首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Field reconnaissance of the Ebocha-8 oil spill-affected site at Obiobi/Obrikom in the Niger Delta region of Nigeria was carried out to assess the extent of damage to the terrestrial ecosystem and delimit the epicenter of oil spillage. Following three successive reconnaissance surveys, the area to be sampled was delimited (200 x 200 m2), and soil samples were collected using the grid method from three replicate quadrats at two depths, surface (0-15 cm) and subsurface (15-30 cm). A geographically similar area located 50 m adjacent to the oil-polluted area was used as a reference (control) site. Total hydrocarbon content (THC) and heavy metal concentrations were later determined in the laboratory by extraction and spetrophotemetric techniques. Generally, the THC of soils at surface and subsurface depths of the oil-polluted plots was 2.06 x 10(4) +/- 4.97 x 10(3) mg/kg and 1.67 x 10(3) +/- 3.61 x 10(2) mg/kg soil, respectively, (no overlap in standard errors at 95% confidence limit) while concentrations of heavy metals(Pb, Cd, V, Cu and Ni) were enhanced, especially at the surface. The high levels of THC and heavy metals may predispose the site, which hitherto served as arable agricultural land, to impaired fertility and possible conflagration. When concentrations of heavy metals reach the levels obtained in this study, they may become toxic to plants or possibly bio-accumulate, thus leading to toxic reactions along the food chain. While the spilled-oil may have contributed to the enhanced levels of the metals in the affected soils, physico-chemical properties of the soils, mobility of metals, and the intense rainfall and flooding that preceded the period of study may have also contributed in part to their enhanced concentrations. The presence of high hydrocarbon content may cause oxygen deprivation, which may result in the death of soil fauna by asphyxiation. There is, therefore, an urgent need to clear the affected site of these excess hydrocarbon deposits so as to enhance the rehabilitation process of the affected mat layer of soils. Other appropriate mitigating measures, such as subsequent monitoring of hydrocarbon levels at suitable intervals after the clean up activities, are also recommended, with reference to the findings of this study, for effective management of the affected area.  相似文献   

2.
The high degree of physical disturbance associated with conventional response options to oil spills in wetlands is driving the investigation of alternative cleanup methodologies. In March 1995, a spill of gas condensate in a brackish marsh at Rockefeller Wildlife Refuge in southwestern Louisiana was remediated through the use of in situ burning. An assessment of vegetation recovery was initiated in three treatment marshes: (1) oil-impacted and burned, (2) oil impacted and unburned, and (3) a nonoiled unburned reference. We compared percent cover, stem density, and biomass in the treatment marshes to define ecological recovery of the marsh vegetation and soil hydrocarbon content to determine the efficacy of in situ burning as a cleanup technique. Burning led to a rapid decrease in soil hydrocarbon concentrations in the impacted-and-burned marsh to background levels by the end of the first growing season. Although a management fire accidentally burned the oil-impacted-and-unburned and reference marshes in December 1995, stem density, live biomass, and total percent cover values in the oil-impacted-and-burned marsh were equivalent to those in the other treatment marshes after three years. In addition, plant community composition within the oil-impacted-and-burned marsh was similar to the codominant mix of the grasses Distichlis spicata (salt grass) and Spartina patens (wire grass) characteristic of the surrounding marsh after the same time period. Rapid recovery of the oil-impacted-and-unburned marsh was likely due to lower initial hydrocarbon exposure. Water levels inundating the soil surface of this grass-dominated marsh and the timing of the in situ burn early in the growing season were important factors contributing to the rapid recovery of this wetland. The results of this in situ burn evaluation support the conclusion that burning, under the proper conditions, can be relied upon as an effective cleanup response to hydrocarbon spills in herbaceous wetlands.  相似文献   

3.
At four estuarine sites on the coast of Galicia (northwestern Spain), all of which were affected by the Prestige oil spill, soil samples were taken from polluted and unpolluted areas and their petroleum hydrocarbon contents, heavy metal contents, and other chemical and physical characteristics were measured. Oil pollution altered both chemical and physical soil properties, aggregating soil particles in plaques, lowering porosity, and increasing resistance to penetration and hydrophobicity. The chromium, nickel, copper, iron, lead, and vanadium contents of polluted soils were between 2 and 2500 times higher than those of their unpolluted counterparts and the background concentrations in Galician coastal sediments. In the cases of Cr, Cu, Ni, Pb, and V, their origin in the polluting oil was corroborated by the high correlation (r >/= 0.74) between the concentrations of these metals and the total petroleum hydrocarbon (TPH) content of the polluted soils. Soil redox potentials ranged from -19 to -114 mV in polluted soils and 112 to 164 mV in unpolluted soils, and were negatively correlated with TPH content (p < 0.01). The low values in the polluted soils explain why the soluble fractions of their total heavy metal contents were very small (generally less than 3%, and in many cases undetectable).  相似文献   

4.
The current study reports on operational and performance aspects of a land treatment facility for managing oily wastes generated from heavy vehicle maintenance over a 5-year period. Samples of soil and groundwater from the land treatment plots were analyzed for a range of contaminants and microorganisms over this period. The soil analyses indicated that the process has been operating efficiently even at high wastewater loadings with maximum degradation rates of 250 mg/kg per day (year 1) and average rates of 10–35 mg/kg per day (years 2–5). Hydrocarbon degraders comprised more than 80% of the total (measured) soil heterotrophic population and were present at 106–108 (per gram soil) once the process was optimized. The facility was capable of treating 140 kl of oily wastewater per day (average petroleum hydrocarbon content of 2% w/v) over the entire period. During this time there was no evidence of accumulation of any major metals or polycyclic aromatic hydrocarbon (PAH) compounds in the soil. Groundwater sampling and analysis indicated that the land treatment facility was not leading to contamination of any groundwater taken from bores in the vicinity of the facility. The land treatment process continues to be effective for treatment of non-volatile waste oils at this remote and high evaporation (arid) site.  相似文献   

5.
6.
We assess the spatial and geomorphic fragmentation from the recent Eagle Ford Shale play in La Salle County, Texas, USA. Wells and pipelines were overlaid onto base maps of land cover, soil properties, vegetation assemblages, and hydrologic units. Changes to continuity of different ecoregions and supporting landscapes were assessed using the Landscape Fragmentation Tool (a third-party ArcGIS extension) as quantified by land area and continuity of core landscape areas (i.e., those degraded by “edge effects”). Results show decreases in core areas (8.7 %; ~33,290 ha) and increases in landscape patches (0.2 %; ~640 ha), edges (1.8 %; ~6940 ha), and perforated areas (4.2 %; ~16230 ha). Pipeline construction dominates landscape disturbance, followed by drilling and injection pads (85, 15, and 0.03 % of disturbed area, respectively). An increased potential for soil loss is indicated, with 51 % (~5790 ha) of all disturbance regimes occurring on soils with low water-transmission rates (depth to impermeable layer less than 50 cm) and a high surface runoff potential (hydrologic soil group D). Additionally, 88 % (~10,020 ha) of all disturbances occurred on soils with a wind erodibility index of approximately 19 kt/km2/year (0.19 kt/ha/year) or higher, resulting in an estimated potential of 2 million tons of soil loss per year. Results demonstrate that infrastructure placement is occurring on soils susceptible to erosion while reducing and splitting core areas potentially vital to ecosystem services.  相似文献   

7.
There has been widespread interest in using compost to improve the hydrologic functions of degraded soils at construction sites for reducing runoff and increasing infiltration. The objective of this study was to determine the effects of compost amendment rate on saturated hydraulic conductivity (Ks) and water retention in order to identify target compost rates for enhancing soil hydrologic functions. Samples were prepared with three soil textures (sandy loam, silt loam, and sandy clay loam), amended with compost at 0%, 10%, 20%, 30%, 40%, and 50%. All soils were tested at a porosity of 0.5 m3/m3, and the sandy loam was further tested at high (0.55 m3/m3) and low (0.4 m3/m3) porosities. The Ks and water retention data were then used to model infiltration with HYDRUS-1D. With increasing compost amendment rate, Ks and water retention of the mixtures generally increased at the medium porosity level, with more compost needed in heavier soils. As porosity decreased in the sandy loam soil, the amount of compost needed to improve Ks rose from 20% to 50%. Water distribution in pore fractions (gravitational, plant-available, and unavailable water) depended on texture, with only the highest compost rates increasing plant-available water in one soil. Results suggest soil texture should be taken into consideration when choosing a compost rate in order to achieve soil improvement goals. Hydrologic benefits may be limited even at a high rate of compost amendment if soil is compacted.  相似文献   

8.
Soil artificially contaminated with diesel oil, treated with cassava steep liquor (CSL) and designated EXPS. Similar polluted soil without CSL amendment (CSS1) and uncontaminated soil (CSS2) served as controls. There were dramatic changes in the physico-chemistry of systems EXPS and CSS1 with utilization of the inorganic nutrients to near-depletion in the former than the latter. In contrast, the properties of CSS2 remained relatively stable throughout the investigated period. Similarly, the population densities of microflora in the polluted soils showed an initial decrease between days 0 and 5 before assuming an increasing trend with percent hydrocarbon-utilizers ranging significantly (P < 0.05) from 0.56 to 6.6, 0.1 to 2.46 and 0.56 to 0.26, respectively for EXPS, CSS1, and CSS2. In EXPS, the residual oil decreased from 98,045 to 1,102.3 mg/kg soil at day 35 representing about 98.88% degradation. The corresponding value for CSS1 was 98,106.1 to 52,110 mg/kg soil, amounting to 46.88% oil disappearance. The GC fingerprints of alkane fractions of the recovered oil reduced significantly by day 15 for EXPS with near-similar results of CSS1. However, by day 35, there was complete disappearance of all peaks including the pristane and phytane molecules in the former whereas in CSS1, there were no observable changes. The germination and growth profiles of maize seed plants as evidence of recovery of oil-impacted soils were poor in CSS1 (10%) with pronounced abnormal morphology when compared with the data obtained for EXPS (74%) and CSS2 (80%). These results suggest that CSL could be an indispensable tool in bioremediation of environments contaminated with hydrocarbons. The technology of application is simple, rapid and cost-effective and may be appropriate for use in developing countries to ameliorate the problems of petroleum pollution.  相似文献   

9.
Soil analyses were conducted on home lawns across diverse ecoregions of the U.S. to determine the soil organic carbon (SOC) sink capacity of turfgrass soils. Establishment of lawns sequestered SOC over time. Due to variations in ecoregions, sequestration rates varied among sites from 0.9 Mg carbon (C) ha?1 year?1 to 5.4 Mg C ha?1 year?1. Potential SOC sink capacity also varied among sites ranging from 20.8 ± 1.0–96.3 ± 6.0 Mg C ha?1. Average sequestration rate and sink capacity for all sites sampled were 2.8 ± 0.3 Mg C ha?1 year?1 and 45.8 ± 3.5 Mg C ha?1, respectively. Additionally, the hidden carbon costs (HCC) due to lawn mowing (189.7 kg Ce (carbon equivalent) ha?1 year?1) and fertilizer use (63.6 kg Ce ha?1 year?1) for all sites totaled 254.3 kg Ce ha?1 year?1. Considering home lawn SOC sink capacity and HCC, mean home lawn sequestration was completely negated 184 years post establishment. The potential SOC sink capacity of home lawns in the U.S. was estimated at 496.3 Tg C, with HCC of between 2,504.1 Gg Ce year?1 under low management regimes and 7551.4 Gg Ce year?1 under high management. This leads to a carbon-positive system for between 66 and 199 years in U.S. home lawns. More efficient and reduction of C-intensive maintenance practices could increase the overall sequestration longevity of home lawns and improve their climate change mitigation potential.  相似文献   

10.
The concern related to the drinking of reverse osmosis (RO) water containing low levels of minerals is growing day by day. This study involves the analysis of water samples from various drinking water sources in a rural site, Mirchpur village, an Indus Valley civilization site (grid location: 29° 18′ 42.3″ N, 76° 10′ 33.0″ E) of Hisar, India, along with the health survey of human subjects. The hydrochemistry of water collected from hand pumps, river canals, tube wells, submersibles, and the RO systems installed in various homes was explored for pH, EC, TH, TDS, turbidity, cations (Na+, Ca2+, Mg2+), anions (CO32−, HCO3, Cl, SO42−, NO3, F), and elements (Fe, Pb, Se) employing the ion chromatography, flame photometry, and ICP-AES techniques. Lead (Pb) and Selenium (Se) were detected in trace amounts (0.30–2.6 μg L−1; 0.10–4.1 μg L−1, respectively) in all the samples, including the samples collected from RO purifiers, but Iron (Fe) was not detected in RO samples even in trace amounts. The F-levels in hand pump water (HPW) and submersible water (SW) (1.9  and 1.7 mg L−1, respectively) and TDS levels in SW (3048 mg L−1) were found to be above WHO and BIS safe limits. TDS levels in the river canal (900 mg L−1), tube well (1104 mg L−1), hand pump (1170 mg L−1), and submersible samples (3048 mg L−1) were found significantly higher as compared to the RO personal water (ROPW; 216 mg L−1) and RO supply water (ROSW; 90 mg L−1). The collected epidemiological data reveals that 21%, 19%, 13%, and 12% of natives reported skin, kidney, hair fall, liver, and stomach issues, respectively, suspecting the crucial role of high TDS and fluoride levels in the area. This study also provides a comparison between the quality of RO and the direct supply water, along with correlation matrices for different parameters, which gives a rationale for the limitations of drinking direct supply water without any purification and RO water containing low mineral content.  相似文献   

11.
ABSTRACT: Carbon content was measured in sediments deposited in 58 small reservoirs across the United States. Reservoirs varied from 0.2 to 4000 km2 in surface area. The carbon content of sediment ranged from 0.3 to 5.6 percent, with a mean of 1.9 ± 1.1 percent. No significant differences between the soil and sediment carbon content were found using a paired t-test or ANOVA. The carbon content of sediments in reservoirs was similar to the carbon content of surface soils (0–10 cm) in the watershed, except in watersheds with shrub or steppe (desert) vegetation. Based on the sediment accumulation rates measured in each reservoir, the calculated organic carbon accumulation rates among reservoirs ranged from 26 to 3700 gC m-2yr-1, with a mean of 675 ± 739 gC m-2yr-1. The carbon content and accumulation rates were highest in sediments from grassland watersheds. High variability was found in carbon content, carbon accumulation, and sediment accumulation rates due to individual watershed and reservoir characteristics rather than to any broad physiographic patterns. The carbon accumulation rates in these reservoir sediments indicate that reservoir sediments could be a significant sink for organic carbon.  相似文献   

12.
Land-use change from one type to another affects soil carbon (C) stocks which is associated with fluxes of CO2 to the atmosphere. The 10-years converted land selected from previously cultivated land in hilly areas of Sichuan, China was studied to understand the effects of land-use conversion on soil organic casrbon (SOC) sequestration under landscape position influences in a subtropical region of China. The SOC concentrations of the surface soil were greater (P < 0.001) for converted soils than those for cultivated soils but lower (P < 0.001) than those for original uncultivated soils. The SOC inventories (1.90–1.95 kg m?2) in the 0–15 cm surface soils were similar among upper, middle, and lower slope positions on the converted land, while the SOC inventories (1.41–1.65 kg m?2) in this soil layer tended to increase from upper to lower slope positions on the cultivated slope. On the whole, SOC inventories in this soil layer significantly increased following the conversion from cultivated land to grassland (P < 0.001). In the upper slope positions, converted soils (especially in 0–5 cm surface soil) exhibited a higher C/N ratio than cultivated soils (P = 0.012), implying that strong SOC sequestration characteristics exist in upper slope areas where severe soil erosion occurred before land conversion. It is suggested that landscape position impacts on the SOC spatial distribution become insignificant after the conversion of cultivated land to grassland, which is conducive to the immobilization of organic C. We speculate that the conversion of cultivated land to grassland would markedly increase SOC stocks in soil and would especially improve the potential for SOC sequestration in the surface soil over a moderate period of time (10 years).  相似文献   

13.
Abstract: A pervious concrete infiltration basin was installed on the campus of Villanova University in August 2002. A study was undertaken to determine what contaminants, if any, were introduced to the soils underlying the site as a result of this best management practice (BMP). The average infiltration rate at the site is approximately 10?4 cm/s. The drainage area (5,208 m2) consists of grassy surfaces (36%), standard concrete/asphalt (30%), and roof surfaces (30%) that directly connect to the infiltration beds via downspouts and storm sewers. Composite samples of infiltrated stormwater were collected from the vadose zone using soil moisture suction devices. Discrete samples were collected from a port within an infiltration bed and a downspout from a roof surface. Samples from 17 storms were analyzed for pH, conductivity, and concentrations of suspended solids, dissolved solids, chloride, copper, and total nitrogen. Copper and chloride were the two constituents of concern at this site. Copper was introduced to the system from the roof, while chloride was introduced from deicing practices. Copper was not found in porewater beneath 0.3 m and the chloride was not significant enough to impact the ground water. This research indicates that with proper siting, an infiltration BMP will not adversely impact the ground water.  相似文献   

14.
Lead arsenate pesticides were widely used in apple orchards from 1925 to 1955. Soils from historic orchards in four counties in Virginia and West Virginia contained elevated concentrations of As and Pb, consistent with an arsenical pesticide source. Arsenic concentrations in approximately 50% of the orchard site soils and approximately 1% of reference site soils exceed the USEPA Preliminary Remediation Goal (PRG) screening guideline of 22 mg kg(-1) for As in residential soil, defined on the basis of combined chronic exposure risk. Approximately 5% of orchard site soils exceed the USEPA PRG for Pb of 400 mg kg(-1) in residential soil; no reference site soils sampled exceed this value. A variety of statistical methods were used to characterize the occurrence, distribution, and dispersion of arsenical pesticide residues in soils, stream sediments, and ground waters relative to landscape features and likely background conditions. Concentrations of Zn, Pb, and Cu were most strongly associated with high developed land density and population density, whereas elevated concentrations of As were weakly correlated with high orchard density, consistent with a pesticide residue source. Arsenic concentrations in ground water wells in the region are generally <0.005 mg L(-1). There was no spatial association between As concentrations in ground water and proximity to orchards. Arsenic had limited mobility into ground water from surface soils contaminated with arsenical pesticide residues at concentrations typically found in orchards.  相似文献   

15.
This study assessed the abundance of soil microarthropods in the soil in proximity to three auto mechanic workshops in Benin City, Nigeria, to determine the effect of petroleum hydrocarbon wastes on these organisms. A Berlese funnel was used to collect the microarthropods from soil samples collected from one mechanic workshop located in each of the three local government areas within Benin City: Oredo (site 1), Egor (site 2), and Ikpoba‐Okha (site 3). A Control Site soil sample was also collected from an area where no mechanic workshops were present. Inspection of the soil samples revealed a total number of 198 soil microarthropods belonging to two classes (Insecta and Acarina), eight families, and 10 species: Achegozetes longisetosus, Dermatophagoides pteronyssinus, Eremaeus columbianus, Eremaeus oblongus, Euzetes globules, Isotomurus palustris, Phlebotomus duboscqi, Solenopsis invicta, Hydrachna magnicutata, and an unidentified species were recorded. S. invicta was the most abundant, whereas the least abundant were E. columbianus, E. oblongus, and E. globules. Although there were no significant differences (p > 0.05) in mean temperature, pH, or soil moisture content across the study sites, there was a significant difference (p < 0.01) in the mean total hydrocarbon content (THC) measurements for sites 1, 2, 3, and the Control Site (48.62 ± 6.19, 51.70 ± 4.86, 52.69 ± 4.58, and 0.05 ± 0.01, respectively). Furthermore, soil microarthropod abundance and physiochemical parameters were evenly distributed from month to month. We observed a negative correlation of THC with soil microarthropod abundance across sites, although the microarthropods abundance was independent of the THC concentrations (expressed in parts per million [ppm]). In addition, although our analysis revealed no significant difference (p > 0.05) in microarthropod abundance across sites 1 through 3, abundance varied significantly (p < 0.05) between sites 1 through 3 collectively when compared with the abundance observed in samples from the Control Site. The implication of this survey is that the indiscriminate dumping of spent oils onto the soil has adverse effects on both the environment and the abundance of soil microarthropods.  相似文献   

16.
Organic matter characteristics and nutrient content in eroded soils   总被引:1,自引:0,他引:1  
Twenty-one severely eroded soils of SE Spain (Torriorthent xeric soils) were studied. These soils form a fragile system characterized by soils with a low density of plant cover (<5%), are loamy and occur in a semiarid climate. The soils formerly were used for agricultural purposes but were abandoned at least 15 years ago. These eroded soils had a low total organic carbon content, and their humic substances, humic acid carbon, and carbohydrates were lower compared with soils that had never been cultivated (natural soils). The variables in which the effects of erosion were particularly noted were those related with the active organic matter (respiration and water-soluble organic matter). Those eroded soils with higher salt content showed lower organic matter and carbohydrate contents. Only total nitrogen was correlated with the carbon fractions in the eroded soils.  相似文献   

17.
ABSTRACT: Sulfometuron methyl [methyl 2-[[[[4,6-dimethly 2-(pyrimidinyl) a-mino] carbony l]amino] sulfonyl] benzoate] was applied by a ground sprayer at a maximum labeled rate of 0.42 kg ha-1 a.i. to a 4 ha Coastal Plain flatwoods watershed as site preparation for tree planting. Herbicide residues were detected in Streamflow for only seven days after treatment and did not exceed 7 mg m-3. Sulfometuron methyl was not detected in any stormflow and was not found in any sediment (both bedload and suspended). Sampling of a shallow ground water aquifer, > 1.5 m below ground surface, did not detect any sulfometuron methyl residues for 203 days after herbicide application. Lack of herbicide residue movement was attributed to low application rates, rapid hydrolysis in acidic soils and water and dilution in streamflow.  相似文献   

18.
The impacts of strategically located contour prairie strips on sediment and nutrient runoff export from watersheds maintained under an annual row crop production system have been studied at a long-term research site in central Iowa. Data from 2007 to 2011 indicate that the contour prairie strips utilized within row crop-dominated landscapes have greater than proportionate and positive effects on the functioning of biophysical systems. Crop producers and land management agencies require comprehensive information about the Best Management Practices with regard to performance efficacy, operational/management parameters, and the full range of financial parameters. Here, a farm-level financial model assesses the establishment, management, and opportunity costs of contour prairie strips within cropped fields. Annualized, depending on variable opportunity costs the 15-year present value cost of utilizing contour prairie strips ranges from $590 to $865 ha?1 year?1 ($240–$350 ac?1 year?1). Expressed in the context of “treatment area” (e.g., in this study 1 ha of prairie treats 10 ha of crops), the costs of contour prairie strips can also be viewed as $59 to about $87 per treated hectare ($24–$35 ac?1). If prairie strips were under a 15-year CRP contract, total per acre cost to farmers would be reduced by over 85 %. Based on sediment, phosphorus, and nitrogen export data from the related field studies and across low, medium, and high land rent scenarios, a megagram (Mg) of soil retained within the watershed costs between $7.79 and $11.46 mg?1, phosphorus retained costs between $6.97 and $10.25 kg?1, and nitrogen retained costs between $1.59 and $2.34 kg?1. Based on overall project results, contour prairie strips may well become one of the key conservation practices used to sustain US Corn Belt agriculture in the decades to come.  相似文献   

19.
A novel yeast species Candida digboiensis TERI ASN6 was isolated from soil samples contaminated with acidic oily sludge (pH 1–3) from the Digboi refinery (Northeast India). The strain TERI ASN6 could degrade 73% of the total petroleum hydrocarbons present in the medium at pH 3 in a week. This strain presents a dimorphic behaviour and showed mycelia morphology when grown under stressed conditions such as low pH and in a medium containing petroleum hydrocarbons. The C. digboiensis strain could efficiently degrade the aliphatic and aromatic fractions of the acidic oily sludge at pH 3 as confirmed by gas chromatography. During the growth of TERI ASN6 in dibenzothiophene (DBT), DBT-sulfone and biphenyl-2-ol were detected. An active cytochrome P450 system, implicated in hydrocarbon oxidation, was also detected in this yeast using degenerated primers based on its conserved regions. This yeast is a potential candidate for petroleum bioremediation treatment of hydrocarbon contaminated acidic soils. Its physiological behaviour allows the strain to work efficiently where other hydrocarbon-degrading bacteria may not survive.  相似文献   

20.
There are more than 10000 arsenic (As) contaminated sites in Australia. The ability of soils at these contaminated sites to sorb As is highly variable and appreciable amounts of As have been recorded in the subsurface soils. The potential risk of surface and ground water contamination by As at these sites is a major environmental concern. Factors that influence adsorption capacity of soils influence the bioavailability and subsequent mobility of As in soils. In the present study we investigated the effect of PO4(3-) and Na+ and Ca2+ on the sorption of AsV and AsIII by an Oxisol, a Vertisol, and two Alfisols. The presence of P (0.16 mmol L(-1)) greatly decreased AsV sorption by soils containing low amounts of Fe oxides (<100 mmol kg(-1)), indicating competitive adsorption between P and AsV for sorption sites. In contrast, the presence of a similar amount of P had little effect on the amount of AsV adsorbed by soils with high Fe content (>800 mmol kg(-1)). However, AsV sorption substantially decreased from 0.63 to 0.37 mmol kg(-1) as P concentration was increased from 0.16 to 3.2 mmol L(-1) in selected soils. This suggests increased competition between P and AsV for soil sorption sites, through either the higher affinity or the effect of mass action of the increasing concentration of P in solution. A similar effect of P on AsIII sorption was observed in the low sorbing Alfisol and high affinity Oxisol. However, the amount of AsIII sorbed by the Oxisol was much greater than the Alfisol for all treatments. The presence of Ca2+ increased the amount of AsV sorbed compared with that of Na+ and was manifested through changes in the surface charge characteristics of the soils. A similar trend in AsIII sorption was recorded with changes in index cation, although the effect was not as marked as recorded for AsV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号