首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution and sources of aliphatic and polycyclic aromatic hydrocarbons (PAH) were determined in sediments at seven sites around the Slovenian coastal area. The potential toxicological significance was also assessed using biological thresholds. The results of the analyses showed higher concentrations of hydrocarbons in the Port of Koper and in the Marina of Portoroz. The influence of pollution was also evident in rather higher concentrations of hydrocarbons in the surrounding area in the Bays of Koper and Piran. Concentrations of hydrocarbons decrease toward the central part of the Gulf of Trieste. The major component of the aliphatic fraction was the unresolved complex mixture. Concentrations of the total resolved aliphatic hydrocarbons were in a range from 689 to 3,164?ng?g?1. Concentrations of the total PAHs were between 330 and 1,173?ng?g?1. Polycyclic aromatic hydrocarbons are primarily of pyrolytic origin with some smaller contributions of the petrogenic, while the aliphatic are mostly of petrogenic origin with significant amounts of biogenic derived compounds of terrestrial and marine origin. Strong evidence of the diagenetic origin of perylene in the investigated area was also found. Quite a good linear relationship between PAH concentration and TOC and between aliphatic hydrocarbon concentrations and TOC was observed. The principal component analysis showed differences between the nearshore and offshore sites. In general, the investigated area is moderately contaminated by hydrocarbons. Concentrations of PAHs, hydrocarbons of high concern, are below the levels (effects range low and the effects range median) associated with adverse biological effects.  相似文献   

2.
3.
Samples of surface sediments from the Iranian coast of the Persian Gulf were examined to determine the levels and sources of 15 polycyclic aromatic hydrocarbons (PAHs). Samples were collected from 30 sampling sites and analyzed for PAHs by gas chromatography–mass spectrometry (GC-MS). Total concentrations of PAHs ranged from 93 to 4,077 ng g?1 dry weight. The PAH composition from 30 sampling sites was dominated by four-ring PAH compounds. Molecular indices based on the ratios of PAH concentrations were used to differentiate PAHs from pyrolitic to petrogenic and mixed origins. The results suggested that the main sources of PAHs in sediments from the studied region were mixed pyrolitic and petrogenic. Furthermore, benthic organisms in most of the investigated areas were not at ecotoxicological risk, according to the results from the effects range low (ERL)/effects range median (ERM) techniques suggested by the US Sediment Quality Guidelines (SQGs).  相似文献   

4.
Particle-associated polycyclic aromatic hydrocarbon (PAH) concentrations were investigated at eight sampling sites during cold periods where heating is used (heating period) (February to March, 2005) and warm periods where heating is not required (non-heating periods) (August to September 2006) in the urban area of Anshan, an iron and steel city in northeastern China. Eleven PAH species were measured using GC-MS. The total average concentrations of PAHs ranged from 46.14 to 385.60 ng m(-3) in the heating period and from 5.28 to 146.40 ng m(-3) in the non-heating period. The lowest concentration of ∑PAHs was observed at Qianshan, a monitoring site far from the city and industrial area, and the highest concentration occurred in the site located at the factory area of Anshan Iron and Steel Incorporation. Moreover, ambient PAH profiles were studied and high molecular weight PAH (including 4-6 rings) species occurred in the high fractions. Toxic equivalent factors analysis gave the potential carcinogenic risks in Anshan. For the heating sampling period, BaP equivalent concentration is in the range of 41.98 to 220.83 ng m(-3), and 9.23 to 126.00 ng m(-3) for the non-heating sampling period. By diagnostic ratio analysis, traffic emission and combustion (coal or biomass) were potential sources for PAHs in Anshan. Finally, PCA results indicated the major sources were vehicle emission, steel industry emission, and coal combustion for both heating and non-heating seasons, which agreed with the results from the diagnostic ratio analysis.  相似文献   

5.
Airborne particulates (PM10) from four different areas within Agra city (a semi-arid region) were collected using respirable dust samplers during the winter season (Nov. 2005–Feb 2006) and were then extracted with methylene chloride using an automated Soxhlet Extraction System (Soxtherm®). The extracts were analyzed for 17 target polycyclic aromatic hydrocarbons (PAHs) and the heterocycle carbazole. The average concentration of total PAH (TPAH) ranged from 8.04 to 97.93 ng m???3. The industrial site had the highest TPAH concentration followed by the residential, roadside, and agricultural sites. Indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, and benzo(b)fluoranthene were the predominant compounds found in the samples collected from all of the sites. The average B(a)P-equivalent exposure, calculated by using toxic equivalent factors derived from literature and the USEPA, was approximately 7.6 ng m???3. Source identification using factor analysis identified prominent three, four, four, and four probable factors at industrial, residential, roadside, and agricultural sites, respectively.  相似文献   

6.
Costal sediment samples from Great Kwa River as well as adjoining termite nest and soil samples were analyzed for quantitative determination of polycyclic aromatic hydrocarbons (PAHs) and sterols using gas chromatography–mass spectrometry (GC–MS) in order to access the possibility of transport of biologically produced PAHs/sterols from termite nest to the sediments. The total PAH concentrations (sum of parent and alkyl) for the sediments ranged between 131.96 and 139.35 ng/g dry weight (dw) while those for the nest and soil samples were in the range 9.51–9.71 and 71.85–77.26 ng/g dw, respectively. These levels of PAHs in sediments were relatively low compared to other urban/industrial Asian and American countries. No evidence of the usual biologically produced PAHs was found, thus reducing the likelihood of transport of these compounds from the nest to the sediments. The absence of parent and alkyl PAHs in central compartment of the nest may reflect the selective fern leaves feeding pattern of the dominant termite species prevalent in the vicinity of the study site. Utilization of six selected PAH ratios such as Fla/(Fla + Pyr) (0.4–0.5), Ant/(Ant + Phe) (0.25–0.90), BaA/(BaA + Chrys) (0.45–0.61), MP/P (0.05–6.81), 1,7/(1,7?+?2,6)-DMP (0.61–0.95), and LPAH/HPAH ( 2.80–3.80) allows discrimination of PAH sources for the samples to be made with a mixed source dominance observed. Examination of sterol distributions in the samples shows relatively high abundance of cholest-5-en-3β-ol in central compartment of the nest, considered here as a consequence of metabolic conversion of phyto-/fungi sterols in the tissues of the termite species. The relatively reduced levels of stanol compounds in central compartment of the nest may be associated with their utilization by the termites for growth and development.  相似文献   

7.
Commercial cooking emissions are important air pollution sources in a heavily urbanized city. Exhaust samples were collected in six representative commercial kitchens including Chinese restaurants, Western restaurants, and Western fast-food restaurants in Hong Kong during peak lunch hours. Both gaseous and particulate emissions were evaluated. Eight gaseous and twenty-two particulate polycyclic aromatic hydrocarbons (PAHs) were quantified in this study. In the gaseous phase, naphthalene (67-89%) was the most abundant PAH in all of the exhaust samples. The contribution of acenaphthylene in the gaseous phase was significantly higher in emissions from the Chinese restaurants, whereas fluorene was higher in emissions from the Western cooking style restaurants (i.e., Western restaurants and Western fast-food restaurants). Pyrene is the most abundant particulate PAH in the Chinese restaurants (14-49%) while its contribution was much lower in the Western cooking style restaurants (10-22%). Controlled cooking conditions were monitored in a staff canteen to compare the emissions from several different local cooking styles, including deep frying, steaming, and mixed cooking styles (combination of steaming and frying). Deep frying produced the highest amount of total gaseous PAHs, 6 times higher than the steaming. However, steaming produced the highest particulate emissions. The estimated annual gaseous PAH emissions for the Chinese restaurants, Western restaurants, and Western fast-food restaurants were 255, 173, and 20.2 t y(-1) whereas 252, 1.9, and 0.4 t y(-1) were estimated for particulate phase PAH emissions. The study provides useful information and estimates for PAH emissions from commercial cooking exhaust in Hong Kong.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) were quantified in sediment, soil, and plant material from Hanoi, Vietnam, and an aquatic production system in peri-urban Hanoi. The sum of the concentration of 16 US-EPA priority PAHs ( summation PAH16) ranged between 0.44 and 6.21 mg kg(-1) dw in sediment and between 0.26 and 1.35 mg kg(-1) dw in soil, with decreasing concentrations from the urban area to the peri-urban area, indicating contributions from urban and industrial sources. Double plots of diagnostic source ratios indicate that PAHs originate from mixed petrogenic and pyrogenic sources, the latter being predominant. The predominance of low molecular weight (LMW) PAHs in the sediment samples suggests that petrogenic sources are more prevalent in the water environment than in the soil. In contrast, high molecular weight (HMW) PAHs dominated in water spinach which probably reflects the plant's uptake of particle-bound PAHs that originate from pyrogenic sources.  相似文献   

9.
Spatial and seasonal distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs), identified as priority pollutants by the US Environmental Protection Agency, were investigated in the surface water of the Taizi River in Liaoning Province, northeast of China. Samples were collected from the mainstream, and tributaries of the Taizi River in dry, wet, and normal seasons. Five important industrial point sources were also monitored. The total PAH concentrations ranged from 454.5 to 1,379.7 ng l?1 in the dry season, 1,801.6 to 5,868.9 ng l?1 in the wet season, and 367.0 to 5,794.5 ng l?1 in the normal season. The total PAH concentrations were significantly increased in the order of wet season > normal season > dry season. The profile of PAHs in the surface water samples was dominated by low molecular weight PAHs particularly with two- and three-ring components in the three seasons, suggesting that the PAHs were from a relatively recent local source. Source identification inferred that the PAHs in the surface water of the Taizi River came from both petrogenic inputs and pyrogenic sources.  相似文献   

10.
This paper reports the monitoring results of eleven polycyclic aromatic hydrocarbons (PAHs), four to six-ring, at two urban sites-Central & Western (CW) and Tsuen Wan (TW) in Hong Kong from January to December 2000; and the findings of a study conducted in 2001 of the partitioning of the gaseous and particulate phases of PAHs. The sum of the eleven PAHs under study (sigmaPAHs) was found to range from 6.46 to 38.8 ng m(-3). The annual mean levels at 12.2 ng m(-3) and 15.8 ng m(-3) for CW and TW respectively are comparable to those recorded for the previous two years and are also within the reported ranges for other metropolitan cities in the Asia Pacific region. Amongst the selected eleven PAHs, fluoranthene and pyrene were the two most abundant found in the urban atmosphere of Hong Kong during the study period accounting for approximately 80%, of the total PAHs. The ratios of benzo(a)pyrene to benzo(g,h,i)perylene (BaP/BghiP) and indeno(1,2,3-cd)pyrene to benzo(g,h,i)perylene (IDP/BghiP) indicate that diesel and gasoline vehicular exhausts were the predominant local emission sources of PAHs. Seasonal variations with high winter to summer ratios for each of the individual PAHs (CW: 1.6-16.7 and TW: 0.82-8.2) and for sigmaPAHs (CW: 1.9 and TW: 1.8) and a spatial variation of BaP amongst the air monitoring stations are noted. Results of correlation studies illustrate that local meteorological conditions such as ambient temperature, solar radiation, wind speed and wind direction have significant impact on the concentrations of atmospheric PAHs accounting for the observed seasonal variations. A snapshot comparison of the concentrations of PAHs at four sites including a roadside site, a rural site and the two regular urban sites CW and TW was also performed using the profiles of PAHs recorded on two particulate episode days in March 2000.  相似文献   

11.
Distribution and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in drinking water resources have been carried out for the first time in Henan Province, China. Water samples collected from four river systems and their tributaries, as well as groundwater resources, were analyzed according to EPA method 525.2. Total of 68 water samples were collected in 18 cities in Henan province in May, August and November, 2001. Concentrations of sum of 16 priority PAHs in water samples ranged from 15 to 844 ng/L with a mean value of 178 +/- 210 ng/L (n = 68). The spatial and temporal distribution of PAHs showed that the Huanghe and the Huaihe river systems had relatively higher concentrations of total PAHs. Higher concentrations of total PAHs were observed in August and November than in May, with respective mean values of 262, 232 and 33.6 ng/L. Ratios of Ant/(Ant + Phe) and Flur/(Flur + Pyr) were calculated to evaluate the possible sources of PAH contamination, which indicated that the coal combustion sources were the main contributors to PAHs in most drinking water resources. Some petrogenic (or pyrolytic) sources of PAHs were also found. The toxic equivalency factors (TEFs) were used to calculate benzo[a]pyrene equivalents (BaPE) for water samples. The average value of BaPE was 0.6 ng/L. The values in most stations were much lower than the guideline values in drinking water of Chinese Environmental Protection Agency (CEPA, 2.8 ng/L) and the US Environmental Protection Agency (US EPA, 200 ng/L). Overall, the drinking water resources in Henan province showed some carcinogenic potential.  相似文献   

12.
Thirty-one surface soil samples were collected from Liaohe estuarine wetland in October 2008 and May and August 2009. The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), identified as priority pollutants by the US EPA, were measured by gas chromatography. PAHs were predominated by three- and four-ring compounds. The total PAH concentrations ranged from 704.7 to 1,804.5 μg/kg with a mean value of 1,001.9 μg/kg in October 2008, from 509.7 to 1,936.9 μg/kg with an average of 887.1 μg/kg in May 2009, and from 293.4 to 1,735.9 μg/kg with a mean value of 675.4 μg/kg in August 2009. The PAH concentration detected at most sites shared the same pattern, with maximum concentrations during the autumn (October) and minimum concentrations during the summer (August). The ecological risk assessment of PAHs showed that adverse effects would occasionally occur in the soils from Liaohe estuarine wetland based on the effects range low (ERL)/effects range median and the toxic equivalency factors. The results revealed that some of the individual PAHs were in excess of ERL which implied possible acute adverse biological effects. The BaP(eq) values in some sites surpassed the Dutch target value. Therewith, quite a part of soils in the wetland were subjected to potential ecological risks.  相似文献   

13.
The characteristics of polycyclic aromatic hydrocarbons (PAHs) in water, suspended particulate matter (SPM), sediments, and hydrophytes from Lake Baiyangdian, a shallow freshwater lake in China were studied. The low-molecular-weight PAHs (2-3 ring PAHs) predominated (61.2 to 84.5%) in all samples. Principal component analysis (PCA) of individual PAHs and the ratios of selected PAHs showed that the PAHs in the lake were mainly petrogenic inputs. The solid-liquid distribution coefficient (K(d)) in the water phase was much higher than the bioconcentration factor (BCF), and the leaf concentration factor (LCF) was higher than the root concentration factor (RCF) and stem concentration factor (SCF) in plant-sediment phase. Good linear log/log relationships were observed between the equilibrium partitioning coefficient (K(oc)) and the octanol-water partitioning coefficient (K(ow)), between RCF and K(ow), and between LCF and the octanol-air partitioning coefficient (K(oa)). These results indicated that PAHs accumulated more easily in SPM than in submerged aquatic plants, and some low-molecular-weight PAHs could accumulate and be translocated in the lake's media. Media characteristics, contamination sources, and physicochemical properties all affect the partitioning of PAHs among water, SPM, sediments, and hydrophytes.  相似文献   

14.
In order to characterize and compare the chemical composition of diesel particulate matter and ambient air samples collected on filters, different extraction procedures were tested and their extraction efficiencies and recoveries determined. This study is an evaluation of extraction methods using the standard 16 EPA PAHs with HPLC fluorescence analysis. Including LC analysis also GC and MS methods for the determination of PAHs can be used. Soxhlet extraction was compared with ultrasonic agitation and pressurized fluid extraction (PFE) using three solvents to extract PAHs from diesel exhaust and urban air particulates. The selected PAH compounds of soluble organic fractions were analyzed by HPLC with a multiple wavelength shift fluorescence detector. The EPA standard mixture of 16 PAH compounds was used as a standard to identify and quantify diesel exhaust-derived PAHs. The most effective extraction method of those tested was pressurized fluid extraction using dichloromethane as a solvent.  相似文献   

15.
16.
Polycyclic aromatic hydrocarbons (PAHs) are important organic contaminants with great significance for China, where coal burning is the main source of energy. In this study, concentrations, distribution between different phases, possible sources and eco-toxicological effect of PAHs of the Yangtze River were assessed. PAHs in water, suspended particulate matters (SPM) and sediment samples at seven main river sites, 23 tributary and lake sites of the Yangtze River at the Wuhan section were analyzed. The total concentrations of PAHs in the studied area ranged from 0.242 to 6.235 μg/l in waters and from 31 to 4,812 μg/kg in sediment. The average concentration of PAHs in SPM was 4,677 μg/kg, higher than that in sediment. Benzo(a)pyrene was detected only at two stations, but the concentrations were above drinking water standard. The PAHs level of the Yangtze River was similar to that of some other rivers in China but higher than some rivers in foreign countries. There existed a positive relationship between PAHs concentrations and the TOC contents in sediment. The ratio of specific PAHs indicated that PAHs mainly came from combustion process, such as coal and wood burning. PAHs may cause potential toxic effect but will not cause acute biological effects in sedimentary environment of the Wuhan section of the Yangtze River.  相似文献   

17.
This paper describes a work aimed at improving the conditions of an extraction method, coupling GC-MS determination, for the analysis without cleanup phase, of polycyclic aromatic hydrocarbons (PAHs) from sediment samples. The automatic Soxhlet extraction in warm mode (using Extraction System B-811 Standard, Büchi) has demonstrated advantages for automation, reduced extraction time, and lower solvent use than for conventional Soxhlet extraction. Under these conditions, the recoveries are very good as they resulted greater than 85 % and, in most of the cases, near 100 %. The repeatability is also satisfactory (relative standard deviation less than 15 %). The detection limits are also acceptable and ranged from 0.001 to0.01 μg/kg dry weight. Fifty-four sediment samples were collected. The total concentration of the 17 compounds investigated, in samples of sediments collected from three Sicilian coastal areas, expressed as the sum of concentrations, varies from 99 to 11,557 μg/kg of dry matrix; concentrations of total PAHs in the sediments of Cala are two to three times higher than the other stations.  相似文献   

18.
A field campaign was conducted to measure and analyze 13 polycyclic aromatic hydrocarbons (PAHs) in six major zones in the city of Shanghai, P.R. China from August 2006 to April 2007. Ambient air samples were collected seasonally using passive air samplers, and gas chromatography–mass spectroscopy was used in this field campaign. The results showed that there was a sequence of 13 PAHs at Phen > FA > Pyr > Chr > Fl > An > BaA > BbFA > BghiP > IcdP > BkFA > BaP > DahA and the sum of these PAHs is 36.01 ± 10.85 ng/m3 in gas phase. FL, Phen, FA, Pyr, and Chr were the dominant PAHs in gas phase in the city. They contributed 90% of total PAHs in the gas phase. Proportion of measured PAHs with three, four, five, and six rings to total PAHs was 53%, 42%, 3%, and 2%, respectively. The highest concentration of ΣPAHs (the sum of 13 PAHs) occurred in the wintertime and the lowest was in the summer. This investigation suggested that traffic, wood combustion, and metal scrap burn emissions were dominant sources of the concentrations of PAHs in six city zones compared with coal burning and industry emissions. Further, the traffic emission sources of PAHs in the city were attributed mostly to gasoline-powered vehicles compared with diesel-powered vehicles. It was revealed that the seasonal changes in PAHs in the city depended on different source types. Metal scrap burn was found to be the major source of PAHs during the autumn, while the PAH levels in the atmosphere for winter and spring seasons were mainly influenced by wood and biomass combustion. Comparisons of PAHs among different city zones and with several other cities worldwide were also made and discussed.  相似文献   

19.
The Songhua River is the third largest river in China and the primary source of drinking and irrigation water for northeastern China. The distribution of 16 priority polycyclic aromatic hydrocarbons (PAHs) in water [dissolved water (DW) and suspended particulate matter (SPM)], sediment, and soil in the river basin was investigated, and the associated risk of cancer from these PAHs was also assessed. The total concentration of PAHs ranged from 13.9 to 161 ng L?1 in DW, 9.21 to 83.1 ng L?1 in SPM, 20.5 to 632 ng g?1 dw (dry weight) in sediment, and from 30.1 to 870 ng g?1 dw in soil. The compositional pattern of PAHs indicated that three-ring PAHs were predominant in DW and SPM samples, while four-ring PAHs dominated in sediment and soil samples. The spatial distribution of PAHs revealed some site-specific sources along the river, with principal component analysis indicating that these were from pyrogenic sources (such as coal and biomass combustion, and vehicle emissions) and coke oven emission distinguished as the main source of PAHs in the Songhua River Basin. Based on the ingestion of PAH-contaminated drinking water from the Songhua River, cancer risk was quantitatively estimated by combining the Incremental Lifetime Cancer Risk assessment model and BaP-equivalent concentration for five age groups of people (adults, teenagers, children, toddlers, and infants). Overall, the results suggest that the estimated integrated lifetime cancer risk for all groups was in acceptable levels. This study is the first attempt to provide information on the cancer risk of PAHs in drinking water from the Songhua River.  相似文献   

20.
The present paper is the first document of heavy metal levels in surficial sediment, water and particulate matter of the Gediz River collected from five different sites in August, October 1998, February, June 1999. The present work attempts to establish the status of distribution and environmental implications of metals in the sediment, water and particulate matter and their possible sources of derivation. The concentrations of mercury ranged 0.037–0.81, 120–430; lead 0.59–1.5, 190–8,100; copper 0.24–1.6, 30–180; zinc 0.19–2.9, 10–80; manganese 30–170, 20–490; nickel 0.39–9.0, 100–510; iron 1.3–687, 100–6,200 μg/l in water and particulate matter, respectively. The maximum values in water were generally obtained in summer periods due to industrial and agricultural activities at Muradiye. The particulate metal concentrations also generally showed increased levels from the upper Gediz to the mouth of the river. Calculation of metal partition coefficients shows that the relative importance of the particulate and the water phases varies in response to water hydrochemistry and suspended solid content, but that most elements achieve a conditional equilibrium in the Gediz River. The metals ranged between Hg: 0.25–0.49, Cr: 59–814, Pb: 38–198, Cu: 15–148, Zn: 34–196, Mn: 235–1,371, Ni: 35–175, and Fe: 10,629–72,387 mg/kg in sediment. The significant increase of metals found in Muradiye suggested a pollution effect, related to anthropogenic wastes. Also, relatively high concentrations of Ni and Mn occurred in sampling site upstream, due to geochemical composition of the sediments. Maximum values of contamination factor for metals were noticed for sediment of Muradiye. The sampling stations have very high degree of contamination indicating serious anthropogenic pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号