首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物炭的土壤环境效应及其机制研究   总被引:37,自引:0,他引:37  
近年来,随着土壤污染的逐渐加重以及食品安全问题的频出,生物炭作为重要的土壤改良剂以及对污染土壤修复表现出的巨大潜力引起人们的广泛关注.本文首先对国内外生物炭的土壤环境效应方面的研究以及成果进行分析总结.生物炭具有疏松多孔的性质以及巨大的表面积和阳离子交换量(CEC),可以改善土壤理化性质,能强烈吸附土壤中的污染物,降低其生物有效性和迁移转化能力;生物炭的碱性对于改良酸性土壤降低土壤中污染物的生物毒性具有很大的潜力;生物炭还可以为微生物提供生长繁殖的场所,有利于微生物对污染物的降解,但同时又可以保护被吸附的有机物免受微生物的降解,对不同的微生物影响不同;生物炭可以对蚯蚓等土壤动物的生存产生影响.在此基础上,依据生物炭的基本理化性质,对其土壤环境效应机制进行了分析.最后,从当前工作中存在的不足对今后的研究重点和方向进行了展望.  相似文献   

2.
生物炭及其复合材料在土壤污染修复中的应用研究进展   总被引:4,自引:0,他引:4  
人类活动产生的重金属与农药残留的有机污染物在土壤中的积累致使土壤遭受严重污染,引发了一系列生态问题。生物炭及其复合材料因其独特的表面结构使其可通过物理或化学等作用吸附土壤中的污染物,限制其在生态系统中的迁移与传递过程,进而改善土壤理化性质,因此生物炭在土壤污染治理方面的应用研究越来越多地引起关注,但多数研究局限于实验室水平。文章对近年来生物炭及其复合材料在自然土壤环境中的应用的相关研究进行了整理,从重金属与有机污染物两个方面切入,阐述了不同生物炭材料在污染土壤中对两类污染物的作用机理;介绍了生物炭的改性和复合方法及其应用优势,同时对生物炭材料在污染土壤修复中的研究重点进行了展望。复合材料可以显著增强生物炭对污染物的吸附性能。从吸附机理上看,生物炭及其复合材料对重金属污染多以静电作用、离子交换作用、表面官能团作用为主;对有机污染物则主要以分配作用、吸附作用、孔隙填充为主,但在实际应用过程中,这些机理往往共同发挥作用,只是贡献程度不同。另外,生物炭及其复合材料也可通过提高土壤质量间接增强土壤对污染物的抗性等。虽然纳米材料能够增强生物炭的性能,但其对土壤中微生物的毒性机理尚不完全清楚。综上所述,生物炭及其复合材料在自然土壤环境中的应用能显著降低污染物的毒性,但新型生物炭复合材料的作用机理有待进一步的研究和论证。  相似文献   

3.
生物炭对土壤生境及植物生长影响的研究进展   总被引:27,自引:0,他引:27  
生物炭是指由含碳量丰富的生物质在无氧或限氧的条件下低温热解而得到的一种细粒度、多孔性的碳质材料。近年来,生物炭作为一类新型环境功能材料引起广泛关注,其在土壤改良、温室气体减排以及受污染环境修复等方面都展现出应用潜力,已成为当前的研究热点。综述了生物炭对土壤生境以及植物生长方面的影响机制,并指出未来研究的主要方向。国内外最新的研究表明:生物炭的高孔隙度和表面面积,可以增加砂性土壤的田间持水量,但这种增加效应是有限度的;生物炭的碱性属性使其能够提高酸性土壤的pH值,这对喜碱作物的生长具有积极意义;生物炭能够抑制土壤氮磷养分淋失,提高肥料利用率;生物炭的添加会增加土壤微生物量,改变土壤微生物群落结构组成和土壤酶活性;生物炭的添加改善了土壤性质、养分状况以及土壤微生物性质,进而促进了植物生长。但生物炭对土壤生境和植物生长的影响效应要取决于土壤肥力和性质、植物种类、以及生物炭的特性和施用量等因素。因此,必须根据不同土壤的主要障碍因子,选择合适的生物炭,以期得到较好的土壤改良效果。今后应加强生物炭在林地土壤改良以及林木生长方面的研究与应用,进一步探索生物炭在土壤中发生的生物和化学反应机理,并且要对生物炭的施用效果进行野外长期定位研究。  相似文献   

4.
生物炭是由生物质在完全或部分缺氧的情况下经热解炭化产生的一类高度芳香化难熔性固态物质,具有改善土壤理化性质、调控营养元素循环、防治重金属、多环芳烃等污染物迁移转化等功能,因此,在土壤改良与修复领域具有较好的应用前景。但是,生物炭的施用将对土壤中的微生物群落结构组成带来影响,从而改变整个生态系统的物质循环过程。本文综述了近年来国内外有关生物炭对土壤微生物分布影响的研究进展,探讨了生物炭对土壤微生物生长代谢的作用机制,阐述了生物炭对于微生物主导的土壤生物地球化学过程产生的影响作用。相关研究发现,土壤总微生物生物量在生物炭施用后或增加,或不变,或呈现下降趋势;不同种类微生物对于生物炭的响应非常复杂,从而呈现出各异的土壤微生物群落结构组成。生物炭对微生物生长代谢的影响源于改变p H环境、影响水分分布、调节养分循环等多种机制的协同作用,而生物炭在对环境物质的吸附以及对微生物的直接吸附方面扮演着重要角色。同时,生物炭对于土壤微生物群落结构组成的影响还会随着时间的推移而发生变化。生物炭对土壤中微生物分布的改变还会进一步影响微生物的生物地球化学功能,对温室气体排放、碳氮循环和有机污染物降解等生物地球化学过程产生重要影响。因此,有待开展更多关于生物炭对于土壤微生物分布及其生态功能的影响的深入研究,以期更全面地评价生物炭对土壤环境质量的影响作用,为生物炭的实际应用提供依据。  相似文献   

5.
生物炭对土壤微生物的影响研究进展   总被引:1,自引:0,他引:1  
生物炭是有机材料在厌氧条件下热解而成的产物。近年来,生物炭因在碳固定、土壤改良和作物产量提高等方面具有较大的应用潜力而引起国内外学者的广泛关注。作为一类新型的土壤改良剂,它能提高土壤有机碳含量及阳离子交换量(CEC),改善土壤保肥持水性能,有益于土壤微生物活动,同时还可吸附抑制对土壤微生物生长有毒的化感物质,为土壤微生物提供有利的栖息场所。但生物炭的效应与生物炭的特性、用量、土壤类型及肥力有关。笔者从生物炭对土壤微生物的影响及其作用机制出发,概述了不同生物质材料及热解温度对生物炭理化性质的影响及生物炭对土壤微生物丰度、群落结构和活性影响的研究进展。未来应重点从生物炭的特性、生物炭与微生物交互作用及生物炭的环境修复等方面深入研究,客观评价生物炭对土壤微生物的作用。  相似文献   

6.
不同改性生物炭功能结构特征及其对铵氮吸附的影响   总被引:4,自引:0,他引:4  
为研发高性能铵氮(NH_4~+-N)吸附材料,削减水体NH_4~+-N排放负荷,提高农田土壤NH_4~+-N养分持留力,采用3种改性方法制备铁改性生物炭(B1)、酸碱联合改性生物炭(B2)铁氧化改性生物炭(B3)。通过吸附实验对比研究不同改性生物炭对NH_4~+-N的吸附效应,并结合改性前后和吸附前后生物炭组成与结构特征对改性生物炭的NH_4~+-N吸附机制进行探讨。结果表明,(1)铁氧化改性生物炭对NH_4~+-N的吸附作用最强,相对于未改性生物炭(B),其NH_4~+-N饱和吸附量提高了23.3%-24.1%;铁改性生物炭次之,NH_4~+-N饱和吸附量较未改性炭提高了14.1%-14.3%;酸碱联合改性生物炭NH_4~+-N饱和吸附量最小。(2)改性生物炭对NH_4~+-N的吸附由单分子层化学吸附的稳定吸附机制主导,同时存在非均一的多层物理吸附过程。(3)改性后导致的C-O官能团的增加是NH_4~+-N吸附量增加的主要原因,其次Fe-O官能团也参与了NH_4~+-N吸附。因此,采用氧化物对生物炭进行改性,提升生物炭中有氧官能团含量(包括有机和无机有氧官能团)是提高NH_4~+-N吸附效应的有效途径。该研究结果可为制备和筛选高性能NH_4~+-N吸附材料,提高生物炭在土水系统NH_4~+-N的去除效应提供理论基础。  相似文献   

7.
本研究以H_2O_2作为氧化剂模拟生物炭在土壤中的化学老化过程,并通过其被氧化前后表面性质和对双酚A吸附能力的差异,来评估生物炭在土壤中的稳定性及其老化后与双酚A的相互作用。结果表明,经过为期7 d的氧化,H_2O_2的氧化使200℃下制备的生物炭结构片段流失,其吸附性能降低以及生物炭总量减少;而500℃下制备的生物炭虽然碳损失率较低,但由于其极性增强和芳香性减弱导致其吸附性能减弱。2种生物炭在土壤中长期暴露后都可能导致其吸附双酚A能力下降,相对于200℃下制备的生物炭,500℃下制备的生物炭老化后吸附双酚A的能力下降程度更大。  相似文献   

8.
对不同养分类型(养分平衡、养分亏缺、养分严重亏缺)春小麦生态系统养分平衡研究表明,第一类型的生物产量和籽粒产量最高,籽粒中氨、磷、钾含量最多;第二类型的生物产量、籽粒产量较低,籽粒中氮、磷、钾含量较少;第三类型生物产量、籽粒产量最低,籽粒中氮、磷钾含量最少,研究还表明,春小麦养分平衡与土壤中氮、磷含量有关,春小麦从土壤中吸收钾,主要依赖于本身的吸收能力。  相似文献   

9.
生物质炭输入对土壤碳排放的激发效应研究进展   总被引:1,自引:0,他引:1  
生物质炭因其特殊结构分解缓慢而长期固存在土壤中,在稳定有机碳库、增加碳库容量、保持土壤肥力、改变土壤质地方面具有重要作用。同时,随着生物质炭输入土壤团聚体结构、水分渗透性、养分吸附和微生物活性也发生改变,引起原位土壤有机碳周转改变的激发效应。文章综述了生物质炭输入对土壤环境、碳排放、生物质炭自身碳矿化的影响,对生物质炭-土壤互作产生的激发效应持久性、大小、方向和机制进行总结,即生物质炭输入后的正激发效应可能表现为生物质炭中可溶组分与微生物共代谢而促进生物质炭自身碳矿化;生物质炭添加引起的负激发效应可能表现为生物质炭诱发原位土壤有机碳更加稳定或生物质炭中易挥发有机物抑制原位土壤微生物活性而降低土壤碳排放。并根据目前的研究现状,就生物质炭输入量、与土壤微生物群落和植物的相互作用、生物质炭添加的风险预测和评估及开展长期研究的必要性等问题进行展望,以期为生态系统长期碳吸存研究奠定基础,为应对气候变化提供选择和参考。  相似文献   

10.
我国的土壤污染日益严重,由于污染物对土壤生物产生的毒性效应与其生物有效态含量相关,以污染物总量为指标的土壤环境质量标准已无法满足当前土壤管理的需求,亟需开展以生物有效性为基础的土壤环境质量基准的研究工作。目前对土壤中重金属的生物有效性的研究较为深入,但是针对有机污染物的土壤生物有效性研究相对匮乏。本研究综述了有机污染物在土壤中的结构形态、吸附吸收和迁移转化,以及影响土壤中有机污染物生物有效性的关键因素。从我国有机污染物的污染现状、土壤类型分布情况,以及物种选择3个方面对基于生物有效性的土壤环境质量标准/基准的制定进行探讨,以期为我国根据国情制定适合本土特征的生态安全土壤质量标准提供借鉴。  相似文献   

11.
近年来,土壤抗生素和抗性基因污染已成为我国新兴的环境问题,生物炭作为土壤改良剂施用到土壤后会影响抗生素和抗性基因的环境行为.本文从我国土壤中抗生素和抗性基因污染现状和潜在风险出发,概述了生物炭添加土壤对抗生素的吸附、解吸及老化的影响,分析了生物炭特性、土壤类型、抗生素种类,和温度、pH值、共存物质等吸附条件对生物炭添加土壤吸附抗生素的影响,阐述了生物炭添加对土壤中抗生素和抗性基因迁移、消散、生物有效性,以及酶和微生物的影响,并对生物炭控制土壤中抗生素和抗性基因的研究前景进行了展望,拟为土壤中生物炭调控技术的发展提供参考.  相似文献   

12.
改性生物炭对菜地土壤磷素形态转化的影响   总被引:1,自引:0,他引:1  
生物炭是一种含碳量高且更为稳定的有机碳,能够显著影响土壤物理、化学及生物学性质。以华南地区主要的菜地土壤为研究对象,研究新型生物炭对土壤磷素形态转化及有效性的影响,结果表明,施用生物炭可以提高树脂磷(Resin-Pi)、NaHCO3提取态无机磷(NaHCO3-Pi)、NaOH提取态无机磷(NaOH-Pi)含量,生物炭施入土壤后能明显提高土壤的有效磷含量,但并未显著提高稀盐酸提取态无机磷(D·HCl-Pi)和浓盐酸提取态无机磷(C·HCl-Pi)的含量;施用生物炭增加了NaHCO3提取态有机磷(NaHCO3-Po)的含量,降低了NaOH提取态有机磷(NaOH-Po)的含量,提高了残渣磷(Residual-Pt)含量,并未改变浓盐酸提取态有机磷(C·HCl-Po)的含量。土壤速效磷与Resin-Pi、NaHCO3-Pi、NaHCO3-Po、NaOH-Pi、D.HCl-Pi、Residual-Pt呈显著相关,并与NaHCO3-Pi的相关性最强,相关系数达到0.980 5;Resin-Pi与NaHCO3-Pi、D.HCl-Pi呈极显著相关;NaHCO3-Pi与NaOH-Pi、D.HCl-Pi、Residual-Pt呈显著相关,并与D.HCl-Pi的相关性最强,相关系数达到0.816 6。表明在施用生物炭的条件下,不同形态的磷可以通过矿化等形式转化为有效性较高的磷形态。  相似文献   

13.
研究全球变暖和生物炭添加对农田土壤养分和土壤微生物生物量的影响,可为生物炭在农业生产中的应用提供理论参考。采用开顶式(open-top chamber, OTC)模拟增温方法,设置CK(未增温)、T1、T2和T3不同温度梯度处理,分别添加竹质生物炭20 t·hm~(-2)(BC1)和不添加(BC0)处理。结果表明,OTC法使T1、T2和T3处理平均气温较CK分别增加0.5、1.0和1.6℃。不加生物炭单独增温条件下,与CK相比,土壤有机质(SOM)、全氮(TN)、全钾(TK)、碱解氮(AN)、速效磷(AP)和速效钾(AK)含量均极显著增加,T1、T2和T3处理微生物生物量碳(MBC)含量分别增加70%、72.4%和114.39%,微生物生物量氮(MBN)含量分别增加45.02%、71.71%和72.23%,微生物生物量磷(MBP)含量分别增加39.43%、73.71%和202.31%,均达到极显著水平(P0.01)。未增温单独添加生物炭条件下,与未添加生物炭相比,土壤SOM、TN、TK和AK含量极显著增加,全磷(TP)含量显著增加,MBC、MBN和MBP含量均呈显著增加趋势(P0.05)。与未增温未添加生物炭相比,增温与生物炭共同作用处理土壤MBC、MBN和MBP含量均增加,最大增加量分别达到154.34%、87.85%和197.60%。增温和生物炭共同作用可极显著增加土壤pH以及TN、AN和AP含量,可显著增加土壤SOM含量,同时也可极显著增加MBN/TN比值。相关分析和冗余分析表明,土壤性质对微生物生物量变化的影响由高到低为SOMAPAKANTKPHTPTN,其中土壤养分中SOM、AP和AK含量是影响土壤微生物生物量的主要因素。在全球变暖背景下,添加生物炭通过加速土壤元素循环过程而增加土壤微生物生物量。  相似文献   

14.
生物炭修复土壤重金属污染的研究进展   总被引:7,自引:0,他引:7  
生物炭是由生物质在完全或部分缺氧的情况下经热解炭化产生的一类高度芳香化难熔性固态物质。近年来,生物炭在污染环境修复方面得到广泛关注,已成为当前环境科学的研究热点。文章综述了近年来国内外有关生物炭修复重金属污染土壤的研究进展,探讨了生物炭对土壤修复的潜力,阐述了生物炭对于土壤重金属生物有效性的影响。相关研究发现,不同来源及裂解温度制备的生物炭对土壤重金属修复的效果不同,不同类型土壤重金属对于生物炭的响应亦非常复杂,从而呈现出各异的土壤重金属修复效果。生物炭对重金属生物有效性的影响源于改变土壤p H、影响土壤有机质含量,改变土壤氧化还原电位及土壤微生物群落组成等多种机制的协同作用,同时生物炭在对重金属的吸附方面扮演着重要角色。生物炭对土壤重金属修复的影响效应取决于生物炭的特性和施用量、土壤肥力和性质、以及重金属种类等因素。因此,必须根据不同土壤的主要重金属污染类型,选择合适的生物炭,以期得到较好的土壤改良效果。今后应加强生物炭在农田土壤改良以及农作物生长方面的研究与应用,进一步探索生物炭在重金属污染土壤中发生的生物和化学反应机理,并且要对生物炭的施用效果进行野外长期定位研究。  相似文献   

15.
施用生物炭对土壤微生物的影响   总被引:5,自引:0,他引:5  
作为生物质材料的热解产物,生物炭被认为是很有前景的环境污染治理与生态修复材料.多方面的研究说明,生物炭的多孔、大比表面积、丰富的官能团等性能,使其具有"锁定"碳,固定土壤污染物,改善土质等功能,从而从土壤物理化学的角度证实了生物炭在土壤污染治理与改良方面的作用,但至于生物炭对土壤微生物的影响及其长期效应尚处于起步阶段.本文总结分析了近年来国内外生物炭与土壤微生物相关的研究成果,得出生物炭能通过改变土壤资源储备(如可利用C、营养物质、水分等)、非生命成分(如p H、CEC等)等理化性质,加快土壤细菌和真菌的生长与繁殖,影响土壤微生物群落结构和功能.可见,生物炭土地利用的优点不容置疑,为了实现其规模化应用,生物炭的施用剂量、生物炭-微生物-污染物的作用机理等问题亟待深入地研究,生物炭对土壤微生物及养分循环的长期影响还有待于系统地展开.  相似文献   

16.
畜禽粪污还田利用作为一种具有良好经济性和可操作性的资源化处理方式,近年来逐步成为规模化畜禽养殖场污染减排的方向,但其在还田过程中对水、土壤环境以及作物产量的潜在影响也不容忽视。以规模化养猪场为例,以常规化肥施用农田为对照,研究猪场厌氧污水还田与化肥配施对水环境(地表径流污染物流失负荷、地下水污染物浓度)、土壤环境(养分含量)和作物产量的影响。结果表明,与常规对照农田相比,污水还田农田地表径流化学需氧量(COD)、总磷(TP)和可溶性磷(DP)年流失负荷分别显著增加32.18%、15.46%和28.13%,但氨氮(以NH_4~+-N计)年流失负荷显著减少31.81%;地下水COD、硝态氮(NO_3~--N)、TP和DP等污染物浓度分别显著提高24.69%、17.04%、11.76%和21.05%;与初始土壤相比,污水还田农田不同土层中TN含量显著降低,常规对照农田TP含量显著降低;污水还田农田作物产量与常规对照农田无显著差异。  相似文献   

17.
采用盆栽试验,研究添加生物炭(BF)、施用有机肥(MF)、施用硫肥(SF)和轮作(CR)4种不同连作障碍消减措施对新疆棉花盛花期根系生理生化、生长形态以及土壤养分的影响.结果显示,不同的消减措施对棉花根系和土壤特征的影响存在差异.添加生物炭显著提高了土壤p H值和62.48%的土壤速效钾含量,降低了有效磷含量,并显著提高了棉花根系活力、根系长度和平均直径(P 0.05).与对照相比,轮作增加了土壤有机质、全氮和碱解氮含量,增加程度分别为31.79%、40.28%及32.43%,降低了土壤有效磷和速效钾的含量,并显著降低了根系丙二醛含量的积累(P0.05),且根系长度、根系表面积、根长密度和比根长最大.土壤速效钾和有效磷含量在施用有机肥处理下显著增加,分别增加了53.75%和16.75%,且根系平均直径显著增加(P 0.05),这将提高根系与土壤的接触面积,有利于膜下滴灌下异质性养分的吸收.本研究区域施用硫肥对土壤养分提高以及棉花根系生理活性、根系生长的改善效果不显著(P 0.05),并且施用硫肥具有最小的根冠比(0.499),不利于棉花根系自身的生长以及水分和养分的吸收.综上所述,添加生物炭、施用有机肥和轮作可通过影响根系形态或生理特征来提高根系功能的发挥,有利于养分的高效利用,可作为该区域可持续绿色农业的有效管理措施.(图1表5参51)  相似文献   

18.
生物炭对旱作农田土壤理化性质及作物产量的影响   总被引:3,自引:0,他引:3  
生物炭因其结构和功能特性受到国内外学者广泛关注,在农业土壤改良培肥、固碳减排等方面展现出巨大的应用潜力,但基于田间长期定位试验,开展生物炭对大田土壤理化性质及作物产量的影响研究尚不多见。以西南地区玉米(Zea mays L.)-油菜(Brassica campestris L.)轮作农田为研究对象,通过不同生物炭添加比例的田间定位试验研究了生物炭施用对旱作农田土壤容重、pH值、有机质、矿质态氮、有效磷、含水量等理化性质以及作物产量的影响,试验共设4个处理:单施复合肥、尿素(C0);复合肥、尿素+20 t·hm-2生物炭(C2);复合肥、尿素+50 t·hm-2生物炭(C5);复合肥、尿素+100 t·hm-2生物炭(C10)。结果表明:与C0对比,C5和C10处理均显著降低了土壤容重,降低幅度分别为14.6%和32.5%;C2、C5和C10处理土壤年均pH比对照组分别提高了0.10、0.17和0.15个单位;处理组土壤中有机质含量比对照组分别提高44.9%、137.7%和297.2%;土壤硝态氮含量比对照组分别提高了38.0%、26.3%和88.4%;土壤有效磷含量分别提高了34.8%、135.0%和232.2%;生物炭处理下土壤年均含水量比对照组分别提高了8.8%、29.1%和44.7%。玉米、油菜籽实和均表现为生物炭处理高于对照组。玉米籽实提高7.6%~20.3%,玉米根茎叶生物量提高8.6%~46.8%;油菜籽实产量提高显著,高于对照组15.7%~35.4%,根茎叶生物量提高-17.2%~30.3%。综合来看,本试验条件下,生物炭施用有利于降低土壤容重,提高土壤pH、有机质含量、NO3--N含量、有效磷含量、含水量,显示出生物炭作为土壤改良剂施用于农田能有效改良土壤理化性质和提高耕作性能。  相似文献   

19.
为阐明稻秆生物炭介导土壤Cd形态转化过程中化学性质与微生物群落多样性变化特征,通过室内培养实际污染土壤实验,研究施加稻秆生物炭对土壤Cd形态、pH值、阳离子交换量(CEC)、有机质(SOM)、碱解氮(AN)、有效磷(AP)、速效钾(AK)含量,以及土壤蔗糖酶(CA)、脲酶(UA)、过氧化氢酶(IA)活性等的影响特征,并...  相似文献   

20.
生物炭对土壤重金属化学形态影响的作用机制研究进展   总被引:1,自引:0,他引:1  
生物炭作为一种新型的环境修复材料,可以利用其结构特性,通过静电吸附、离子交换、官能团络合以及沉淀等作用机制来直接吸附固定土壤重金属,同时还可以通过间接影响土壤理化性质,比如土壤pH值、有机质、氧化还原电位等,从而影响土壤中重金属形态。重金属形态在更大程度上影响着重金属的生物活性,从而产生不同的环境效应。该研究基于国内外相关文献,概述了不同类型生物炭对土壤重金属化学形态变化的影响,并从物理、化学和微生物3个角度,阐述了生物炭影响重金属化学形态的作用机制。未来的研究侧重于生物炭与微生物的相互作用对重金属形态的影响,通过多组学手段,深入分析两者相互作用影响土壤重金属形态的微生物作用机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号