首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This article analyzes numerical variability In ozone air quality data to understand how this variability affects the number of violations seen each year in metropolitan statistical areas (MSAs). Three commonly cited violation indices are used: 1) the annual number of expected exceedances averaged over 3 years is greater than 1; 2) the n+ 1th hourly value in n years of data is greater than 0.12 ppm; and 3) the annual number of expected exceedances is greater than 1. Only the first index is consistent with applicable regulations. The analyses indicate that about 23 percent of all MSAs with valid data had one or more change In their ozone violation status between 1979 and 1987. This change in status occurred for approximately 7 percent of all MSA-years of available data. This statistic was about one-third of the value usually obtained when the two incorrect, but commonly used, criteria of ozone violations are used.  相似文献   

2.
Ozone data from 184 metropolitan statistical areas (MSAs) for the time period 1979-1989 were analyzed to: (1) put the large number of O3 exceedances observed in 1988 into perspective, and (2) determine if increasing the averaging time used to calculate the O3 NAAdS violation rate would significantly decrease the number of MSAs that experienced a change in their annual attainment status. The analyses indicate that 1988 had more exceedances in more MSAs than any other year, but 1979-1981 had more O3 NAAQS violations. The analyses also indicate that perceived attainment status flip-flops are significantly reduced by increasing the averaging period from the current three-year period to a longer time period.  相似文献   

3.
Abstract

Two problems exist in the form and the compliance test of the present National Ambient Air Quality Standard (NAAQS) for ozone. One is the use of the number of exceedances in the form of the standard, which generates confusion and unnecessary complexity when the form is translated to the design value. The other is the requirement of a zero percent chance of violation in the compliance test, which makes the NAAQS considerably more stringent than generally assumed. There are also two sample-size problems in the estimation procedure for the design value. One is the upward creeping of the (n+l)th highest value in n years as n increases from one in the table look-up approach. The other is the infinite-sample-size assumption instead of the number of high-ozone season days per year for the daily maximum ozone concentrations in the distribution fitting approach. Both problems lead to an exaggeration of the design value.

The above problems can be removed in a revised NAAQS by (1) using a statistic that is identical to the design value itself in the form of the standard, (2) defining the design value as an n-year mean of, say, the annual mth highest values rather than the xth highest value in n years, and (3) using a simple compliance test like the t test that compares the design value with the level of the standard, taking into account the year-to-year fluctuation of the annual mth highest values. When the design value of an area is close to the level of the standard, the test provides a natural “too close to call” interval, which adjusts itself with the fluctuation of the annual mth highest values, so that as the fluctuation increases, the ability to assign the compliance status of the area decreases. The inclusion of a “too close to call” interval or category in the standard is critical to reduce the tendency toward ozone attainment flip-flops in areas approaching attainment and to assure that the ozone NAAQS is not more or less stringent than it appears.  相似文献   

4.
ABSTRACT

A 15-year (1981-95) climatology for the diurnal maximum ozone concentration (DMOC) was developed using 1-hr average ozone concentrations in the Baltimore-Washington area, which was made up of four regions: Baltimore, Washington, non-urban Maryland, and non-urban northern Virginia. The DMOC time series for each of these regions were divided into four terms representing different behavioral time scales: the long-term mean; the mean in-tra-annual perturbation; the interannual perturbation; and the synoptic perturbation. The urban regions had smaller values of the long-term mean ozone, but the annual range was larger. The values of the interannual perturbation were largest in the summer, when ozone production is significant, and smallest in the late winter and early spring. The interannual perturbation in the summer in the four regions consistently had positive departures in 1983, 1988, and 1991, and it had negative departures in 1981, 1984, 1985, 1989, 1990, and 1992. Summers with large positive interannual departures experienced a large number of ozone exceedances (i.e., relative to the 1-hr National Ambient Air Quality Standard of 125 parts per billion [ppb]), and summers with large negative departures experienced few or no exceedances. About 50% of the exceedances had concentrations ranging in value from 125-135 ppb, and about 75% had concentrations from 125-145 ppb.  相似文献   

5.
Ozone is an ubiquitous air pollutant that affects both human health and vegetation. There is concern about the number of hours human populations in nonattainment areas in the United States are exposed to levels of 03 at which effects have been observed. As improvement in air quality is achieved, it is possible that 03 control strategies may produce distributions of 1-h 03 concentrations that result in different diurnal profiles that produce greater potential exposures to 03 at known effects levels for multiple hours of the day. These concerns have prompted new analysis of aerometric data. In this analysis, the change in the seasonally averaged diurnal pattern was investigated as changes in 03 levels occurred. For the data used in this analysis, 25 of the 36 sites that changed compliance status across years showed no statistically significant change in the shape of the average diurnal profile (averaged by 03 season). For 71 percent (10 out of 14) of the sites in southern California and Dallas-Fort Worth, Texas, that showed improvement in O3 levels (i.e., reductions in the number of exceedances over the years), but still remained in nonattainment, a statistically significant change in the shape of the seasonally averaged diurnal profile occurred. Based on the results obtained in this study, the evaluation of diurnal patterns may be useful for identifying the influence of changes in emission levels versus meteorological variation on attainment status. Using data from the southern California and Dallas-Fort Worth sites, which showed improvements in 03 levels, changes were observed in the seasonally averaged diurnal profiles. On the other hand, for the sites moving between attainment and nonattainment status, such a change in shape was generally not observed and it was possible that meteorology played a more important role than changes in emission levels relative to attainment status.  相似文献   

6.
GOAL, SCOPE AND BACKGROUND: Ozone is the most important air pollutant in Europe for forest ecosystems and the increase in the last decades is significant. The ozone impact on forests can be calculated and mapped based on the provisional European Critical Level (AOT40 = accumulated exposure over a threshold of 40 ppb, 10,000 ppb x h for 6 months of one growing season calculated for 24 h day(-1)). For Norway spruce, the Austrian main tree species, the ozone risk was assessed in a basis approach and because the calculations do not reflect the health status of forests in Austria, the AOT40 concept was developed. METHODS: Three approaches were outlined and maps were generated for Norway spruce forests covering the entire area of Austria. The 1st approach modifies the AOT40 due to the assumption that forests have adapted to the pre-industrial levels of ozone, which increase with altitude (AOTalt). The 2nd approach modifies the AOT40 according to the ozone concentration in the sub-stomata cavity. This approach is based on such factors as light intensity and water vapour saturation deficit, which affect stomatal uptake (AOTsto). The 3rd approach combines both approaches and includes the hemeroby. The pre-industrial ozone level approach was applied for autochthonous ('natural') forest areas, the ozone-uptake approach for non-autochthonous ('altered') forest areas. RESULTS AND DISCUSSION: The provisional Critical Level (AOT40) was established to allow a uniform assessment of the ozone risk for forested areas in Europe. In Austria, where ozone risk is assessed with utmost accuracy due to the dense grid of monitoring plots of the Forest Inventory and because the continuously collected data from more than 100 air quality measuring stations, an exceedance up to the five fold of the Critical Level was found. The result could lead to a yield loss of up to 30-40% and to a severe deterioration in the forest health status. However, the data of the Austrian Forest Inventory and the Austrian Forest Damage Monitoring System do not reflect such an ozone impact. Therefore, various approaches were outlined including the tolerance and avoidance mechanisms of Norway spruce against ozone impact. Taking into consideration the adaptation of forests to the pre-industrial background level of ozone, the AOT40 exceedances are markedly reduced (1st approach). Taking into account the stomatal uptake of ozone, unrealistic high amounts of exceedances up to 10,000 ppb x h were found. The modelled risk does not correspond with the health status and the wood increment of the Austrian forests (2nd approach). Consolidating the forgoing two approaches, a final map including the hemeroby was generated. It became clear that the less natural ('altered') forested regions are highly polluted. This means, that more than half of the spruce forests are endangered by ozone impact and AOT40 values of up to 30,000 ppb x h occur (3rd approach). CONCLUSIONS: The approaches revealed that a plausible result concerning the ozone impact on spruce forests in Austria could only be reached by combining pre-industrial ozone levels, ozone flux into the spruce needles and the hemeroby of forests.  相似文献   

7.
The present National Ambient Air Quality Standard for ozone has many statistical problems, including use of extreme values which have inherent large fluctuations, a compliance test that can gradually lower the target of the design value below the standard level, and inconsistencies between the number-of-exceedances criterion and the design value. The above problems can be avoided or minimized by using a more robust statistic, such as the 95th percentile, and applying a statistical compliance test, without sacrificing the stringency of the standard. Analysis of EPA’s ozone data shows that the annual 95th percentiles and their three-year means have less variability than the annual second highest values and the fourth highest values in three years, respectively. A t test for the mean of the annual 95th percentiles is proposed for compliance testing not only to preserve the averaging concept of the present standard, but also to take account of ozone concentration fluctuations in order to increase the stability of the compliance status of a site or a Metropolitan Statistical Area. A procedure is provided to adjust the level of the 95th-percentile standard so that the stringency of the present standard is preserved.  相似文献   

8.
9.
As part of an effort by the state of North Carolina to develop a State Implementation Plan (SIP) for 1-h peak ozone control, a network of ozone stations was established to monitor surface ozone concentrations across the state. Between 19 and 23 ozone stations made continuous surface measurements between 1993 and 1995 surrounding three major metropolitan statistical areas (MSAs): Raleigh/Durham (RDU), Charlotte/Mecklenburg (CLT), and Greensboro/High Point/Winston-Salem (GSO). Statistical averages of the meteorological and ozone data were performed at each Metropolitan Statistical Area (MSA) to study trends and/or relationships on high ozone days (days in which one of the MSA sites measured an hourly ozone concentration90.0 ppbv). County emission maps of precursor gases, wind roses, total area averages of ozone, total downwind averages of ozone deviations, upwind averages of ozone, and a modified delta ozone analysis were all obtained and analyzed. The results of this study show a reduction in the delta ozone relative to an earlier study at RDU, but no average significant change at CLT (no comparison can be made for GSO). The statistical data analyses in this study are used to quantify the importance of local contributions and regional transport, to ozone air pollution in the MSAs.  相似文献   

10.
A Monte-Carlo simulation of the approach to attainment of the National Ambient Air Quality Standard for ozone has been performed for the California Bay Area Air Quality Management District. Four compliance tests together with different design values are used in the simulation. The results show that the present compliance test requiring a zero-percent chance of violation and the design value represented by the fourth highest value in three years makes both the standard and the control requirement much more stringent than generally assumed. In fact, to attain the standard on a long-term basis would require annual means and annual second-highest values that are close to those of the rural background ozone. The simulation also shows that by taking into account the fluctuation of ozone concentrations in the compliance test, such as a t test, and by using a design value consistent with the test, a standard defined in terms of the three-year mean of the annual second-highest values not only is more consistent with the currently- perceived stringency of the present standard, but may also be attainable with a more reasonable control requirement.  相似文献   

11.
A methodology for determining regional ozone design values and the expected number of exceedances is described. The methodology was applied to data bases for one year or less from four U.S. urban areas: Houston, Los Angeles, Philadelphia, and St. Louis. The effects of reducing numbers of stations in a network were tested, and it was concluded that networks of nine or ten appropriately selected stations are adequate for estimating design values. Using the methodology described, the expected number of exceedances tends to be underestimated when using smaller networks; however, this appears to be an artifact of the conservative approach taken in developing the methodology.  相似文献   

12.
13.
Currently, outdoor ozone levels in many U.S. cities exceed the primary health-based national ambient air quality standard. While outdoor ozone levels are an important measure of the severity of those exceedances, people typically spend more than 80 percent of their time Indoors, where ozone levels are lower. Indoor ozone levels range from 10 to 80 percent of outdoor levels, with many people receiving a substantial portion of their ozone exposure while indoors. This paper uses an Indoor air quality model (IAQM) to estimate indoor ozone levels by mlcroenvlronment type (home, office, and vehicle) and configuration (windows open, windows closed, older construction, weatherized, and air conditioned). The formulation of IAQM is discussed, along with specification of model parameters for ozone. The multicompartment version of IAQM is described, with a single-compartment version used for the analyses. IAQM-calculated ozone indoor-outdoor ratios compare well with research-reported values. Results indicate that ozone peak-concentration indoor-outdoor ratios range as follows: home—0.65 (windows open), 0.36 (air conditioned), 0.23 (typical construction, windows closed), and 0.05 (energy-efficient construction, windows closed); office—0.82 (heat-Ing, ventilation and air conditioning systems supplying 100 percent outdoor air), 0.60 (typical HVAC), and 0.32 (energy-efficient HVAC); and vehicle—0.41 (85 mph), 0.33 (55 mph), and 0.21 (10 mph). Analysis results are presented to characterize IAQM’s sensitivity to assumed model parameters.  相似文献   

14.
Use of an indoor air quality model (IAQM) to estimate indoor ozone levels   总被引:2,自引:0,他引:2  
Currently, outdoor ozone levels in many U.S. cities exceed the primary health-based national ambient air quality standard. While outdoor ozone levels are an important measure of the severity of those exceedances, people typically spend more than 80 percent of their time indoors, where ozone levels are lower. Indoor ozone levels range from 10 to 80 percent of outdoor levels, with many people receiving a substantial portion of their ozone exposure while indoors. This paper uses an indoor air quality model (IAQM) to estimate indoor ozone levels by microenvironment type (home, office, and vehicle) and configuration (windows open, windows closed, older construction, weatherized, and air conditioned). The formulation of IAQM is discussed, along with specification of model parameters for ozone. The multicompartment version of IAQM is described, with a single-compartment version used for the analyses. IAQM-calculated ozone indoor-outdoor ratios compare well with research-reported values. Results indicate that ozone peak-concentration indoor-outdoor ratios range as follows: home--0.65 (windows open), 0.36 (air conditioned), 0.23 (typical construction, windows closed), and 0.05 (energy-efficient construction, windows closed); office--0.82 (heating, ventilation and air conditioning systems supplying 100 percent outdoor air), 0.60 (typical HVAC), and 0.32 (energy-efficient HVAC); and vehicle--0.41 (85 mph), 0.33 (55 mph), and 0.21 (10 mph). Analysis results are presented to characterize IAQM's sensitivity to assumed model parameters.  相似文献   

15.
The Houston-Galveston-Brazoria (HGB) area of Texas has a history of ozone exceedances and is currently classified under moderate nonattainment status for the 2008 8-hr ozone standard of 75 ppb. The HGB area is characterized by intense solar radiation, high temperature, and high humidity, which influence day-to-day variations in ozone concentrations. Long-term air quality trends independent of meteorological influence need to be constructed for ascertaining the effectiveness of air quality management in this area. The Kolmogorov-Zurbenko (KZ) filter technique, used to separate different scales of motion in a time series, is applied in the current study for maximum daily 8-hr (MDA8) ozone concentrations at an urban site (U.S. Environmental Protection Agency [EPA] Air Quality System [AQS] Site ID: 48-201-0024, Aldine) in the HGB area. This site, located within 10 miles of downtown Houston and the George Bush Intercontinental Airport, was selected for developing long-term meteorologically independent MDA8 ozone trends for the years 1990–2016. Results from this study indicate a consistent decrease in meteorologically independent MDA8 ozone between 2000 and 2016. This pattern could be partially attributed to a reduction in underlying nitrogen oxide (NOx) emissions, particularly lowering nitrogen dioxide (NO2) levels, and a decrease in the release of highly reactive volatile organic compounds (HRVOCs). Results also suggest solar radiation to be most strongly correlated to ozone, with temperature being the secondary meteorological control variable. Relative humidity and wind speed have tertiary influence at this site. This study observed that meteorological variability accounts for a high of 61% variability in baseline ozone (low-frequency component, sum of long-term and seasonal components), whereas 64% of the change in long-term MDA8 ozone post 2000 could be attributed to NOx emission reduction. Long-term MDA8 ozone trend component was estimated to be decreasing at a linear rate of 0.412 ± 0.007 ppb/yr for the years 2000–2016 and 0.155 ± 0.005 ppb/yr for the overall period of 1990–2016.

Implications: The effectiveness of air emission controls can be evaluated by developing long-term air quality trends independent of meteorological influences. The KZ filter technique is a well-established method to separate an air quality time series into short-term, seasonal, and long-term components. This paper applies the KZ filter technique to MDA8 ozone data between 1990 and 2016 at an urban site in the greater Houston area and estimates the variance accounted for by the primary meteorological control variables. Estimates for linear trends of MDA8 ozone are calculated and underlying causes are investigated to provide a guidance for further investigation into air quality management of the greater Houston area.  相似文献   


16.
The analysis of PM10 and TSP levels recorded in rural areas from Southern and Eastern Spain (1996–1999) shows that most of the PM10 and TSP peak events are simultaneously recorded at monitoring stations up to 1000 km apart. The study of the atmospheric dynamics by back-trajectory analysis and simulations with the SKIRON Forecast System show that these high PM10 and TSP events occur when high-dust Saharan air masses are transported over the Iberian Peninsula. In the January–June period, this dust transport is mainly caused by cyclonic activity over the West or South of Portugal, whereas in the summer period this is induced by anticyclonic activity over the East or Southeast Iberian Peninsula. Most of the Saharan intrusions which exert a major influence on the particulate levels occur from May to September (63%) and in January and October. In rural areas in Northeast Spain, where the PM10 annual mean is around 18 μg PM10 m−3, the Saharan dust accounts for 4–7 annual daily exceedances of the forthcoming PM10-EU limit value (50 μg PM10 m−3 daily mean). Higher PM10 background levels are recorded in Southern Spain (30 μg PM10 m−3 as annual mean for rural areas) and very similar values are recorded in industrial and urban areas. In rural areas in Southern Spain, the Saharan dust events accounts for 10–23 annual daily exceedances of the PM10 limit value, a high number when compared with the forthcoming EU standard, which states that the limit value cannot be exceeded more than 7 days per year. The proportion of Sahara-induced exceedances with respect to the total annual exceedances is discussed for rural, urban and industrial sites in Southern Spain.  相似文献   

17.
An analysis of the variability of the total ozone column at Ispra (Italy) has been performed to ascertain if, even in a short-time interval of 5 years (1993–1997), a decline of the monthly mean ozone values could be demonstrated. A linear fit of the data displays a decrease of 0.21% per year with a mean value equal to 319±2 D.U. and an amplitude of the annual cycle of about 10% of the mean. A linear regression of the surface monthly mean ozone values has also been performed showing a decreasing trend (−1% per year) that could contribute, even if for a very small amount, to the decline of the total ozone values. Ispra monthly mean total ozone data have been compared with those of three stations located within 2° latitude and 3° longitude from Ispra (Haute Provence, Hohenpeissenberg and Arosa). A linear fit of the data shows some discrepancies in the ozone changes, which can be attributed to the limited length of the observational period.An analysis has been performed to verify if the variation of ozone at Ispra is in agreement with that of the solar UV measured at a wavelength (305 nm) where the ozone absorption is still remarkable. The results, taken at a fixed solar zenith angle of 68°, show a clear anticorrelation between the monthly mean values of UV and the corresponding values of the total ozone column; the linear fit of the UV data displays an increase of 2.0% per year, much higher than expected from the ozone decrease, and a mean value of 1.4±0.1 mW m-2 nm-1.  相似文献   

18.
The recorded exceedances of the 24-hr PM10 National Ambient Air Quality Standard (NAAQS) in Treasure Valley, Idaho, have been associated with prolonged stagnation periods during the winter. A comprehensive modeling study of PM10 impact in Treasure Valley was performed to support the State Implementation Plan (SIP). The study included base-year and short-term episodic conditions. The ISCST3 (Industrial Source Complex Short Term 3) model, using the base-year meteorology and gridded emissions of mobile sources, point sources, and wood burning as input, generally agreed well with measurements in both temporal patterns and annual averages. The WYNDvalley model was evaluated using monitoring data and was used to simulate the PM10 impact for episodic exceedances during stagnant winter conditions. An emission inventory was prepared for a base year (1995) and then extrapolated to the years 2000, 2005, 2010, and 2015 in order to determine air quality planning requirements. According to the simulations using base-year emissions and meteorology, exceedances are not expected. However, exceedances at some stations could be expected using projected emissions and episodic meteorology. Results from emission control strategies we developed indicate that mobile-source emissions have the most significant impact; reduction of 25% would be needed to eliminate the simulated exceedances in all projected years.  相似文献   

19.
In 1997, the U.S. Environmental Protection Agency revised the National Ambient Air Quality Standard governing ozone (O3), adding an 8-hr standard of 0.08 ppm and phasing out the 1-hr requirement of 0.12 ppm. The 8-hr standard is intended to provide greater protection for human health. This research examines spatial and temporal patterns of exceedances of the standards using monitoring data and modeled estimates. The Penn State/National Center for Atmospheric Research Mesoscale Model and Models-3 framework were used to estimate hourly O3 concentrations for 4-km resolution in the Maryland/Virginia/Delaware/Washington, DC, and northern Georgia domains. Results reveal that the spatial and temporal nature of compliance is considerably different under the 8-hr standard. In the modeling simulations, the 8-hr standard was exceeded 2-5.2 times more often and in a 1.8-16.2 times larger area than the 1-hr standard. The 8-hr standard was exceeded in areas that generally comply with the 1-hr standard and are not well covered by the monitoring network. These results imply that a larger population resides in areas with unhealthy O3 levels than noncompliance with the original 1-hr standard suggests. For the MD/VA/DE/DC domains, 80 and 98% of the total population live in areas with 8-hr National Ambient Air Quality Standards (NAAQS) exceedances for the 1990 and 1995 episodes, respectively.  相似文献   

20.
This paper presents phenological weighting factors to be applied to AOT40 (accumulated ozone exposure above a threshold of 40 nl l(-1)) ozone exposure-response relationships for crops at different growth stages. The quantification of such factors represents a step-forward in the derivation of Level II critical levels for ozone. The weighting factors presented are derived from published literature on the sensitivity of wheat (Triticum aestivum), bean (Phaseolus vulgaris) and plantain (Plantago major) to ozone at different growth stages. Weighting functions were calculated using either multiple linear regression or the reciprocal residual mean square (RMS(-1)). The resulting weights were transformed into multiplication factors to be applied to the monthly AOT40 during the 3-month assessment period of critical level exceedance. Interspecific differences were too large to allow for the development of a unified weighting function for the three species considered. For wheat grain yield, the derived multiplication factors varied by almost four-fold (0.40, 1.06, 1.54), while those for bean pod yield varied by only about 25% (0.85, 1.01, 1.14). The available data for plantain were restricted to short-term studies conducted under controlled conditions. These data were not suitable for the derivation of weighting factors comparable to those derived for bean and wheat. Based on known differences in wheat development and phenology across Europe, the need for a geographic differentiation of the time period for the calculation of the critical level exceedances is also discussed and examples provided of the adoption of the derived weightings in the mapping of critical level exceedances. Differences between critical level exceedance maps using weighted and unweighted AOT40 calculations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号