首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Larvae of Lithodes antarcticus Jacquinot were reared in October, 1981 from hatching to the glaucothoe stage at 16 temperature/salinity combinations (5.5°; 7.5°; 9.5° and 13.5°C; 26, 29, 32 and 35 S) to determine optimal environmental conditions for larval development. The highest survival percentage was obtained in the culture at 7.5°C and diminished according to temperature increase or decrease. High temperature cultures significantly shorten the larval life duration, but produce large mortalities. At 5.5°C mortality occurred almost exclusively during the moult to glaucothoe stage. Higher survival percentages were obtained as salinity was increased. In the lowest salinity culture (26 S) no zoea reached the post-larvae stage at culture temperatures. The best T/S combination was obtained at 7.5°C and 35 S, with a survival percentage of 29%. The shortest zoeal developments were obtained at 32 S in all culture temperatures. Salinity also affects larvae coloration: there is a pigment concentration on erythrophores, which causes a color decrease.  相似文献   

2.
Temperature and salinity affected both length of larval development and mortality inNecora puber collected in the Ría de A Coruña during December 1984 and January 1985. Development time decreased considerably with increased temperature. This decrease was sharper when temperature increased from 15° to 20°C than when it increased from 20° to 25°C. At 35S, average development took 48, 32 and 28 d at 15°, 20° and 25°C, respectively. At the three salinities tested (25, 30 and 35), larval development was completed only at 15°C, at 20°C/30 and 35S, and at 25°C/35S. Development times at 15° and 20°C were highly significantly different at both 35 and 30S (P 0.01). However, there were no significant differences between development times at 20° and 25°C (P > 0.05). Within any one specific temperature series, no significant difference was observed between the salinity values tested (P > 0.05). The duration of each of the five zoeal stages was similar within each and the same temperature/salinity combination, whereas the duration of the megalop was twice as long as any of the zoeal stages. The combination of the lowest temperature (15°C) and the highest salinity (35) tested resulted in the greatest larval survival of 28%. Highest mortality occurred at 25°C, at which temperature development was completed only at 35S. A sharp drop in larval survival was observed in the transition period Zoea V — megalop in all combinations of temperature and salinity tested. Within the limits of tolerance to temperature and salinity, the former effected more pronounced differences in the duration of larval development, while salinity appeared to constitute a limiting factor for survival.  相似文献   

3.
Tigriopus brevicornis (O. F. Müller) were collected in 1992 from rock pools close to U.M.B.S. Millport, Isle of Cumbrae, U.K. and acclimated to various combinations of salinity and temperature for at least 1 wk prior to laboratory experiments. Higher salinities of acclimation enhanced tolerance to high salinity stress, while tolerance of low salinities was hardly affected by acclimation salinity. Acclimation to low temperature (10°C) extended the survivable salinity range for T. brevicornis. High-salinity acclimation enhanced the survivable temperature range. Copepods acclimated to 60 survived significantly lower and higher temperatures than did 34-acclimated individuals. At high temperature, 75-acclimated female copepods had the highest median lethal temperature, 38.9°C. Females were significantly more resistant to high temperatures than males. The copepods were seen to have a very low median lethal temperature when frozen into solid ice for 2 h; 50% mortality occurred at-16.9°C in 10°C, 34-acclimated T. brevicornis. Salinity preference experiments demonstrated an ability to discriminate between salinities differing by as little as 3. Copepods acclimated to 34 chose salinities near their acclimation salinity; individuals acclimated to 5 favoured slightly higher salinities, while copepods acclimated to 60 chose rather lower salinities.  相似文献   

4.
The 30-d survival limit of Eupentacta quinquesemita and Strongylocentrotus droebachiensis is 12–13 S. The activity coefficient (1 000/righting time in seconds) of stepwise acclimated sea urchins declined from 16.3 at 30 S to 3.5 at 15 S. Oxygen consumption rates (QO2) of both species held at 30 S and 13°C were highest in June and lowest in December. During the summer, when environmental salinity is most variable in southeastern Alaska, the QO2 of both species held at 30, 20 and 15 S varied directly with salinity. Perivisceral fluid PO2 varied directly with acclimation salinity in sea urchins, but not in sea cucumbers. Perivisceral fluid oxygen content of acclimated sea urchins was significantly lower at 15 and 20 S than at 30 S due to reduced PO2 and extracellular fluid volume at the lower salinities. The QO2 of both species varied directly with ambient salinity during a 30-10-30. semidiurnal pattern of fluctuating salinity. No change occurred in the average QO2 of either species over a 15-30-15. semidiurnal pattern of fluctuating salinity. Sea urchin perivisceral fluid PO2 declined as ambient salinity fluctuated away from the acclimation salinity in both cycles and increased as ambient salinity returned to the acclimation salinity. Total nitrogen excretion of stepwise acclimated sea cucumbers declined significantly from 30 to 15 S, but there was no salinity effect on total nitrogen excretion in sea urchins. Ammonia excretion varied directly with salinity in stepwise acclimated sea cucumbers (67–96% of total nitrogen excreted), but there was no salinity effect on ammonia excretion (89–95% of total nitrogen excreted) of sea urchins. Urea excretion did not vary with salinity in sea cucumbers (2–4% of total nitrogen excreted) or sea urchins (2–9% of total nitrogen excreted). Primary amines varied inversely with salinity in sea cucumbers (2–30% of total nitrogen excreted), but did not vary with salinity in sea urchins (2–4% of total nitrogen excreted). The oxygen: nitrogen ratio of both species indicated that carbohydrate and/or lipid form the primary catabolic substrate. The O:N ratio did not vary as a function of salinity. Both species are more tolerant to reduced salinity than previously reported, however, rates of oxygen consumption and/or nitrogen excretion are modified by salinity as well as season.  相似文献   

5.
The effect of salinity on embryonic development ofSepia officinalis (cuttlefish) in the Delta Area (South Western part of The Netherlands) was investigated in 1988/1989, and compared with data concerning the distribution ofS. officinalis in the three main parts of this area: Oosterschelde, Westerschelde and Grevelingen. Embryos hatched in water collected at Yerseke (Oosterschelde), Vlissingen (Western part of the Westerschelde) and Bommenede (Grevelingen), i.e., at salinity values above 28.1, but not in water sampled at Hoedekenskerke and Hansweert (Middle and Eastern part of the Westerschelde; salinities below 22.0). Under laboratory conditions, using diluted Oosterschelde water, the highest hatching percentages ofS. officinalis were found at salinities above 29.8. Some embryos hatched at a salinity value of 26.5 but no hatching occurred at salinities below 23.9. In embryos exposed to salinity changes during late embryonic development, the developmental rate decreased at salinity values of 28.7 or less. Below 22.4 embryos with morphological malformations were found. It can be concluded that salinity is an important factor limiting the distribution ofS. officinalis in most parts of the Delta Area, with the exception of the Western part of the Westerschelde and the Grevelingen.Contribution no. 489 of the Library of the Delta Institute for Hydrobiological Research  相似文献   

6.
The combined effects of salinity and temperature on survival and growth of larvae of the mussel Mytilus edulis (L.) were studied. The effects of salinity and temperature are significantly related only as the limits of tolerance of either factor are approached. Survival of larvae at salinities from 15 to 40 is uniformly good (70% or better) at temperatures from 5° to 20°C, but is reduced drastically at 25 °C, particularly at high (40) and low (20) salinities. Larval growth is rapid at a temperature of 15 °C in salinities from 25 to 35, at 20 °C in salinities from 20 to 35. Optimum growth occurs at 20 °C in salinities from 25 to 30. Growth decreases both at 25° and 10 °C; the decline is most drastic at high (40) and low (20) salinities.Part of a study completed at the Bureau of Commercial Fisheries, Biological Laboratory, Milford, Connecticut, USA, while on a UNESCO Fellowship.  相似文献   

7.
This study documents the effects of short-term (24h) sublethal copper exposures on undirected swimming activity and photobehavior of Balanus improvisus stage II nauplii. All Cu treatments were static, with temperature and salinity conditions at 20°C and 15 or 30. The 24h LC 50 estimate for Cu is 88 ppb at 15 and >200 ppb at 30. Sub-lethal Cu concentrations cause reductions in swimming speed, which decrease progressively with increasing Cu dose. At 50 ppb Cu, this was significant primarily at light intensities below the phototactic threshold. At higher Cu concentrations, significant reductions in mean linear velocity occurred at most light intensities tested. At 30, 50 and 100 ppb Cu also reduce the positive phototactic response and 150 ppb Cu causes reversal of phototaxis at optimal intensities. Photokinesis is reduced at 100 ppb Cu and disappears at 150 ppb Cu. At 15, the behavioral effects of 50 ppb Cu resemble those occurring with 150 ppb Cu at 30. Swimming speed and photobehavior show promise as sensitive behavioral indicators of copper toxicity. Additional research is required to determine if these responses apply to a broad range of pollutants and to other planktonic organisms. There is also a need to further evaluate the significance of these behavioral effects ecologically.Contribution No. 181 from the EPA Environmental Research Laboratory, Narragansett, RI 02882, USA  相似文献   

8.
S. V. Job 《Marine Biology》1969,3(3):222-226
Tilapia mossambica (Teleostei) weighing 5 to 80 g were acclimated at 30°C to salinities of 0.4 (tap water), 12.5 (50% sea water) and 30.5 (100% sea water). Their respiration was measured at routine activity and the partial pressure of ambient oxygen gradually reduced from 250 to 50 mm Hg. Respiration is salinity-dependent; the proportionate ability to use oxygen in any one salinity is — above the critical pO2 —the same in all experimental groups. This ability is a function of temperature and increases from 15° to 30°C, becoming temperature independent from 30° to 40°C as long as the pO2 remains above 150 mm Hg. At 50 mm Hg pO2, the limiting effect of oxygen causes a decrease in metabolic rate. This limiting effect is minimal in 80 g fish kept in an isotonic medium (12.5 S), allowing greater scope for activity and a higher rate of oxygen uptake.  相似文献   

9.
A salinity dependent mictic response was observed in a clone of Brachionus plicatilis cultured in the 2 to 4 salinity range. This response was related to asexual exponential reproduction rates (G) and could be divided into three categories: (a) no mixis occurred at a salinity of 35 S and above, where G values were lower than 0.30 d-1, (b) low mictic levels in rotifers cultured at 2 and 30 S, where G values ranged between 0.40 to 0.50 d-1, and (c) high mictic levels in rotifers cultured at salinities ranging between 4 and 20 S, where G values ranged between 0.50 to 0.85 d-1. Fluctuations in mictic levels varied with time during the course of the experiments. Results suggest that salinity conditions leading to optimal parthenogenic reproduction also support mixis.  相似文献   

10.
E. His  R. Robert  A. Dinet 《Marine Biology》1989,100(4):455-463
The combined effects of temperature, salinity and nutrition on survival and growth of larvae of the Mediterranean mussel Mytilus galloprovincialis and the Japanese oyster Crassostrea gigas were studied over a period of 7 d in the laboratory. Ripe adults, collected in spring and summer 1987 from natural populations in the Bay of Arcachon, France, were induced to spawn. Larvae of both species were cultured at four temperatures (15°, 20°, 25° and 30°C), four salinities (20, 25, 30 and 35S) per temperature, and two levels of nutrition (fed and unfed) per temperature/salinity combination. The fed larvae received a mixed algal diet of 50 cells each of Isochrysis galbana and Chaetoceros calcitrans forma pumilum per microlitre. In both bivalve species, larvae survived over a wide range of temperature and salinity, with the exception of mussel larvae, which died at 30°C. Statistical analysis indicated that nutrition had the greatest effect on larval development, explaining 64 to 75% of the variance in growth of M. galloprovincialis and 54 to 70% in growth of Crassostrea gigas. Unfed mussel larvae displayed little growth. Compared with temperature, the effect of salinity was very slight. M. galloprovincialis larvae exhibited best growth at 20°C and 35S and C. gigas at 30°C and 30S.  相似文献   

11.
The White Sea gastropod Hydrobia ulvae (Pennant) was exposed to step-wise lowering or increase of the habitat salinity. The time allowed for acclimatization to the successive salinity levels was sufficient to complete non-genetic adaptation. In this way, the lower and upper salinity limits were extended. The tolerance limits obtained are assumed to be indicative of the capacity for non-genetic adaptation and to serve as a genotypical characteristic. The tolerance of specimens colleced from in situ conditions (mid littoral, 20 S) ranged between 14 and 34 S. After non-genetic adaptation, the lower tolerance value shifted to 6 S (adaptation limit), and the upper value to 76 S (final limit not reached). There is no reason for considering White Sea H. ulvae to represent a special physiological race of specimens from those on the coast of Great Britain.  相似文献   

12.
Rainbow trout (Salmo gairdneri Richardson) which had been maintained for 120 days in salinities of fresh water, 7.5, 15.0 and 32.5 at 10°C were fasted for up to 48 days under these same environmental conditions. Live weight loss between Days 7 and 48 of starvation could be described by a straight line, as could the decrease in condition factor . Trout maintained in 32.5% S showed a significantly greater weight loss than those in salinities of 15.0 and below. Muscle water content increased slightly during fasting in fresh water, 7.5 and 15.0 S. In 32.5 S, however, muscle water fell significantly between Days 19 and 37. Liver water content also increased slightly during fasting, except in 32.5 S, where water content again decreased between Days 19 and 37. The volume of the gall bladder contents increased during fasting.  相似文献   

13.
Stable carbon isotope measurements (13C) were used to assess the importance of kelp carbon (-13.6 to-16.5) versus phytoplankton carbon (-25.5 to-26.5) to resident fauna of an isolated kelp bed community on Alaska's north arctic coast from 1979 to 1983. The predominant kelp, Laminaria solidungula, showed some seasonal variation in 13C which was correlated with changes in the carbon content of the tissue. Animals that showed the greatest assimilation of kelp carbon (>=50%) included macroalgal herbivores (gastropods and chitons,-16.9 to-18.2), a nonselective suspension feeder (an ascidian,-19.0) and a predatory gastropod (-17.6). Animals that showed the least incorporation of kelp carbon into body tissues (<=7%) included selective suspension-feeders (hydroids, soft corals and bryozoans,-22.8 to-25.1). Sponges, and polychaete, gastropod and crustacean omnivores exhibited an intermediate dependence on kelp carbon (15 to 40%). Within some taxonomic groups, species exhibited a broad range in isotopic composition which was related to differences in feeding strategies. In the polychaete group alone, 13C values identified four major feeding habits: deposit-feeders (-18.0), omnivores (-20.4), predators (-22.2) and microalgal herbivores (-23.0). Distinct seasonal changes in the 13C values of several animals indicated an increased dependence on kelp carbon during the dark winter period when phytoplankton were absent. Up to 50% of the body carbon of mysid crustaceans, which are key prey species for birds, fishes and marine mammals, was composed of carbon derived from kelp detritus during the ice-covered period.  相似文献   

14.
The combined effects of temperature and salinity on embryonic development and on larval survival and growth to setting size of the northerm bay scallop Argopecten irradians irradians (Lamarck) were studied in the laboratory. A 6x6 complete factorial design was used; temperatures ranged from 10° to 35°C, at 5C° intervals, and salinities ranged from 10 to 35S, at 5S intervals. Response-surface contour diagrams were generated to provide estimates of conditions for optimal responses. Normal development of embryos occurred over a very narrow range of temperature and salinity. Survival of larvae occurred over a wider range of temperature and salinity than did embryonic development or growth of larvae. Satisfactory growth (>70% of the maximum observed value) occurred only at high temperature-high salinity conditions; optimal conditions for survival occurred at similar salinities, but at slightly lower temperatures. Temperatures of 35°C or greater and/or salinities of 10S or less were lethal for all life stages studied. Both salinity and temperature exerted significant effects on development and survival, but temperature was clearly the dominant factor influencing growth. It is suggested that northern bay scallop embryos and larvae be reared at their respective optimal temperature-salinity levels so as to increase efficiency of aquaculture operations.This paper is adapted from a thesis submitted to the College of Fisheries, University of Washington, in partial fulfillment of the requirements for the MS degree. This study was conducted at the NMFS Laboratory in Milford, Connecticut, USA  相似文献   

15.
Routine oxygen consumption of very young juveniles (0.1 g) of Penaeus indicus H. Milne Edwards was significantly influenced by ambient temperature and weight of the animal, but not by ambient salinity, when tested at salinities (7, 21, and 35) to which they had been long-term (over 10 days) acclimated. Standard oxygen consumption of young juvenile prawns (1 to 3 g), subjected to step-wise changes in ambient salinity, from sea water to low salinity waters (2 to 6), and measured after short-term (24 h) salinity acclimation at each step, was lowest at salinities where prawns such as those tested occur naturally (10 to 15). The metabolic rates do not appear to have a direct relation to the osmotic gradient, even when the influence of interfering activity is eliminated. It appears that factors other than osmotic gradient will have to be sought in order to explain the metabolic patterns of P. indicus in relation to salinity.  相似文献   

16.
The six-rayed starfish Leptasterias hexactis (Stimpson, 1862) is seasonally exposed to low salinities in southeastern Alaska. Individuals that were gradually exposed to reduced salinities in the laboratory had a 28-d TLm of 12.9 S. The activity of L. hexactis, as measured by its activity coefficient, varied directly with salinity. Individual feeding rates of the starfish on similarly exposed Mytilus edulis, measured daily for 21 d at salinities of 30, 20 and 15 S, also varied directly with salinity. The dry weight of mussel tissue consumed was 8.84, 8.49 and 0.58 mg ·starfish-1·d-1 at 20, 20 and 15 S. Expressed as percent of dry starfish weight, the daily feeding rate was 1.35, 0.76 and 0.10% at 30, 20 and 15 S. Absorption efficiency decreased from 64% at 30 S to 49% at 20 S, further reducing the energy available for metabolism. Growth, measured in terms of changes in total dry weight or dry weight of soft tissues, also varied directly with salinity. Although exposure to hyposmotic conditions did induce stress responses, as indicated by reductions in activity, feeding, absorption efficiency and growth rates, L. hexactis maintained positive growth for at least a 3-wk period in the laboratory at 20 S and 13°CC. The population of L. hexactis investigated must be considered euryhaline and brief periods of exposure to hyposmotic conditions should not limit its distribution.  相似文献   

17.
Mayzaud  P.  Dallot  S. 《Marine Biology》1973,22(4):307-312
The effects of sublethal concentrations of mercury in combination with stressful temperature-salinity regimes were considered for larval development of the fiddler crab Uca pugilator (Bosc.). Control organisms were compared to those treated with 1.8 ppb Hg for the following suboptimal regimes: 30°C, 30 S; 30°C, 20 S; 20°C, 30 S, and 20°C, 20 S. As physiological indicators of larval response, the survival rate, the O2 consumption rate, and phototactic response were measured, following either acute 24 h doses of Hg, or chronic rearing in Hg. All response parameters were modified in larvae maintained under the suboptimal conditions; mercury compounded the effects.Supported by Grant No. 18080 FYI from the Environmental Protection Agency.  相似文献   

18.
S. V. Job 《Marine Biology》1969,2(2):121-126
In a series of experiments 174, 120 and 139 individuals of the teleost Tilapia mossambica (Peters), were acclimated to 30°C and to salinities of 0.4, 12.5 and 30.5, respectively. The effect of temperature and salinity upon oxygen consumption was studied by abruptly transferring fish of different wet weights to temperatures from 15° to 40°C at an average initial pO2 of 250mm Hg. At each salinity, the proportionate response to temperature is size-independent. The metabolic rate increases as a function of temperature at 15° and 30°C but not at 40°C. Oxygen consumption is, however, salinity dependent; maximum rates are obtained at 12.5S. This salinity is isotonic in the 80 g fish and, to a lesser extent, in the 5 g fish. Reduction in osmotic load is suggested as the probable cause for a greater scope for activity and greater rate of oxygen consumption in 12.5 salinity.  相似文献   

19.
Larvae of Rhithropanopeus harrisii (Gould) were reared from hatching to the first or second crab stages in 11 combinations of salinities and cyclic temperatures (5, 20, and 35 S at 20° to 25°C, 25° to 30°C, and 30° to 35°C; 25 S at 20° to 25°C and 30° to 35°C). The larvae survived to the megalops and first crab stages in all salinities and cycles of temperature other than 5 S at 30° to 35°C. The best survival to the megalops (94%) and first crab (90%) stages occurred in 20 S, 20° to 25°C. In all other combinations of salinities and temperatures there was a reduction in survival to the first crab stage. The duration of the larval stages was affected significantly by temperature, whereas the effect of salinity on the mean days from hatching to the first crab stage was not consistent at the different temperature cycles. Development to the first crab stage required the shortest time in 20 S, 30° to 35°C (mean 12.3 days), and the longest time in 5 and 35 S, 20° to 25°C (mean 22.6 days and 21.6 days, respectively). Megalops larvae reared in 35 S at all cycles of temperature, as well as larvae in 20 and 25 S, 30° to 35°C, showed a high percentage of abnormality, with the highest percentage occurring in 35 S, 30° to 35°C. It appears that larval development of R. harrisii is strongly influenced by environmental factors and not solely related to genetic differences.This research was supported by grants from the Nordic Council for Marine Biology and the U.S. Atomic Energy Commission [Grant No. At-(40-1)-4377].Contribution No. 116, Zoological Museum, University of Oslo, Norway.  相似文献   

20.
M. Nagaraj 《Marine Biology》1988,99(3):353-358
The calanoid copepodEurytemora velox was collected from rock pools at Castletown, Isle of Man, UK. Its optimum environmental requirements, particularly temperature and salinity, were determined, with a view to its possible future use as living food in intensive fish and shellfish farming. The species was cultured in 21 different temperature and salinity combinations. Investigations covered a period of two years from December 1983 to December 1985. Complete development from hatching to adult stage was followed in 21 temperature and salinity combinations. Nauplii suffered relatively high mortalities, indicating the sensitivity of this development stage to variations in temperature and salinity. Highest nauplii survival was observed in the combinations 15°C with 25 and 20 S and 20°C with 20 S, the highest copepodite survival at 10°C and 20 S. Lower salinities were tolerated better at higher temperatures and higher salinities at lower temperatures. Development time varied with the temperature and salinity combinations. Lower salinities at the lower temperatures of 10° and 15°C and both lower and higher salinities at 20°C prolonged development, particularly of the naupliar stage. Highest Q5 values (i.e., rate of change of development with a 5 C° increase in temperature) were recorded for the naupliar stage. Statistical analysis indicated that salinity influences the survival of both nauplii and copepodites; however, this effect is not linear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号