首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
制革废水处理过程中磺胺类抗生素和抗性细菌的分布特征   总被引:2,自引:2,他引:0  
花莉  李璐  杨春燕 《环境科学》2018,39(9):4229-4235
针对两家制革厂废水处理过程中3种磺胺类抗生素和磺胺类抗性细菌的丰度和分布特性以及两个不同工艺污水处理厂对抗生素的去除规律做了相关研究.结果表明,3种抗生素在两家制革污水处理过程中均有检出,水样中3种抗生素的总质量浓度在59.1~706.7 ng·L~(-1)之间;两家制革厂废水处理剩余污泥中3种抗生素的总含量分别为4 388 ng·kg~(-1)和2 979.4ng·kg~(-1),与市政污水处理厂中的抗生素含量相差不大.不同的污水处理工段对3种抗生素去除效果不同,但去除效率均大于70%.生物处理单元对抗生素的去除率相对较高,而厌氧池是去除抗生素的主要阶段(去除率50%).两个制革厂的进出水和剩余污泥中共筛选出8株抗性细菌,这8个分离菌株可分为5个菌属.进出水中的抗性细菌含量介于9.37×10~3~5.08×10~5CFU·mL~(-1)之间,剩余污泥中的磺胺类抗性细菌含量较高分别为1.17×10`7CFU·g~(-1)和7.2×10~6CFU·g~(-1).两个制革污水处理厂对磺胺甲唑抗性细菌的去除率分别达到了1.34 log和2.15 log.  相似文献   

2.
采用盆栽实验模拟磺胺甲■唑污染,通过Illumina高通量测序研究了土壤微生物群落组成的变化,应用普通PCR和微滴数字PCR技术分析了6种抗生素抗性基因的64个抗性基因亚型的分布特征.结果表明,土壤受不同浓度磺胺甲■唑污染120 d后,土壤真菌的多样性无明显变化(P0.05),但土壤细菌的多样性显著降低了(P0.05),土壤细菌和真菌群落结构均发生显著改变,且不同浓度磺胺甲■唑处理土壤的优势细菌与真菌在属水平上存在明显差异.磺胺甲■唑污染使土壤中抗生素抗性基因的多样性增加,且能显著提高磺胺抗性基因sul1的丰度(P0.05),但对磺胺抗性基因sul2、喹诺酮抗性基因floR与cmlA 1、四环素抗性基因tet(34)、tetG 2、tetG 1、tetM与tetA/P的丰度均无显著性影响(P0.05).  相似文献   

3.
采用盆栽实验模拟磺胺甲■唑污染,通过Illumina高通量测序研究了土壤微生物群落组成的变化,应用普通PCR和微滴数字PCR技术分析了6种抗生素抗性基因的64个抗性基因亚型的分布特征.结果表明,土壤受不同浓度磺胺甲■唑污染120 d后,土壤真菌的多样性无明显变化(P0.05),但土壤细菌的多样性显著降低了(P0.05),土壤细菌和真菌群落结构均发生显著改变,且不同浓度磺胺甲■唑处理土壤的优势细菌与真菌在属水平上存在明显差异.磺胺甲■唑污染使土壤中抗生素抗性基因的多样性增加,且能显著提高磺胺抗性基因sul1的丰度(P0.05),但对磺胺抗性基因sul2、喹诺酮抗性基因floR与cmlA 1、四环素抗性基因tet(34)、tetG 2、tetG 1、tetM与tetA/P的丰度均无显著性影响(P0.05).  相似文献   

4.
以CDC生物膜反应器模拟给水管网输配系统,探究管网水相、生物膜相和颗粒物相三相界面下6种典型抗生素抗性细菌的分布特征.反应器稳定运行30d后,出水余氯从0.66mg/L下降到0.26mg/L,出水浊度和颗粒物浓度分别从进水的0.08NTU和377counts/mL增高至0.86NTU和4151counts/mL,出水水质变差.进水中仅有红霉素和氨苄西林的抗性细菌的数量较高,分别为36和99CFU/100mL,出水中,链霉素和氨苄西林的抗性细菌数量最高,分别为432和155CFU/100mL,远远高于进水中抗性细菌数量.生物膜相中异养菌总数和细胞总数达到了4089CFU/cm~2和1.5×10~6cells/cm~2,链霉素和红霉素的抗性细菌数量较高,为3432和2508CFU/cm~2,其抗性细菌比例分别达到了83.9%和61.4%.颗粒物相中,氯霉素和氨苄西林的抗性细菌比例较高,都在45%左右.生物膜和颗粒物都会给细菌提供一个安全稳定的生长场所,使细菌能够抵抗残留消毒剂和部分抗生素的抑制作用,更易产生耐药性,对人体健康的威胁也更大.  相似文献   

5.
陆孙琴  李轶  黄晶晶  魏斌  胡洪营 《环境科学》2011,32(11):3419-3424
以北京市2座污水处理厂二级出水为研究对象,通过考察总异养菌群、抗性菌比例、浓度及抗生素对细菌的半抑制浓度,研究了二级出水中一般细菌对青霉素、氨苄青霉素、头孢氨苄、氯霉素、四环素和利福平6种抗生素在不同浓度下的耐受性.结果表明,2座污水处理厂出水中青霉素、氨苄青霉素、头孢氨苄和氯霉素抗性菌比例较四环素和利福平高.当抗生素浓度为32mg.L-1时,污水处理厂G二级出水中头孢氨苄抗性菌比例最高为59%,而污水处理厂Q二级出水中氯霉素抗性菌比例最高为44%.头孢氨苄抗性菌在污水处理厂G、Q出水中的浓度分别高达4.0×103 CFU.mL-1和3.5×104 CFU.mL-1,而氯霉素抗性菌浓度分别高达4.9×102 CFU.mL-1和4.6×104 CFU.mL-1.污水处理厂G中异养菌对头孢氨苄的耐受能力最强,其半抑制浓度〉32 mg.L-1;污水处理厂Q中,异养菌对氯霉素的耐受能力最强,其半抑制浓度为23.1 mg.L-1.污水处理厂二级出水中部分抗生素抗性菌污染严重,且稳定存在于低浓度抗生素的处理出水.  相似文献   

6.
魏文淑  祁建华  常成 《环境科学》2023,44(1):127-137
细菌是大气生物气溶胶中最丰富、分布最广的微生物.利用FA-1撞击式生物采样器连续采集了2020年9月至2021年8月青岛近海大气生物气溶胶分级样品,并利用BacLightTM试剂染色-荧光显微镜计数方法测定了死/活细菌浓度,分析其浓度与粒径的季节分布特征,并研究了雾、霾和沙尘等特殊天气对细菌浓度及粒径分布的影响.结果表明,采样期间青岛近海生物气溶胶中细菌浓度为(1.06±0.68)×105 cells·m-3,其中活细菌和死细菌浓度分别为(8.20±4.88)×103 cells·m-3和(9.74±6.72)×104 cells·m-3.细菌浓度分布具有季节差异,死细菌浓度春季、冬季最高,夏季最低;活细菌浓度则变现为春季最高,夏季和秋季较低,冬季最低.生物气溶胶中细菌浓度随月份存在变化,死细菌月均浓度最高值和最低值分别出现在2021年春季3月和夏季6月,而活细菌月均浓度最高值则出现在2021年春季5月,最低值在2020年冬季12月....  相似文献   

7.
长江南京段水源水中抗生素的赋存特征与风险评估   总被引:9,自引:9,他引:0  
利用固相萃取-液相色谱-串联质谱技术(SPE-HPLC-MS/MS)分析了长江南京段水源水中抗生素的赋存特征.结果表明,16个采样点累计质量浓度范围为13. 37~780. 5 ng·L~(-1),平均值为92. 95 ng·L~(-1),共检出4种磺胺类、3种氟喹诺酮类、1种四环素类、5种大环内酯类和1种氯霉素类抗生素,平均质量浓度为0. 14~49. 91 ng·L~(-1),其中恩诺沙星(ERX)和克拉霉素(CLR)的检出率为100%,克林霉素(CLI)检出质量浓度最高(739. 44 ng·L~(-1)).与国内部分河流、湖泊相比,长江南京段水体中的抗生素浓度处于较低水平.生态风险评估结果表明,点位S2具有最大的联合风险熵值(0. 31),磺胺甲恶唑(SMX)、强力霉素(DOX)和罗红霉素(ROX)的环境风险熵值具有低等风险水平; 9种抗生素对不同年龄段人群的健康风险指数HQ在2. 22×10-6和4. 86×10-3之间,同时CLI和DOX为主要的潜在健康风险因素.  相似文献   

8.
采用固相萃取结合高效液相色谱/串联质谱方法,对苕溪流域某规模化养猪场排放的典型废水进行兽用抗生素污染检测.结果表明,废水中四环素、土霉素、金霉素和强力霉素等4种四环素类抗生素污染最为严重,最高单体污染浓度可达13.65×103ng·L-1.磺胺嘧啶、磺胺甲唑和磺胺二甲嘧啶等3种磺胺类物质也有一定的检出量,但以磺胺二甲嘧啶较为突出,最高检出量为675.4ng·L-1.氧氟沙星以及红霉素和罗红霉素等喹诺酮和大环内酯类抗生素除了原水有较低的检出量,其它废水均未检出.厌氧消化废水处理系统对废水中高浓度的抗生素具有明显的去除效果,但对低浓度的抗生素去除率较低.与欧盟水环境抗生素阈值(10ng·L-1)相比,排放水中的抗生素污染浓度对周边地表水环境的污染风险仍需要引起重视.通过饲料摄入途径估算养猪场排泄物抗生素含量,并与实测值比较,结果表明,饲料摄入并不是该养猪场兽用抗生素利用的主要方式,可能存在其它用药途径,需要在今后的畜禽养殖兽用抗生素的污染调查、风险估算和消减工艺研发中引起重视.  相似文献   

9.
高温堆肥对猪粪中四环素类抗生素及抗性基因的影响   总被引:6,自引:0,他引:6  
为了研究高温堆肥对猪粪中抗生素及抗生素抗性基因的影响,对不同堆肥处理中的四环素类抗生素(四环素、土霉素、金霉素)及其抗性基因(tetA、tetC、tetG、tetM、tetQ、tetW)的动态变化进行了定量研究.结果表明:低剂量组(10 mg·kg~(-1))中四环素、土霉素、金霉素的去除率分别为91%、94%、92%,高剂量组(50 mg·kg-1)中四环素、土霉素、金霉素的去除率分别为60%、62%、71%.在堆肥过程中,抗生素处理组目标基因相对丰度高于对照组,而低剂量组目标基因相对丰度(tetW除外)又普遍高于高剂量组.经堆肥处理后,tetA的相对丰度增加,tetC、tetG、tetM、tetQ、tetW的相对丰度均下降.高温堆肥可以有效去除猪粪中一定浓度的四环素类抗生素,并对四环素类抗性基因也有一定的削减作用.  相似文献   

10.
象山港海洋病毒时空分布特征及其环境影响因素   总被引:1,自引:0,他引:1       下载免费PDF全文
分别于2007年的7月(夏季)、11月(秋季)与2008年的1月(冬季)、4月(春季)采集样品,研究了象山港海域的水样(表层海水和上覆水)中的浮游病毒及沉积物中的底层病毒丰度的时空分布特征,并采用主成分分析及多元逐步回归分析方法研究了影响浮游病毒丰度时空分布的主要因素,结果表明,调查期间象山港海域表层海水、上覆水及沉积物样品中浮游(底层)病毒丰度实测值的变化范围为6.48×104~1.01×108cells/mL,均值分别为1.55×107,1.03×108,1.13×108cells/mL.季节分布特征为秋季 > 夏季 > 春季 > 冬季.病毒丰度垂直分布表现为上覆水均大于表层海水;平面分布均为从港底到港口递减、养殖区高于非养殖区、电厂附近海域出现较高值的趋势.近岸人类活动的陆源污染及水产养殖污染是造成此空间分布特征的主要原因.溶解氧、水温及叶绿素a是制约表层海水浮游病毒丰度的主要影响因素;营养盐含量及浮游细菌丰度是制约上覆水中浮游病毒丰度的主要影响因素,沉积物中的病毒丰度与细菌丰度具有显著正相关性(P < 0.01).  相似文献   

11.
以2014年8月南海北部海水样品为研究对象,利用平板计数法和流式细胞仪计数法对南海北部表层和垂直海域可培养细菌和细菌总数分布状况进行研究,对细菌生产力进行测定,并结合环境因子进行相关性分析。结果表明:珠江口到南海北部海域,水平方向可培养细菌总数变化范围是3.70×102~1.42×103 CFU/mL,细菌总数变化范围是5.12×105~1.61×106 cells/mL,细菌生产力的变化范围是0.03~0.40 mg/m3/h;垂直方向上可培养细菌变化范围是1.08×103~9.00×103 CFU/mL,细菌生产力变化范围是0.01~0.08 mg/m3/h,其中表层海水中的细菌生产力明显高于底层。与环境因子相关性分析表明,水平方向上,影响南海北部表层海水细菌总数和细菌生产力的主要因素是温度、盐度、硝酸盐(NO3-N)、硅酸盐(SiO3-Si)、亚硝酸盐(NO2-N)和磷酸盐(PO4-P)(P < 0.05);垂直方向上,影响南海北部可培养细菌总数的主要因素是NO2-N(P < 0.05),影响细菌生产力的主要影响因素是温度和盐度(P < 0.05)。可见,南海北部表层海水中细菌总数高于可培养细菌总数2~3个数量级,表明该海域表层海水存在大量不可培养细菌;细菌的生命活动在海水表层相较底层更为活跃。  相似文献   

12.
开展海水增养殖区卫生安全评价对于减少人体健康风险、提高增养殖区的有效管理尤为重要。本研究于2013年3月、5月、8月和10月对大连市金石滩、大长山岛、大李家3个重要海水增养殖区的贝类和海水进行了粪便污染指示菌总大肠菌群(TC)和粪大肠菌群(FC)的监测,同时监测了弧菌总数(TV)和主要环境要素(包括水温、pH、盐度、COD、DO、Chl a)。结果表明:这3个海区贝类组织中TC及海水中的TC、FC浓度均呈显著的时间和空间分布变化。贝类组织中TC含量随时间的分布趋势为:8月> 5月> 3月> 10月,空间分布为:大长山岛>金石滩,大长山岛>大李家,而金石滩和大李家差异不显著(P < 0.05);海水中TC和FC浓度分布特征相似,时间分布特征均为:金石滩8月份最高,大李家5月份最高,而大长山岛各月份均低于最低检测限(2 MPN/100 mL),空间分布特征均为:大李家增养殖区污染较为严重,而金石滩和大长山岛差异不显著(P < 0.05)。3个增养殖区8月份和10月份的海水中TV浓度较高,为3.3×102~4.23×105 CFU/100 mL。通过分析不同季节海水增养殖区中TC、FC、TV之间及其与水温、pH、盐度、COD、DO、Chl a的相关性,表明环境要素以及增养殖区水域特点对于粪便污染指示菌和弧菌的时空分布具有重要的影响。为更好地反映增养殖区的卫生安全状况,海水和养殖生物体内指示生物应同时监测,在监测传统粪便污染指示菌的同时,建议将弧菌作为重要的病原菌指标。  相似文献   

13.
浮游生物在水生态系统具有独特的生态功能,为了揭示独流减河口浮游生物群落结构与环境因子的相关性,本研究于2015年5月和8月对独流减河8个站位浮游生物及环境因子进行了调查分析。结果表明:(1)调查期间共鉴定出浮游植物38种,浮游动物10种。5月浮游植物的平均丰度为3.32×105/L,8月浮游植物的平均丰度为1.36×106/L,5月浮游动物的平均丰度为64.40 ind/L,8月浮游动物的平均丰度为18.65 ind/L。(2)环境因子方面,5月的平均溶解氧为12.30 mg/L,8月的平均溶解氧为6.69 mg/L。5月的平均盐度为32.70,8月的平均盐度为33.29。硝酸态氮、亚硝酸态氮和总氮平均水平为8月高于5月。调查期间氮元素主要以硝酸态存在,8月氨态氮元素向硝酸态转化。(3)典范对应分析(CCA)表明,亚硝酸盐是影响浮游生物丰度及多样性差异的主要影响因子。高溶解氧利于桡足类浮游动物和绿藻生长,高温不利于桡足类浮游动物和绿藻的生长,而高温更适合蓝藻的生长。  相似文献   

14.
处理低污染水的复合人工湿地脱氮过程   总被引:7,自引:0,他引:7  
为了解人工湿地处理低污染水的脱氮过程,以洱海流域邓北桥湿地为例,采用水质分析、细菌数量分析与硝化/反硝化强度分析相结合的方法,研究了复合型人工湿地处理低污染河水过程中的氮转化过程及污染物去除效果. 结果表明:在氧化塘-表流湿地-潜流湿地-表流湿地的复合型人工湿地中,ρ(NH3-N)和ρ(TN)呈逐级降低的趋势,NH3-N和TN的平均去除率分别可达53.24%和48.21%. 氧化塘和表流湿地的硝化强度显著高于潜流湿地,二级表流湿地中硝酸菌数量和表层硝化强度均为各工艺单元中最高的,分别为93.00×105g-1和8.42×102mg/(m3·h);潜流湿地中ρ(DO)较低,其反硝化作用强度为各单元最高的,其中表层反硝化强度为32.70×102mg/(m3·h),深层反硝化强度为32.09×102mg/(m3·h). 该复合型人工湿地中反硝化的主要单元为潜流湿地.   相似文献   

15.
为了揭示近岸沉积物环境中的病毒-细菌关系,以及探讨病毒对污染环境的响应,本研究利用SYBR Green I染色计数法,分别对2012年5月(春季)、8月(夏季)和11月(秋季)大连湾和大窑湾表层沉积物中的病毒和细菌丰度进行了检测。结果表明:大连湾表层沉积物病毒丰度的季节变化表现为夏季春季秋季,最高值1.59108VLP/g(湿重)出现在夏季;最小值1.53106VLP/g出现在春季。平面分布春季为湾中 湾顶 湾口,夏季和秋季分布特点为湾中 湾口 湾顶。病毒和细菌有显著相关性(R2=0.80,n=20)。而大窑湾表层沉积物病毒丰度的季节变化则变现为夏季秋季春季,最高值7.08107VLP/g出现在夏季,最小值1.16106VLP/g出现在春季。大窑湾区域分为湾内和湾外,3个季节的平面分布均表现为湾外湾内。病毒和细菌的关联性较大连湾差(R2=0.50,n=12)。大连湾及大窑湾表层沉积物病毒与细菌之比分别为4.12和4.09。两个海湾沉积物病毒分布有所差异,可能与沉积物环境有关系,有待进一步研究。  相似文献   

16.
城市污水厂MCR-1基因及其携带菌的污染   总被引:1,自引:0,他引:1  
研究了南京某城市污水处理厂MCR-1基因及其携带菌的污染特征,从MCR-1的分布特征、影响因素及MCR-1携带菌的耐药特征等方面综合评价.结果发现MCR-1随处理流程丰度下降,去除率达83.6%,但其相对丰度在出水中显著升高,剩余污泥中含有高浓度MCR-1,浓度达2.88×1012copies/L.粘菌素耐药菌同样沿处理流程逐渐降低,出水降至53CFU/mL,去除率达99.98%,但在剩余污泥中浓度高达2.04×105CFU/mL.相关性分析发现MCR-1丰度与氨氮含量呈正相关,而相对丰度与COD、总氮和硝酸盐含量呈负相关.耐药特征分析表明曝气池(CAST、MSBR)和曝气生物流化池(ABFT)中MCR-1携带菌可耐受较高浓度粘菌素,且污水处理使MCR-1携带菌对粘菌素的耐受能力提高.表明污水处理流程不但无法完全去除MCR-1及其携带菌,且导致耐药性风险提高.本研究可为评价污水中以MCR-1为代表的超级抗性基因的环境风险提供参考.  相似文献   

17.
为掌握秋冬季方斑东风螺养殖系统细菌数量变动情况及其与理化因子的关系,试验采用TCBS培养法分别检测方斑东风螺(Babylonia areolate)消化道及其养殖水体、底沙弧菌数量(Sediment Vibrio,SV),用营养琼脂培养法检测螺消化道异养菌数量(Heterotrophic Bacteria of Alimentarytract,AHB),用荧光显微镜法检测水体总细菌数量(Water Total Bacteria,WTB),并对养殖理化因子(水温(T)、盐度(S)、pH、溶解氧(DO)、氨氮(AN)、亚硝酸盐氮(Nitrite))及底质营养盐(总氮(TN)、总磷(TP))进行监测。结果显示,消化道异养菌数量为4.3×104~5.9×106 CFU/g,弧菌(AlimentarytractVibrio,AV)为2.0×102~7.5×105 CFU/g;水体总细菌、水体弧菌(WaterVibrio,WV)数量分别为4.8×104~3.8×105 cells/mL、2.1×102~1.2×104 CFU/mL;底沙弧菌数量为6.0×104~1.9×106 CFU/g。消化道内异养菌及弧菌分别与亚硝酸盐氮呈极显著正相关(P < 0.01),与pH、盐度均呈显著负相关(P < 0.05);水体中总细菌数量与溶解氧呈显著负相关(P < 0.05),弧菌与总磷呈显著负相关(P < 0.05);底沙中弧菌数量与各理化因子无明显相关性。主成分分析(Principal component analysis,PCA)结果显示,东风螺消化道细菌、养殖水体总细菌及弧菌、底沙弧菌数量在秋季主要受温度、氨氮、亚硝酸盐氮的影响,而冬季受水体溶解氧的影响更多,在整个养殖期间,需加强对盐度及pH的监控。  相似文献   

18.
河北潘家口水库氯霉素类抗生素检测及风险评估   总被引:1,自引:0,他引:1  
采用固相萃取-高效液相色谱-串联三重四级杆质谱联用法(SPE-HPLC-MS/MS)测定河北潘家口水库中4种氯霉素类抗生素.该方法采用电喷雾电离源、多重反应监测正或(负)离子模式,4种氯霉素类抗生素加标回收率高于90%,相对标准偏差在1.60%~5.43%.方法的检出限在0.06~0.29ng/L,定量限在0.18~0.87ng/L.潘家口水库水样检测氟苯尼考残留量在26.21~233.35ng/L,氟苯尼考胺在0.53~8.18ng/L,所有水样中氯霉素和甲砜霉素均未检出.对潘家口水库氯霉素类抗生素残留的生态风险和人体健康风险评估表明,RQ(风险商)小于1,说明潘家口水体氯霉素类抗生素对浮游生物和人体健康尚不存在明显危害.丰水期成人和儿童的RQ均比平水期大,最大相差2个数量级.这可能由于此时期为网箱养鱼活跃期,或与水库调水有一定相关性.  相似文献   

19.
行政办公室内PBDEs污染特征及人体暴露量   总被引:1,自引:0,他引:1  
为研究普通行政办公场所内多溴联苯醚(PBDEs)的污染现状、同类物分布特征及办公人群吸入暴露量,于2013年3月~8月期间在杭州市行政办公场所采集20个空气样品,用GC-ECD分析样品中14种PBDEs同类物.结果发现:杭州市办公场所空气中PBDEs总平均浓度达9.57×102pg/m3,与欧洲国家相比处于较高污染水平,其中BDE-209是主要污染成分,占总含量的57.4%,说明杭州市办公场所PBDEs的主要工业品来源是十溴联苯醚.与家庭住宅空气样品对照发现,办公场所PBDEs平均浓度是家庭住宅的1.26倍,并且这一浓度差异主要体现在BDE-209单体上.办公场所各采样点同类物气固相对百分含量在50.0%左右,说明空气中PBDEs一半以气态形式存在,一半则吸附在空气颗粒物中,这可能是PBDEs气固分配还未平衡所致.此外,杭州市普通行政办公人群BDE-99的总摄入量为2.03′102pg/(kg×d),比国际标准BDE-99每日允许摄入量低21.7%.  相似文献   

20.
为评价骆马湖湖区药品及个人护理品(PPCPs)的污染状况和生态风险,利用高效液相色谱串联质谱(HPLC-MS/MS)分析骆马湖表层水体中61种PPCPs的赋存浓度、空间分布特征,并根据风险熵方法进行生态风险评估.结果表明:①骆马湖表层水体中共检出15种PPCPs,其中人用7种,人、兽共用4种,兽用4种,其质量浓度范围为2.67~6 514.91 ng/L.卡马西平(CBZ)、避蚊胺(DEET)、舒比利(SP)、咖啡因(CF)及林可霉素(LCM)检出率均为100%,DEET、甲砜霉素(TAP)及氟苯尼考(FF)的平均值均较高,分别为162.87、61.33和56.72 ng/L.②骆马湖表层水体中PPCPs的空间分布呈北高南低、西高东低的特征.不同类型PPCPs空间分布规律差异明显,人、兽共用PPCPs浓度自北向南逐渐递减,人用PPCPs浓度北部略高于南部,兽用PPCPs浓度在全湖均匀分布.③骆马湖水体中CBZ、CF具有高生态风险,恩诺沙星(ENR)、诺氟沙星(NOR)、磺胺嘧啶(SD)、罗红霉素(RXM)及LCM具有较高生态风险,可见骆马湖生态风险主要来源为人用PPCPs.研究显示,骆马湖表层水体中PPCPs浓度水平中等,但其中DEET污染较重,北部湖区应加强围网、围塘养殖管理.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号