首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxicity and bioaccumulation of two heavy metals—lead (Pb) and cadmium (Cd)—in a semi-aquatic plant, Colocasia esculenta (L. Schott), from a synthetic heavy metal solution were studied. Young plants of equal size were grown hydroponically in shallow raceways containing Hoagland medium amended with 20, 40, and 60 mg l?1 of Pb and 2, 4, and 6 mg l?1 of Cd. The medium containing heavy metals was allowed to flow through the raceways with a change in influent heavy metal solution on every 5th day. The experiment was continued for 20 days. A set of control raceways—one comprised of nutrient medium with heavy metal supplements, devoid of plants, and another with the plants and nutrient medium having no metal supplement—was also simultaneously run. Chlorosis in the leaves was the prominent toxicity symptom observed due to Pb and Cd on the test plants. A significant decrease in the relative growth, biomass productivity, and total chlorophyll content were noticed in the plants with an increase in concentration of metal supplement in the solution and exposure time. Both metals accumulated to higher concentrations in the roots than in shoots, suggesting that the metals were bound to the root cells and their translocation to the leaves was limited. The results of the 20-day-long experiments indicate that from a phytoremediation perspective, C. esculenta is a promising plant species for remediation of wastewater polluted with lower concentrations of Pb and Cd.  相似文献   

2.
Mahogany, a high biomass fast-growing tropical tree, has recently garnered considerable interest for potential use in heavy metal phytoremediation. This study performed hydroponic experiments with Cd concentration gradients at concentrations of 0, 7.5, 15, and 30 mg L(-1) to identify Cd accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings as well as their potential for phytoextraction. Experimental results indicate that Cd inhibited mahogany seedling growth at the highest Cd exposure concentration (30 mg L(-1)). Nevertheless, this woody species demonstrated great potential for phytoextraction at Cd concentrations of 7.5 and 15 mg L(-1). The roots, twigs, and leaves had extremely large bioaccumulation factors at 10.3-65.1, indicating that the plant extracted large amounts of Cd from hydroponic solutions. Mahogany seedlings accumulated up to 154 mg kg(-1) Cd in twigs at a Cd concentration of 15 mg L(-1). Although Cd concentrations in leaves were <100 mg kg(-1), these concentrations markedly exceed the normal ranges for other plants. Due to the high biomass production and Cd uptake capacity of mahogany shoots, this plant is a potential candidate for remediating Cd-contaminated sites in tropical regions.  相似文献   

3.
Transgenic Indian mustard [Brassica juncea (L.) Czern.] plants overproducing the enzymes gamma-glutamylcysteine synthetase (ECS) or glutathione synthetase (GS) were shown previously to have increased levels of the metal-binding thiol peptides phytochelatins and glutathione, and enhanced Cd tolerance and accumulation. Furthermore, transgenic Indian mustard plants overexpressing adenosine triphosphate sulfurylase (APS) were shown to have higher levels of glutathione and total thiols. These results were obtained with a solution culture. To better examine the phytoremediation potential of these transgenics, a greenhouse experiment was performed in which the transgenics were grown on metal-contaminated soil collected from a USEPA Superfund site near Leadville, Colorado. A grass mixture used for revegetation of the site was included for comparison. The ECS and GS transgenics accumulated significantly (P < 0.05) more metal in their shoot than wild-type (WT) Indian mustard, while the APS plants did not. Of the six metals tested, the ECS and GS transgenics accumulated 1.5-fold more Cd, and 1.5- to 2-fold more Zn, compared with wild-type Indian mustard. Furthermore, the ECS transgenics accumulated 2.4- to 3-fold more Cr, Cu, and Pb, relative to WT. The grass mixture accumulated significantly less metal than Indian mustard: approximately 2-fold less Cd, Cu, Mn, and Zn, and 5.7-fold less Pb than WT Indian mustard. All transgenics removed significantly more metal from the soil compared with WT Indian mustard or an unplanted control. While WT did not remove more metal than the unplanted control for any of the metals tested, all three types of transgenics significantly reduced the soil metal concentration, and removed between 6% (Zn) and 25% (Cd) of the soil metal. This study is the first to demonstrate enhanced phytoextraction potential of transgenic plants using polluted environmental soil. The results confirm the importance of metal-binding peptides for plant metal accumulation and show that results from hydroponic systems have value as an indicator for phytoremediation potential.  相似文献   

4.
This work aimed at defining the optimal conditions for a novel ecotoxicological test designed for evaluating the bioavailability and phytotoxicity of metals to plants. This biotest, which provided easy access to roots, shoots, and rhizosphere soil, was applied to a vineyard calcareous soil that had been contaminated by the application of Cu fungicides. A preliminary hydroponic experiment comparing various levels of solution Cu concentration enabled us to determine the no observable adverse effects concentration (NOAEC), which was in the range 5 to 20 microM total Cu (0.01-0.06 microM free Cu ion) for rape (Brassica napus L. cv. Goeland). For the biotest, rape was grown in hydroponic conditions for 21 d in pots designed so that plants developed a planar mat of roots at the surface of a polyamide mesh. By then, the plants were transferred for 4 or 8 d onto a 1- or 3-mm-thick soil layer that was separated from the root mat by the mesh and connected to a reservoir of nutrient solution or deionized water via a filter paper wick. An 8-d period was the best option as it enabled plant growth to be significant. The use of 1-mm soil thickness was recommended if the biotest aimed at investigating root-induced changes in the rhizosphere. Although it may cause some artifacts, compared with deionized water, nutrient solution provided better standardized conditions for comparing widely differing soil samples. The studied soil did not induce any Cu phytotoxicity in spite of its fairly large total Cu content.  相似文献   

5.
In Southeast Asia the aquatic macrophyte water spinach (Ipomoea aquatica Forsk.) is a popular vegetable that is cultivated in freshwater courses. These often serve as recipients for domestic and other sorts of wastewater that often contain a variety of pollutants, such as heavy metals. In addition, fertilizers are frequently used where water spinach is cultivated commercially for the food market. To estimate the importance of ambient nutrient concentrations for accumulation of mercury (Hg), cadmium (Cd), and lead (Pb) in water spinach, plants were exposed to nutrient solutions of different strength and with varying metal concentrations. Metal-induced toxic effects, which might possibly affect the yield of the plants, were also studied. The lower the nutrient strength in the medium was, the higher the metal concentrations that accumulated in the different plant parts and the lower the metal concentration in the medium at which metal-induced toxic effects occurred. Accordingly, internal metal concentrations in the plants were correlated to toxic effects. Plants exposed to metals retained a major proportion of the metals in the roots, which had a higher tolerance than shoots for high internal metal concentrations.  相似文献   

6.
Eichhornia crassipes was tested for its ability to bioconcentrate 8 toxic metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) commonly found in wastewater from industries. Young plants of equal size were grown hydroponically and amended with 0, 0.1, 0.3, 0.5, 1.0, 3.0, and 5.0 mM of each heavy metal individually for 21 days. The test plant had the lowest and the highest tolerance indices for Hg and Zn, respectively. A significant (P ≤ .05) reduction in biomass production was observed in metal treated plants compared with the control. All strace elements accumulated to higher concentrations in roots than in shoots. Trace element concentrations in tissues and the bioconcentration factors (BCF) were proportional to the initial concentration of individual metal in the growth medium and the duration of exposure. From a phytoremediation perspective, E. crassipes is a promising plant species for remediation of natural water bodies and/or wastewater polluted with low levels of Zn, Cr, Cu, Cd, Pb, Ag and Ni.  相似文献   

7.
Lead phytoextraction from contaminated soil with high-biomass plant species   总被引:5,自引:0,他引:5  
In this study, cabbage [Brassica rapa L. subsp. chinensis (L.) Hanelt cv. Xinza No 1], mung bean [Vigna radiata (L.) R. Wilczek var. radiata cv. VC-3762], and wheat (Triticum aestivum L. cv. Altas 66) were grown in Pb-contaminated soils. Application of ethylenediaminetetraacetic acid (EDTA) (3.0 mmol of EDTA/kg soil) to the soil significantly increased the concentrations of Pb in the shoots and roots of all the plants. Lead concentrations in the cabbage shoots reached 5010 and 4620 mg/kg dry matter on Days 7 and 14 after EDTA application, respectively. EDTA was the best in solubilizing soil-bound Pb and enhancing Pb accumulation in the cabbage shoots among various chelates (EDTA, diethylenetriaminepentaacetic acid [DTPA], hydroxyethylenediaminetriacetic acid [HEDTA], nitrilotriacetic acid [NTA], and citric acid). Results of the sequential chemical extraction of soil samples showed that the Pb concentrations in the carbonate-specifically adsorbed and Fe-Mn oxide phases were significantly decreased after EDTA treatment. The results indicated that EDTA solubilized Pb mainly from these two phases in the soil. The relative efficiency of EDTA enhancing Pb accumulation in shoots (defined as the ratio of shoot Pb concentration to EDTA concentration applied) was highest when 1.5 or 3.0 mmol EDTA/kg soil was used. Application of EDTA in three separate doses was most effective in enhancing the accumulation of Pb in cabbage shoots and decreased mobility of Pb in soil compared with one- and two-dose application methods. This approach could help to minimize the amount of chelate applied in the field and to reduce the potential risk of soluble Pb movement into ground water.  相似文献   

8.
Enhanced Cd concentrations in wheat (Triticum aestivum L.) grain produced on saline soils of central Iran have been recently reported. Because wheat bread is a major dietary component for the Iranian people, practical approaches to decrease Cd concentration in wheat grain were investigated. This study investigated the influence of sunflower-wheat vs. cotton-wheat rotations on extractable Cd and on Cd uptake by wheat in these salt-affected soils. Two fields with different levels of Cd contamination (1.5 and 3.2 mg total Cd kg(-1) dry soil) were cropped with different rotations (cotton-wheat and sunflower-wheat) in Qom province, central Iran. Seeds of cotton (Gossypium L.) or sunflower (Helianthus annuus L. cv. Record) were planted in plots. After harvesting of the plants and removal of crop residues, wheat (cv. Rushan) was seeded in all plots. For both studied soils, the concentrations of Cd extracted by 0.04 M EDTA and 1 M CaCl(2) were significantly (P < or = 0.05) greater after cotton than after sunflower. Accordingly, the total amount of Cd in sunflower shoot was significantly (P < or = 0.05) greater than in the cotton shoot. Shoot Cd content in wheat plants grown after cotton and sunflower were significantly different; wheat shoots after cotton accumulated more Cd (two to four times) than after sunflower. Wheat grain Cd concentration after sunflower was much lower (more than seven times) than after cotton. The results of this study showed that sunflower in rotation with wheat in salt-affected soils of central Iran significantly reduced the risk of Cd transfer to wheat grain.  相似文献   

9.
Using a soil column experiment, we compared the effect of a single dose and weekly additions of ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedissuccinate (EDDS) on the uptake of Pb, Zn, and Cd by Chinese cabbage [Brassica rapa L. subsp. pekinensis (Lour.) Hanelt], and on the leaching of heavy metals through the soil profile. The analysis of plant material revealed that both chelates increased the concentrations of Pb and, to a lesser extent, also of Zn and Cd in the leaves of the test plant. The most effective applications were single doses of 10 mmol EDTA and EDDS kg(-1) soil, which caused the concentrations of Pb in the shoots to increase 94.2- and 102.3-fold, respectively, relative to the control. The same dose of EDTA increased the concentration of Zn and Cd in the leaves 4.3- and 3.8-fold and of EDDS 4.7- and 3.5-fold, respectively. In treatments with weekly additions and lower concentrations of both chelates, EDTA was more effective than EDDS in increasing the plant uptake of Pb. In soil columns treated with weekly additions of 10 mmol kg(-1) EDTA, on average 22.7, 7.0, and 39.8% of initial total Pb, Zn, and Cd in the soil were leached through the soil profile. The same amount of EDDS caused much lower leaching of Pb and Cd--only 0.8 and 1.5% of initial total concentrations. Leaching of Zn, 6.2% of the total concentration, was comparable with the EDTA treatment. A biotest with red clover (Trifolium pratense L.) indicated a greater phytotoxic effect of EDTA than EDDS addition. EDDS was also less toxic to soil fungi, as determined by phospholipid fatty acid (PLFA) analysis, and caused less stress to soil microorganisms, as indicated by the trans to cis PLFA ratio. Chelate addition did not prevent the development of arbuscular mycorrhiza on red clover.  相似文献   

10.
Polycyclic aromatic hydrocarbons (PAHs) are possible contaminants in some former industrial sites, representing a potential risk to human health if these sites are converted to residential areas. This work was conducted to determine whether PAHs present in contaminated soils are transferred to edible parts of selected vegetables. Soils were sampled from a former gasworks and a private garden, exhibiting a range of PAH concentrations (4 to 53 to 172 to 1263 and 2526 mg PAHs kg-1 of dry soil), and pot experiments were conducted in a greenhouse with lettuce (Lactuca sativa L. var. Reine de Mai), potato (Solanum tuberosum L. var. Belle de Fontenay), and carrot (Daucus carota L. var. Nantaise). At harvest, above- and below ground biomass were determined and the PAH concentrations in soil were measured. In parallel, plates were placed in the greenhouse to estimate the average PAH-dust deposition. Results showed that the presence of PAHs in soils had no detrimental effect on plant growth. Polycyclic aromatic hydrocarbons were detected in all plants grown in contaminated soils. However, their concentration was low compared with the initial soil concentration, and the bioconcentration factors were low (i.e., ranging from 13.4 x 10(-4) in potato and carrot pulp to 2 x 10(-2) in potato and carrot leaves). Except in peeled potatoes, the PAH concentration in vegetables increased with the PAH concentration in soils. The PAH distribution profiles in plant tissues and in soils suggested that root uptake was the main pathway for high molecular weight PAHs. On the opposite, lower molecular weight PAHs were probably taken up from the atmosphere through the leaves as well as by roots.  相似文献   

11.
From 1974 to 1984, 543 Mg ha(-1) of biosolids were applied to portions of a land-reclamation site in Fulton County, IL. Soil organic C increased to 5.1% then decreased significantly (p < 0.01) to 3.8% following cessation of biosolids applications (1985-1997). Metal concentrations in amended soils (1995-1997) were not significantly different (p > 0.05) (Ni and Zn) or were significantly lower (p < 0.05) (6.4% for Cd and 8.4% for Cu) than concentrations from 1985-1987. For the same biosolids-amended fields, metal concentrations in corn (Zea mays L.) either remained the same (p > 0.05, grain Cu and Zn) or decreased (p < 0.05, grain Cd and Ni, leaf Cd, Cu, Ni, Zn) for plants grown in 1995-1997 compared with plants grown immediately following termination of biosolids applications (1985-1987). Biosolids application increased (p < 0.05) Cd and Zn concentrations in grain compared with unamended fields (0.01 to 0.10 mg kg(-1) for Cd and 23 to 28 mg kg(-1) for Zn) but had no effect (p > 0.05) on grain Ni concentrations. Biosolids reduced (p < 0.05) Cu concentration in grain compared with grain from unamended fields (1.9 to 1.5 mg kg(-1)). Biosolids increased (p < 0.05) Cd, Ni, and Zn concentrations in leaves compared with unamended fields (0.3 to 5.6 mg kg(-1) for Cd, 0.2 to 0.5 mg kg(-1) for Ni, and 32 to 87 mg kg(-1) for Zn), but had no significant effect (p > 0.05) on leaf Cu concentrations. Based on results from this field study, USEPA's Part 503 risk model overpredicted transfer of these metals from biosolids-amended soil to corn.  相似文献   

12.
Revegetation of arsenic (As)-rich mine spoils is often impeded by the lack of plant species tolerant of high As concentrations and low nutrient availability. Basin wildrye [Leymus cinereus (Scribner & Merr.) A. L?ve] has been observed to establish naturally in soils with elevated As content and thus may be useful for the stabilization of As-contaminated soils. An experiment was conducted to evaluate how variable phosphorus (P) concentrations and inoculation with site-specific arbuscular mycorrhizal fungi influence As tolerance of basin wildrye. Basin wildrye was grown in sterile sand in the greenhouse for 16 weeks. Pots of sterile sand were amended to create one of four rates of As (0, 3, 15, or 50 mg As kg(-1)), two rates of P (3 or 15 mg P kg(-1)), and +/-mycorrhizal inoculation in a 2 x 4 x 2 factorial arrangement. After 16 weeks of growth, plants were harvested, shoots and roots thoroughly washed, and the tissue analyzed for total shoot biomass, total root and shoot As and P concentrations, and degree of mycorrhizal infection. Basin wildrye was found to be tolerant of high As concentrations allowing for vigorous plant growth at application levels of 3 or 15 mg As kg(-1). Arsenic was sequestered in the roots, with 30 to 50 times more As in the roots than shoots under low P conditions. Mycorrhizal infection did not confer As tolerance in basin wildrye nor did mycorrhizal fungi influence biomass production. Phosphorus concentrations of 15 mg kg(-1) effectively inhibited As accumulation in basin wildrye. Basin wildrye has the potential to be used for stabilization of As-rich soils while minimizing exposure to grazing animals following reclamation.  相似文献   

13.
Indian mustard [Brassica juncea (L.) Czern.] transgenics overexpressing ATP sulfurylase (APS plants) were shown previously to have higher levels of total thiols, S, and Se. The present study explores the effect of ATP sulfurylase overexpression on tolerance and accumulation of other metals, both oxyanions and cations, reasoning that some anions may react directly with ATP sulfurylase, while other ions may be bound by its thiol end products. The APS transgenics were compared with wild-type plants with respect to tolerance and accumulation of As, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V, W, and Zn, supplied individually in agar medium (seedlings) or in hydroponics (mature plants). At the seedling stage, APS transgenics were more tolerant than wild type to As(III), As(V), Cd, Cu, Hg, and Zn, but less tolerant to Mo and V. The APS seedlings had up to 2.5-fold higher shoot concentrations of As(III), As(V), Hg, Mo, Pb, and V, and somewhat lower Cr levels. Mature APS plants contained up to 2.5-fold higher shoot concentrations of Cd, Cr, Cu, Mo, V, and W than wild type. They also contained 1.5- to 2-fold higher levels of the essential elements Fe, Mo, and S in most of the treatments. Mature APS plants showed no differences in metal tolerance compared with the wild type. Overexpression of ATP sulfurylase may be a promising approach to create plants with enhanced phytoextraction capacity for mixtures of metals.  相似文献   

14.
Sedimentation of the Illinois River in central Illinois has greatly diminished the utility and ecological value of the Peoria Lakes reach of the river. Consequently, a large dredging project has been proposed to improve its wildlife habitat and recreation potential, but disposal of the dredged sediment presents a challenge. Land placement is an attractive option. Previous work in Illinois has demonstrated that sediments are potentially capable of supporting agronomic crops due to their high natural fertility and water holding capacity. However, Illinois River sediments have elevated levels of heavy metals, which may be important if they are used as garden or agricultural soil. A greenhouse experiment was conducted to determine if these sediments could serve as a plant growth medium. A secondary objective was to determine if plants grown on sediments accumulated significant heavy metal concentrations. Our results indicated that lettuce (Lactuca sativa L.), barley (Hordeum vulgare L.), radish (Raphanus sativus L.), tomato (Lycopersicon lycopersicum L.), and snap bean (Phaseolus vulagaris L. var. humillis) grown in sediment and a reference topsoil did not show significant or consistent differences in germination or yields. In addition, there was not a consistent statistically significant difference in metal content among tomatoes grown in sediments, topsoil, or grown locally in gardens. In the other plants grown on sediments, while Cd and Cu in all cases and As in lettuce and snap bean were elevated, levels were below those considered excessive. Results indicate that properly managed, these relatively uncontaminated calcareous sediments can make productive soils and that metal uptake of plants grown in these sediments is generally not a concern.  相似文献   

15.
The effects of chromate on sulfate uptake and assimilation were investigated in the accumulator Brassica juncea (L.) Czern. Seven-day-old plants were grown for 2 d under the following combination of sulfate and chromate concentration: (i) no sulfate and no chromate (-S), (ii) no sulfate and 0.2 mmol L(-1) chromate (-S +Cr), (iii) 1 mmol L(-1) sulfate and no chromate (+S), or (iv) 1 mmol L(-1) sulfate and 0.2 mmol L(-1) chromate (+S +Cr). Despite the toxic effects exerted by chromate as indicated by altered level of reducing sugars and proteins in leaves, the growth of B. juncea was only weakly reduced by chromate, and no variation in chlorophyll a and b was measured, regardless of S availability. Chromium (Cr) was stored more in roots than in leaves, and the maximum Cr accumulation was measured in -S +Cr plants. The significant decrease of the sulfate uptake rates observed in Cr-treated plants was accompanied by a repression of the root low-affinity sulfate transporter (BjST1), suggesting that the transport of chromate in B. juncea may involve sulfate carriers. Once absorbed, chromate induced genes involved in sulfate assimilation (ATP-sulfurylase: atps6; APS-reductase: apsr2; Glutathione synthethase: gsh2) and accumulation of cysteine and glutathione, which may suggest that these reduced S compounds play a role in Cr tolerance. Together, our findings indicate that when phytoremediation technologies are used to recover Cr-contaminated areas, the concentration of sulfate in the plant growth medium must be considered because it may influence the ability of plants to accumulate and tolerate Cr.  相似文献   

16.
Elevated atmospheric CO2 treatments stimulated biomass production in Fe-sufficient and Fe-deficient barley plants, both in hydroponics and in soil culture. Root/shoot biomass ratio was increased in severely Fe-deficient plants grown in hydroponics but not under moderate Fe limitation in soil culture. Significantly increased biomass production in high CO2 treatments, even under severe Fe deficiency in hydroponic culture, indicates an improved internal Fe utilization. Iron deficiency-induced secretion of PS in 0.5 to 2.5 cm sub-apical root zones was increased by 74% in response to elevated CO2 treatments of barley plants in hydroponics but no PS were detectable in root exudates collected from soil-grown plants. This may be attributed to suppression of PS release by internal Fe concentrations above the critical level for Fe deficiency, determined at final harvest for soil-grown barley plants, even without additional Fe supply. However, extremely low concentrations of easily plant-available Fe in the investigated soil and low Fe seed reserves suggest a contribution of PS-mediated Fe mobilization from sparingly soluble Fe sources to Fe acquisition of the soil-grown barley plants during the preceding culture period. Higher Fe contents in shoots (+52%) of plants grown in soil culture without Fe supply under elevated atmospheric CO2 concentrations may indicate an increased efficiency for Fe acquisition. No significant influence on diversity and function of rhizosphere-bacterial communities was detectable in the outer rhizosphere soil (0-3 mm distance from the root surface) by DGGE of 16S rRNA gene fragments and analysis of marker enzyme activities for C-, N-, and P-cycles.  相似文献   

17.
Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required.  相似文献   

18.
A field experiment was conducted to assess the effect of crop and planting pattern on levels of cadmium (Cd), lead (Pb), and copper (Cu) in crops grown in soil contaminated by electronic waste. The crops were maize (Zea mays L. var. Shentian-1), tomato (Solanum lycopersicum L. var. Zhongshu-4), cabbage (Brassica oleracea L. var. Jingfeng-1), and pakchoi (Brassica chinensis (L.) Makino. var. Youdonger-Hangzhou). The planting patterns were crop monoculture, crop co-planted with a legume, and crop co-planted with another crop. Metal concentrations in the edible parts of the crops varied with types of metals and crops. Pb concentration was higher in leafy vegetables (cabbage and pakchoi) than in maize or tomato, Cd concentration was higher in tomato and pakchoi than in maize or cabbage, and Cu concentration was higher in maize and pakchoi than in tomato or cabbage. Metal concentrations in the edible part were also influenced by planting pattern. Relative to monoculture, co-planting and especially co-planting with Japanese clover tended to decrease Pb accumulation and increase Cd accumulation. According to the maximum permissible concentration (MPC) standard of the National Standard Agency in China, only maize (under all planting patterns) could be safely consumed. Because co-planting tended to increase Cd accumulation even in maize, however, the results suggest that maize monoculture is the optimal crop and planting pattern for this kind of contaminated soil.  相似文献   

19.
To predict the availability of metals to plants, it is important to understand both solution- and solid-phase processes in the soil, including the kinetics of metal release from its binding agent (ligand and/or particle). The present study examined the speciation and availability of Zn, Cd, Pb, and Cu in a range of well-equilibrated metal-contaminated soils from diverse sources using several techniques as a basis for predicting metal uptake by plants. Wheat (Triticum aestivum L.) was grown in 13 metal-contaminated soils and metal tissue concentrations (Zn, Cd, Pb, and Cu) in plant shoots were compared with total soil metal concentrations, total soluble metal, and free metal activities (pM2+) in soil pore waters, 0.01 M CaCl2-extractable metal concentrations, E values measured by isotope dilution, and effective metal concentrations, C(E), measured by diffusive gradients in thin films (DGT). In the DGT technique, ions are dynamically removed by their diffusion through a gel to a binding resin, while E values represent the isotopically exchangeable (labile) metal pools. Free metal activities (Zn2+, Cd2+, and Pb2+) in soil pore waters were determined using a Donnan dialysis technique. Plant Zn and Cd concentrations were highly related to C(E), while relationships for Zn and Cd with respect to the other measures of metals in the soils were generally lower, except for CaCl2-extractable Cd. These results suggest that the kinetically labile solid-phase pool of metal, which is included in the DGT measurement, played an important role in Zn and Cd uptake by wheat along with the labile metal in soil solution. Plant Pb concentrations were highly related to both soil pore water concentrations and C(E), indicating that supply from the solid phase may not be so important for Pb. Predictions of Cu uptake by wheat from these soils by the various measures of Cu were generally poor, except surprisingly for total Cu.  相似文献   

20.
This study was performed to investigate mercury (Hg) tolerance, accumulation, and translocation within the genus Salix for the potential use of this plant to remediate Hg-contaminated sites. Six clones of willow (Salix spp.) were tested on tolerance to Hg by treating plants grown in solution culture with 0 to 15 microM HgCl(2). Results showed that willow had a large variation in its sensitivity to Hg. However, the accumulation and translocation of Hg to shoots was similar in the eight tested willow clones as shown by cold vapor atomic absorption spectrometry analysis when plants were treated with 0.5 microM HgCl(2) in a nutrient solution. The majority of total Hg accumulated was localized to the roots, whereas only 0.45 to 0.62% of the total Hg accumulated via roots was translocated to the shoots. Thus, the root system is the main tissue of willow that accumulates Hg and the majority of the Hg in the root system (80%) was bound in the cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号