首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolution of habitat use by deep-sea mussels   总被引:2,自引:0,他引:2  
Previous phylogenetic studies proposed that symbiont-bearing mussels of the subfamily Bathymodiolinae (Bivalvia: Mytilidae) invaded progressively deeper marine environments and evolved from lineages that decomposed wood and bone to specialized lineages that invaded cold-water hydrocarbon seeps and finally deep-sea hydrothermal vents. To assess the validity of the hypotheses, we examined two nuclear (18S and 28S rRNA) and two mitochondrial genes (COI and ND4) from a broad array of bathymodiolin species that included several recently discovered species from shallow hydrothermal seamounts. Bayesian phylogenetic analysis and maximum-likelihood estimates of ancestral character states revealed that vent species evolved multiple times, and that reversals in vent and seep habitat use occurred within the sampled taxa. Previous hypotheses regarding evolution from wood/bone-to-seeps/vents are supported in that mid-ocean hydrothermal vent species may represent a monophyletic group with one noticeable reversal. Earlier hypotheses about progressive evolution from shallow-to-deep habitats appear to hold with a few instances of habitat reversals.  相似文献   

2.
Unique components of tropical habitats, such as abundant vascular epiphytes, influence the distribution of species and can contribute to the high diversity of many animal groups in the tropics. However, the role of such features in habitat selection and demography of individual species has not been established. Understanding the mechanisms of habitat selection requires both experimental manipulation of habitat structure and detailed estimation of the behavioral and demographic response of animals, e.g., changes in movement patterns and survival probabilities. Such studies have not been conducted in natural tropical forest, perhaps because of high habitat heterogeneity, high species diversity, and low abundances of potential target species. Agroforestry systems support a less diverse flora, with greater spatial homogeneity which, in turn, harbors lower overall species diversity with greater numerical dominance of common species, than natural forests. Furthermore, agroforestry systems are already extensively managed and lend themselves easily to larger scale habitat manipulations than protected natural forest. Thus, agroforestry systems provide a good model environment for beginning to understand processes underlying habitat selection in tropical forest animals. Here, we use multistate, capture-recapture models to investigate how the experimental removal of epiphytes affected monthly movement and survival probabilities of two resident bird species (Common Bush-Tanager [Chlorospingus ophthalmicus] and Golden-crowned Warbler [Basileuterus culicivorus]) in a Mexican shade coffee plantation. We established two paired plots of epiphyte removal and control. We found that Bush-Tanagers were at least five times more likely to emigrate from plots where epiphytes were removed compared to control plots. Habitat-specific movement patterns were not detected in the warbler. However, unlike the Golden-crowned Warbler, Common Bush-Tanagers depend upon epiphytes for nest sites and (seasonally) for foraging. These dispersal patterns imply that active habitat selection based on the presence or absence of epiphytes occurs in C. ophthalmicus on our study area. Survival rates did not vary with habitat in either species. Interestingly, in both species, survival was higher in the nonbreeding season, when birds were in mixed-species flocks. Movement by Common Bush-Tanagers into areas with epiphytes occurred mostly during the breeding season, when mortality-driven opportunity was greatest.  相似文献   

3.
Predicting a species’ distribution can be helpful for evaluating management actions such as critical habitat designations under the U.S. Endangered Species Act or habitat acquisition and rehabilitation. Whooping Cranes (Grus americana) are one of the rarest birds in the world, and conservation and management of habitat is required to ensure their survival. We developed a species distribution model (SDM) that could be used to inform habitat management actions for Whooping Cranes within the state of Nebraska (U.S.A.). We collated 407 opportunistic Whooping Crane group records reported from 1988 to 2012. Most records of Whooping Cranes were contributed by the public; therefore, developing an SDM that accounted for sampling bias was essential because observations at some migration stopover locations may be under represented. An auxiliary data set, required to explore the influence of sampling bias, was derived with expert elicitation. Using our SDM, we compared an intensively managed area in the Central Platte River Valley with the Niobrara National Scenic River in northern Nebraska. Our results suggest, during the peak of migration, Whooping Crane abundance was 262.2 (90% CI 40.2?3144.2) times higher per unit area in the Central Platte River Valley relative to the Niobrara National Scenic River. Although we compared only 2 areas, our model could be used to evaluate any region within the state of Nebraska. Furthermore, our expert‐informed modeling approach could be applied to opportunistic presence‐only data when sampling bias is a concern and expert knowledge is available.  相似文献   

4.
Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat perspective in managing these landscapes.  相似文献   

5.
It has long been suggested that habitat structure affects how colonial birds are distributed within their nesting aggregations, but this hypothesis has never been formally tested. The aim of this study was to test for a correlated evolution between habitat heterogeneity and within-colony distributions of Ciconiiformes by using Pagel’s general method of comparative analysis for discrete variables. The analysis indicated that central-periphery gradients of distribution (high-quality individuals occupying central nesting locations) prevail in species breeding in homogeneous habitats. These were mainly ground-nesting larids and spheniscids, where clear central-periphery patterns were recorded in ca. 80 % of the taxa. Since homogeneous habitats provide little variation in the physical quality of nest sites, central nesting locations should be largely preferred because they give better protection against predators by means of more efficient predator detection and deterrence. By contrast, central-periphery gradients tended to be disrupted in heterogeneous habitats, where 75 % of colonial Ciconiiform species showed uniform patterns of distribution. Under this model of distribution, edge nest sites of high physical quality confer higher fitness benefits in comparison to low-quality central sites, and thus, high-quality pairs are likely to choose nest sites irrespectively of their within-colony location. Breeding in homogeneous habitats and uniform distribution patterns were identified as probable ancestral states in Ciconiiformes, but there was a significant transition rate from uniform to central-periphery distributions in species occupying homogeneous habitats.  相似文献   

6.
Animal movement patterns and use of space depend upon food and nonfood resources, as well as conspecific and heterospecific interactions, but models of habitat use often neglect to examine multiple factors and rarely include marsupials. We studied habitat use in an Australian population of koalas (Phascolarctos cinereus) over a 6-year period in order to determine how koalas navigate their environment and partition limited patchy food and nonfood resources. Tree selection among koalas appears to be mediated by folar chemistry, but nonfood tree selection exerts a major impact on home range use due to thermoregulatory constraints. Koalas moved on a daily basis, during both day and night, but daytime resting site was not necessarily in the same location as nighttime feeding site. Koalas had substantial home range overlap in the near absence of resource sharing with less than 1% of trees located in areas of overlap used by multiple koalas. We suggest that koala spatiotemporal distribution and habitat use are probably based upon a community structure of individuals, with a checkerboard model best describing overlap in home range area but not in resource use. Nonfood refugia and social networks should be incorporated into models of animal range and habitat use.  相似文献   

7.
Tropical rain forests are rapidly cleared, fragmented, and degraded in sub-Saharan Africa; however, little is known about the response of species and even of key ecological groups to these processes. One of the most intriguing (but often neglected) ecological phenomena in African rain forests is the interaction between swarm-raiding army ants and ant-following birds. Similar to their well-known Neotropical representatives, ant-following birds in Africa track the massive swarm raids of army ants and feed on arthropods flushed by the ants. In this study we analyzed the effect of habitat fragmentation and degradation of a mid-altitude Congo-Guinean rain forest in western Kenya on the structure of ant-following bird flocks. Significant numbers of swarm raids were located in all forest fragments and in both undegraded and degraded forest. Fifty-six different species of birds followed army ant raids, forming bird flocks of one to 15 species. We quantitatively differentiated the bird community into five species of specialized ant-followers and 51 species of opportunistic ant-followers. Species richness and size of bird flocks decreased with decreasing size of forest fragments and was higher in undegraded than in degraded habitat. This was caused by the decrease of the species richness and number of specialized ant-followers at swarms, while the group of opportunistic ant-followers was affected little by habitat fragmentation and degradation. The composition of bird flocks was more variable in small fragments and degraded forest, compared to undegraded habitat in large fragments. The effect of habitat fragmentation on flock structure was best explained by the strong decline of the abundance of specialized ant-followers in small forest fragments. To conserve the association of army ants and ant-following birds in its natural state, vast areas of unfragmented and undegraded tropical rain forest are necessary.  相似文献   

8.
9.
It is notoriously difficult to study population interactions among highly mobile animals that cannot be meaningfully confined to experimental plots of limited size. For example, migratory water birds are believed to suffer from competition with resident fish populations for shared food resources. While observational evidence in support of this hypothesis is accumulating, replicated experiments addressing this issue at the proper spatial scale are lacking. Here, we report from a replicated whole-system experiment in which we stocked large (0.07 km2), shallow (< or =2.5 m deep), highly eutrophic ponds in the bird protection area "Ismaninger Speichersee mit Fischteichen" with different densities of carp and assessed the responses of water birds and their food resources during summer over several years. In all years, the biomasses of benthic macroinvertebrates, macroalgae, and macrophytes as well as the densities of herbivorous, carnivorous, and omnivorous water birds were reduced in carp ponds compared to fishless ponds. The negative effects of carp on food resources and on the numbers of water birds feeding in carp ponds increased over the season (May-September) and were stronger at high than at low stocking densities of carp. Consequently, differences in resource densities between ponds with and without carp increased, and the ranking of ponds with respect to resource densities became more predictable over the season. These factors may have contributed to a seasonal improvement of the birds' abilities to track resource densities across ponds, as suggested by tight correlations of bird numbers on ponds with resource densities late, but not early, in the season.  相似文献   

10.
Feral pigeons are descendants of wild rock pigeons that have adapted to the urban habitat. They have partially conserved the foraging behaviour of their wild ancestors (flights to agricultural areas) but have also developed new habits. Previous studies on the foraging strategies of feral pigeons have given various results, e.g. maximum distances reached by the pigeons (measured in a straight line from the resting places) differed between 0.3–0.5 km and 18–25 km. This study focuses on the spatio-temporal activity of feral pigeons in the urban habitat. We equipped 80 free-living feral pigeons from Basel, Switzerland with GPS receivers. We found three different foraging strategies for pigeons in Basel: (1) in the streets, squares and parks near the home loft, (2) in agricultural areas surrounding the city, (3) on docks and railway lines in harbours. The maximum distance reached by a pigeon was 5.29 km. More than 32% of the pigeons remained within 0.3 km of the home lofts and only 7.5% flew distances of more than 2 km. Females covered significantly longer distances than males, preferring to fly to more abundant and predictable food sources. Temporal activity patterns showed to be influenced by sex, breeding state and season. In contrast to wild rock pigeons and to feral pigeons in other cities, pigeons in Basel showed a clear bimodal activity pattern for breeding birds only. The differences between our results and those of other studies seem to be partly method-dependent, as the GPS-technique allows to record the pigeons’ localisations continuously in contrast to other methods. Other differences might be due to different kinds of food supply in the various cities. Our study shows that feral pigeons have individual foraging strategies and are flexible enough to adapt to different urban environments.Electronic supplementary material Supplementary material is available for this article at  相似文献   

11.
Top predators are critical to ecosystem function, exerting a stabilising effect on the food web. Brown skuas are opportunistic predators and scavengers. Although skuas are often the dominant land-based predator at seabird colonies, this is the first detailed study of their movements and activity during breeding. The study was carried out at Bird Island, South Georgia (54°00′S, 38°03′W), in the austral summer of 2011/2012 and included GPS data from 33 breeding adults tracked during the late incubation and early chick-rearing periods. Brown skuas spent on average more than 80 % of time in the territory, and it was extremely rare for both partners to leave the territory simultaneously. Much more time was spent foraging at the coast than in penguin colonies and, based on saltwater immersion data, adults never foraged at sea. None of the tracked birds appeared to specialise in catching small petrels at night. Fewer foraging trips were made per day, and hence, more time was spent in the territory, during incubation than chick-rearing. Despite the pronounced sexual size dimorphism, there were no effects of sex on territorial attendance, foraging time or habitat use. Skuas at Bird Island show higher territorial attendance and are less likely to leave the territory unattended than those breeding elsewhere, suggesting closer proximity to more diverse or abundant food resources than at other colonies. The results tie in with previous diet studies, indicating that brown skuas at this site feed mostly on seal placentae and carrion and that birds may rely on a broader range of food resources as the season progresses.  相似文献   

12.
We explored the at-sea behavior and marine habitat use of the Southern Giant Petrel breeding in Patagonia, Argentina by means of satellite telemetry. Adult breeders showed a wide distribution over the Patagonian Shelf, using 74% of its surface. The maximum distance traveled from the colonies was 683 km, but on average birds moved no more than 200 km further away from their colony. Important marine areas were located in the shelf break, middle shelf and coastal waters. Areas of activity by sex overlap between 35 and 94%. Females foraged primarily away from the coast and males mainly on coastal areas. Both sexes were capable of flying up to 4,000 km but most of the foraging trips were of less than 200 km. Our results emphasize the importance of the Patagonian Shelf as foraging habitat for pelagic seabirds and contribute to international efforts to identify and protect a network of marine sites.  相似文献   

13.
Antarctic fur seals (Arctocephalus gazella) are major secondary consumers in the Southern Ocean, placing them in potential competition with commercial fisheries and requiring research to understand their seasonal habitat use. Using the data obtained during 14 shipboard surveys sampled on a fixed grid (150 K km2) during mid- to late summer, I quantified the spatial distribution and intra-seasonal variability of fur seal sightings relative to distance to land and hydrographic boundaries. I test the hypothesis that fur seals display an increase in their at-sea abundance during mid- to late summer near the Antarctic Peninsula as they prepare to take up wintering grounds. I also test whether abundances of their potential prey, krill and myctophids, exhibit intra-seasonal variability. During midsummer, high-abundance areas are located near major breeding colonies; however, during late summer, there is an order-of-magnitude increase in fur seal abundance, coinciding with an increase in the number of high-abundance areas located in Bransfield Strait. Coincidently, abundance of Euphausia superba decreased and the myctophid Electrona antarctica increased between mid- and late-summer surveys. High-abundance areas of fur seals are not associated with the southern Antarctic Circumpolar Current front but are concentrated within 100 km from land, potentially indicating the location of haul out and important coastal habitat use areas. The dynamic increase in the number and location of high-abundance areas during late summer represents a considerable amount of mammalian predators entering the Antarctic Peninsula marine ecosystem. This information is important for understanding the seasonal impact of fur seals on regional marine food webs and their potential interaction with the autumn–winter krill fishery.  相似文献   

14.
Evidence of food-based competition among passerine migrants during stopover   总被引:8,自引:0,他引:8  
Summary Local concentrations of migrating, fat-depleted birds with similar diets can lead to increased competition for food at a time when energy demand is high. Results of a predator-exclosure experiment indicate that intercontinental passerine migrants depress food abundance during stopover following migration across the Gulf of Mexico. Moreover, migrants that stop when a high number of potential competitors are present replenish energy reserves more slowly than migrants that stop under low density conditions. Competition increase the rate of food depletion and may decrease the probability that a migrant will meet its energetic requirements and complete a successful migration.  相似文献   

15.
16.
Although invasive non-native species can adversely affect biodiversity in many ways, predation of native species by non-native species on islands can be severely damaging. Results of numerous studies document non-native birds preying on birds on islands, but our understanding of the number and type of species affected has been limited by the lack of a global review of these impacts. I identified the non-native bird species that have been recorded preying on birds, the locations where this predation occurred, and the bird species affected. Because the impacts of non-native birds can be particularly severe on small islands, I then identified the islands <500 km2 around the world that are occupied by predatory non-native birds. By taking into account their life-history traits and predation history, I also identified the near-threatened and threatened bird species on these islands that they may prey on. The results indicated that predation by non-native birds was primarily a concern for threatened bird conservation on small islands; almost all predation impacts (91%) on near-threatened and threatened birds were recorded on islands, and median island size was 106 km2. I also found non-native bird predation was a poorly known and widespread potential threat to avian biodiversity; worldwide, 194 islands of <500 km2 were occupied by predatory non-native birds, but information on their impacts was unavailable for most of these islands. On them, where the impacts of non-native species can be severe, non-native birds may be preying on approximately 6% of the world's near-threatened and threatened bird species. Four non-native bird species I identified have been successfully eradicated from islands. If they were eradicated from the small islands they occupy, 70% of the near-threatened and threatened bird species I identified would no longer be affected by nest predation by non-native birds on small islands.  相似文献   

17.
This study explores the extent to which ontogenetic habitat shifts modify spatial patterns of fish established at settlement in the Moorea Island lagoon (French Polynesia). The lagoon of Moorea Island was divided into 12 habitat zones (i.e. coral seascapes), which were distinct in terms of depth, wave exposure, and substratum composition. Eighty-two species of recently settled juveniles were recorded from March to June 2001. Visual censuses documented changes in the distribution of juveniles of each species over time among the 12 habitats. Two patterns of juvenile habitat use were found among species. Firstly, some species settled and remained in the same habitat until the adoption of the adult habitats (i.e. recruitment; e.g. Chaetodon citrinellus, Halichoeres hortulanus, Rhinecanthus aculeatus). Secondly, others settled to several habitats and then disappeared from some habitats through differential mortality and/or post-settlement movement (e.g. 65–70 mm size class for Ctenochaetus striatus, 40–45 mm size class for Epinephelus merra, 50–55 mm size class for Scarus sordidus). A comparison of the spatial distribution of juveniles to that of adults (61 species recorded at both stages) illustrated four patterns of subsequent recruitment in habitat use: (1) an increase in the number of habitats used during the adult stage (e.g. H. hortulanus, Mulloidichthys flavolineatus); (2) a decrease in the number of habitats adults used compared to recently settled juveniles (e.g. Chrysiptera leucopoma, Stethojulis bandanensis); (3) the use of different habitat types (e.g. Acanthurus triostegus, Caranx melampygus); and (4) no change in habitat use (e.g. Naso litturatus, Stegastes nigricans). Of the 20 most abundant species recorded in Moorea lagoon, 12 species modified the spatial patterns established at settlement by an ontogenetic habitat shift.Communicated by T. Ikeda, Hakodate  相似文献   

18.
This paper offers the first study of diurnal variations in the use of an estuarine habitat by Indo-Pacific humpback dolphins. Passive acoustic data loggers were deployed in the Xin Huwei River Estuary, Western Taiwan, from July 2009 to December 2010, to collect biosonar clicks. Acoustic encounter rates of humpback dolphins on the riverside of the estuary changed significantly over the four tidal phases, instead of the two diurnal phases based on the recordings from 268 days. Among the tidal phases, the encounter rates were lowest during ebb tides. Additionally, circling movements associated with the hunt for epipelagic fish significantly changed in temporal and spatial presence over the four tidal phases, matching the overall pattern of encounter rate changes in the focal estuary. Our findings suggest that the occurrence pattern and habitat utilization of humpback dolphins are likely to be influenced by the tidal-driven activity of their epipelagic prey.  相似文献   

19.
Summary By removing older males from their breeding territories, we tested the hypothesis that age-related dominance behavior influenced the pattern of habitat selection by breeding American redstarts Setophaga ruticilla (Aves: Parulinae). Fifteen older male redstarts removed in five experimental replicates during three breeding seasons were replaced by ten yearling and five older males; no redstart males of either age colonized the control sites during the same time periods, although two yearlings disappeared. Significantly more yearling males (67%, n=9) colonized the vacated areas than were present in the redstart population at large (26.8%, n=209). We reject the alternative hypothesis that yearling male redstarts occupy different habitats from older males because of age-related (innate) habitat preferences. Redstarts that colonized the territories made vacant by our removals (i.e., floaters) were a behaviorally heterogeneous group of animals. The presence of both yearling and older male floaters indicates that suitable habitat is limiting for this species and that intraspecific competitive interactions are important in habitat distribution, and potentially in population regulation.  相似文献   

20.
Partial migration is considered ubiquitous among vertebrates, but little is known about the movements of oceanodromous apex predators such as sharks, particularly at their range extents. PAT-Mk10 and SPOT5 electronic tags were used to investigate tiger shark (Galeocerdo cuvier) spatial dynamics, site fidelity and habitat use off eastern Australia between April 2007 and May 2013. Of the 18 tags deployed, 15 recorded information on depth and/or temperature, and horizontal movements. Tracking times ranged between four and 408 days, with two recovered pop-up archival tags allowing 63 days of high-resolution archived data to be analysed. Overall mean proportions of time-at-depth revealed that G. cuvier spent the majority of time-at-depths of <20 m, but undertook dives as deep as 920 m. Tagged sharks occupied ambient water temperatures from 29.5 °C at the surface to 5.9 °C at depth. Deep dives (>500 m) occurred mostly around dawn and dusk, but no definitive daily dive patterns were observed. Horizontal movements were characterised by combinations of resident and transient behaviour that coincided with seasonal changes in water temperature. While the majority of movement activity was focused around continental slope waters, large-scale migration was evident with one individual moving from offshore Sydney, Australia, to New Caledonia (c. 1,800 km) in 48 days. Periods of tiger shark residency outside of Australia’s fisheries management zones highlight the potential vulnerability of the species to unregulated fisheries and the importance of cross-jurisdictional arrangements for species’ management and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号