that the chemical form of sulfate and ammonium varies with TSP concentration levels. During heavy pollution periods, the average TSP concentration was 0.66 mg m(-3), and the NH4(+)/SO4(2-) molar ratio was low (0.58). It indicated that sulfate may present as CaSO4 and (NH4)2SO4 x CaSO4 x 2H2O. When TSP concentration (average 0.186 mg m(-3)) was relatively low, the NH4(+)/SO4(2-) molar ratio was 1.94, close to the theoretical ratio of 2 of (NH4)2SO4. Under this condition (NH4)2SO4 is expected to exist as the major form of sulfate. When the TSP concentration level was medium (average 0.35 mg m(-3)), the NH4+/SO4(2-) molar ratio appeared an average value (1.27), (NH4)2SO4, (NH4)2SO4 x CaSO4 x 2H2O and CaSO4 are expected to be present in those aerosol particles. Meteorological conditions including wind speed and wind direction were related to the TSP concentration level.  相似文献   

15.
A flow injection analysis method based on ion chromatography and luminol chemiluminescence detection was used for the simultaneous determination of copper (II) and cobalt (II) trace levels in soils and sediments following microwave-assisted acid digestion. Detection was based on chemiluminescence (CL) of the luminol–perborate system in an alkaline medium, which is catalyzed by both transition metals. The concentration and pH of the eluent (oxalic acid) was found to affect CL intensities and retention times, both of which were inversely proportional to the oxalic acid concentration. The calibration curves for both metal ions were linear and allowed a limit of detection of 0.003 μg l?1 for cobalt (II) and 0.014 μg l?1 for cooper (II) to be calculated. The proposed method was successfully used to determine both metal ions in certified reference materials of stream and river sediments and soil samples. Based on the results, the determination is free of interferences from the usual concomitant ions.  相似文献   

16.
The NO, NO2 and N2O emission was measured, upon application of nitrate, ammonium and both, to four Belgian soils with different characteristics. The addition of NH 4 + caused higher NO and N2O emissions than the addition of no nitrogen, or the addition of NO 3 . In contrast to the two soils with a pH of approximately 8 the two soils with a pH around 6 showed a considerable delay in production of both NO and N2O upon the application of the ammonium, probably due to the lag-period of nitrification. The soils with a pH of 8 gave higher emissions on the application of NH 4 + than the soils with a pH of 6. The emission of NO2 was found to be considerably lower than the NO emission from the soils. The NO/NO2 ratio varied between 5–25 at considerable NO emissions (>50 nmol kg–1). In the controls of soil 1 and soil 2, which showed very low NO emissions ratios of <1 were observed. The N2O/NO ratios varied between 5–20 when NO emissions were considerable (>50 nmol kg–1). Soil 3 and 4 gave lower N2O/NO ratios than soil 1 and 2. In the controls of soil 1 and soil 2, at low NO emissions, N2O/NO ratios of >300 were observed. Soil 3 and 4 gave higher NO/NO2 and lower N2O/NO ratios than soil 1 and 2.  相似文献   

17.
In this work we present the results of extensive characterization and optimization of the Ambient Ion Monitor-Ion Chromatograph (AIM-IC) system, an instrument developed by URG Corp. and Dionex Inc. for simultaneous hourly measurements of the water-soluble chemical composition of atmospheric fine particulate matter (PM(2.5)) and associated precursor gases. The sampling assembly of the AIM-IC consists of an inertial particle size-selection assembly, a parallel-plate wet denuder (PPWD) for the collection of soluble gases, and a particle supersaturation chamber (PSSC) for collection of particles, in series. The analytical assembly of the AIM-IC consists of anion and cation IC units. The system detection limits were determined to be 41 ppt, 5 ppt, and 65 ppt for gas phase NH(3(g)), SO(2(g)), and HNO(3(g)) and 29 ng m(-3), 3 ng m(-3), and 45 ng m(-3) for particle phase NH(4)(+), SO(4)(2-), and NO(3)(-) respectively. From external trace gas calibrations with permeation sources, we determined that the AIM-IC is biased low for NH(3(g)) (11%), SO(2(g)) (19%), and HNO(3(g)) (12%). The collection efficiency of SO(2(g)) was found to strongly depend on the composition of the denuder solution and was found to be the most quantitative with 5 mM H(2)O(2) solution for mixing ratios as high as 107 ppb. Using a cellulose membrane in the PPWD, the system responded to changes in SO(2(g)) and HNO(3(g)) within an hour, however for NH(3(g)), the timescale can be closer to 20 h. With a nylon membrane, the instrument response time for NH(3(g)) was significantly improved, becoming comparable to the responses for SO(2(g)) and HNO(3(g)). Performance of the AIM-IC for collection and analysis of PM(2.5) was evaluated by generating known number concentrations of ammonium sulfate and ammonium nitrate particles (with an aerodynamic diameter of 300 nm) under laboratory conditions and by comparing AIM-IC measurements to measurements from a collocated Aerosol Mass Spectrometer (AMS) during a field-sampling campaign. On average, the AIM-IC and AMS measurements agreed well and captured rapid ambient concentration changes at the same time. In this work we also present a novel inlet configuration and plumbing for the AIM-IC which minimizes sampling inlet losses, reduces peak smearing due to sample carryover, and allows for tower-height sampling from the base of a research tower.  相似文献   

18.
In this study, a challenging preconcentration/separation method based on the sorption of manganese on ethylene glycol dimethacrylatemethacrylic acid copolymer (EGDMA-MA) treated with ammonium pyrrolidine dithiocarbamate (APDC) and its slurry analysis by electrothermal atomic absorption spectrometry was described. Optimum conditions for quantitative sorption, as well as for preparing a homogeneous and stable slurry were investigated. A 100-fold enrichment factor could be reached. The analyte element in certified sea-water and bovine-liver samples were determined in the range of 95% confidence level. The proposed technique is fast, simple, and the risk of contamination is low. The limit of detection of the method for manganese in the slurry of the blank subjected to the proposed procedure was 0.07 μg L?1 (3δ, N:10) corresponding to 0.56 μg kg?1 slurry.  相似文献   

19.
采用国产光电离色谱仪(GC-PID)对有机硫化物:乙基硫醇,二甲基硫,二甲基二硫进行了分离分析,其最小检知量在亚微克/升级,并对北京郊区的某些天然源环境样品进行了有机硫化物浓度的测定,实验数据证实,在鸡场,猪场,水稻田与塑料蔬菜大棚等环境大气中含有机硫化物。研究了硫酸铵作为氮肥加入到水浸土壤中后,由于缺氧而生成有机硫化物的现象,观察了其对有机硫化物的释放规律及硫酸铵与葡萄糖分别作为硫源与碳源对有机硫化物生成的影响,实验结果认为:硫酸铵在五种不同类型的水浸土壤中(环境温度25℃),均可解离释放出有机硫化物,随其在土壤中加入量的增多,释放气中的有机硫浓度增加,二甲基硫的释放量最大。  相似文献   

20.
乌鲁木齐市可吸入颗粒物水溶性离子特征及来源解析   总被引:2,自引:1,他引:1  
采暖期时在乌鲁木齐市采集了环境空气中的可吸入颗粒物,对可吸入颗粒物质量浓度及8种水溶性离子的特征和来源进行了分析。结果表明,细粒子和粗粒子的月平均质量浓度分别是53.5~233.3μg/m3和38.9~60.9μg/m3;细粒子和粗粒子中水溶性离子主要由SO24-、NH4+和NO3-组成;粗粒子中NH4+与NO3-和SO24-的相关性分别是0.70和0.66,细粒子中NH4+与NO3-和SO24-的相关性分别是0.89和0.93,铵盐是乌鲁木齐可吸入颗粒物主要存在形式;煤烟尘是乌鲁木齐市采暖期可吸入颗粒物的主要来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号