首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potato ( L.) is a N-intensive crop, with high potential for nitrate (NO) leaching, which can contribute to both water contamination and indirect nitrous oxide (NO) emissions. Two approaches that have been considered for reducing N losses include conventional split application (CSA) of soluble fertilizers and single application of polymer-coated urea (PCU). The objectives of this study were to: (i) compare NO leaching using CSA and two PCUs (PCU-1 and PCU-2), which differed in their polymer formulations, and (ii) use measured NO leaching rates and published emissions factors to estimate indirect NO emissions. Averaged over three growing seasons (2007-2009), NO leaching rates were not significantly different among the three fertilizer treatments. Using previously reported direct NO emissions data from the same experiment, total direct plus indirect growing season NO emissions with PCU-1 were estimated to be 30 to 40% less than with CSA. However, PCU-1 also resulted in greater residual soil N after harvest in 2007 and greater soil-water NO in the spring following the 2008 growing season. These results provide evidence that single PCU applications for irrigated potato production do not increase growing season NO leaching compared with multiple split applications of soluble fertilizers, but have the potential to increase N losses after the growing season and into the following year. Estimates of indirect NO emissions ranged from 0.8 to 64% of direct emissions, depending on what value was assumed for the emission factor describing off-site conversion of NO to NO. Thus, our results also demonstrate how more robust models are needed to account for off-site conversion of NO to NO, since current emission factor models have an enormous degree of uncertainty.  相似文献   

2.
Monitoring nitrate N (NO3-N) leaching is important in order to judge the effect that agricultural practices have on the quality of ground water and surface water. Measuring drain discharge rates and NO3-N concentrations circumvents the problem of spatial variability encountered by other methods used to quantify NO3-N leaching in the field. A new flow-proportional drainage water sampling method for submerged drains has been developed to monitor NO3-N leaching. Both low and high discharge rates can be measured accurately, and are automatically compensated for fluctuations in ditch-water levels. The total amount of NO3-N leached was 10.6 kg N ha(-1) for a tile-drained silt-loam soil during the 114-d monitoring period. The NO3-N concentrations fluctuated between 5 mg L(-1) at deep ground water levels and 15 mg L(-1) at shallow levels, due to variations in water flow. A flow-proportional drainage water sampling method is required to measure NO3-N leaching accurately under these conditions. Errors of up to 43% may occur when NO3-N concentrations in the drainage water are only measured at intervals of 30 d and when the precipitation excess is used to estimate cumulative NO3-N leaching. Measurements of NO3-N concentrations in ground water cannot be used to accurately estimate NO3-N leaching in drained soils.  相似文献   

3.
Controlling nitrate leaching in irrigated agriculture   总被引:3,自引:0,他引:3  
The impact of improved irrigation and nutrient practices on ground water quality was assessed at the Nebraska Management System Evaluation Area using ground water quality data collected from 16 depths at 31 strategically located multilevel samplers three times annually from 1991 to 1996. The site was sectioned into four 13.4-ha management fields: (i) a conventional furrow-irrigated corn (Zea mays L.) field; (ii) a surge-irrigated corn field, which received 60% less water and 31% less N fertilizer than the conventional field; (iii) a center pivot-irrigated corn field, which received 66% less water and 37% less N fertilizer than the conventional field; and (iv) a center pivot-irrigated alfalfa (Medicago sativa L.) field. Dating (3H/3He) indicated that the uppermost ground water was <1 to 2 yr old and that the aquifer water was stratified with the deepest water approximately 20 yr old. Recharge during the wet growing season in 1993 reduced the average NO3-N concentration in the top 3 m 20 mg L(-1), effectively diluting and replacing the NO3-contaminated water. Nitrate concentrations in the shallow zone of the aquifer increased with depth to water. Beneath the conventional and surge-irrigated fields, shallow ground water concentrations returned to the initial 30 mg NO3-N L(-1) level by fall 1995; however, beneath the center pivot-irrigated corn field, concentrations remained at approximately 13 mg NO3-N L(-1) until fall 1996. A combination of sprinkler irrigation and N fertigation significantly reduced N leaching with only minor reductions (6%) in crop yield.  相似文献   

4.
Because of the complex interaction of chemical and biological processes of nitrogen (N) in soils, it is difficult to estimate the leaching of nitrate with various N transformations in porous media. In this study, a transfer function model was developed to simulate the outflow concentration of nitrate in soils during the growth of winter wheat (Triticum aestivum L.), taking into account the main N transformations using source and sink terms. The source and sink terms were treated as inputs to the solute transport volume and incorporated into the transfer function model to characterize their effects on nitrate concentration in the outflow. A field experiment was conducted in three nonweighing lysimeters for 181 d. Nitrate concentrations were measured along the 2-m soil profile of each lysimeter at different times. Comparison between the experimental data and simulated results with the transfer function showed that the model provided reasonable prediction of the nitrate leaching process as well as the total amount leached. Results also indicated that considering the N transformations in the transfer function significantly increased the estimation accuracy. The relative errors of total amount leached were < 7% with the N transformations included, but up to 17% without including the transformation processes.  相似文献   

5.
Management of animal manures to provide nutrients for crop growth has generally been based on crop N needs. However, because manures have a lower N/P ratio than most harvested crops, N-based manure management often oversupplies the crop-soil system with P, which can be lost into the environment and contribute to eutrophication of water bodies. We examined the effects of N- vs. P-based manure applications on N and P uptake by alfalfa (Medicago sativa L.), corn (Zea mays L.) for silage, and orchardgrass (Dactylis glomerata L.), leaching below the root zone, and accumulation of P in soil. Treatments included N- and P-based manure rates, with no nutrient input controls and inorganically fertilized plots for comparison. Nitrate concentrations in leachate from inorganic fertilizer or manure treatments averaged 14 mg NO(3)-N L(-1), and did not differ by nutrient treatment. Average annual total P losses in leachate did not exceed 1 kg ha(-1). In the top 5 cm of soil in plots receiving the N-based manure treatment, soil test P increased by 47%, from 85 to 125 mg kg(-1). Nitrogen- and P-based manure applications did not differ in ability to supply nutrients for crop growth, or in losses of nitrate and total P in leachate. However, the N-based manure led to significantly greater accumulation of soil test P in the surface 5 cm of soil. Surface soil P accumulation has implications for increased risk of off-field P movement.  相似文献   

6.
Residual soil nitrate after potato harvest   总被引:1,自引:0,他引:1  
Nitrogen loss by leaching is a major problem, particularly with crops requiring large amounts of N fertilizer. We evaluated the effect of N fertilization and irrigation on residual soil nitrate following potato (Solanum tuberosum L.) harvests in the upper St-John River valley of New Brunswick, Canada. Soil nitrate contents were measured to a 0.90-m depth in three treatments of N fertilization (0, 100, and 250 kg N ha(-1)) at two on-farm sites in 1995, and in four treatments of N fertilization (0, 50, 100, and 250 kg N ha(-1)) at four sites for each of two years (1996 and 1997) with and without supplemental irrigation. Residual soil NO3-N content increased from 33 kg NO3-N ha(-1) in the unfertilized check plots to 160 kg NO3-N ha(-1) when 250 kg N ha(-1) was applied. Across N treatments, residual soil NO3-N contents ranged from 30 to 105 kg NO3-N ha(-1) with irrigation and from 30 to 202 kg NO3-N ha(-1) without irrigation. Residual soil NO3-N content within the surface 0.30 m was related (R2 = 0.94) to the NO3-N content to a 0.90-m depth. Estimates of residual soil NO3-N content at the economically optimum nitrogen fertilizer application (Nop) ranged from 46 to 99 kg NO3-N ha(-1) under irrigated conditions and from 62 to 260 kg NO3-N ha(-1) under nonirrigated conditions, and were lower than the soil NO3-N content measured with 250 kg N ha(-1). We conclude that residual soil NO3-N after harvest can be maintained at a reasonable level (<70 kg NO3-N ha(-1)) when N fertilization is based on the economically optimum N application.  相似文献   

7.
At Florida's southeastern tip, sweet corn (Zea Mays) is grown commercially during winter months. Most fields are treated with atrazine (6-chloro-N-ethyl-N'-[1-methylethyl]-1,3,5-triazine-2,4-diamine). Hydrogeologic conditions indicate a potential for shallow groundwater contamination. This was investigated by measuring the parent compound and three degradates--DEA (6-chloro-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine), DIA (6-chloro-N-ethyl)-1,3,5-triazine-2,4-diamine, and HA (6-hydroxy-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine)--in water samples collected beneath sweet corn plots treated annually with the herbicide. During the study, a potential mitigation measure (i.e., the use of a cover crop, Sunn Hemp [Crotalaria juncea L.], during summer fallow periods followed by chopping and turning the crop into soil before planting the next crop) was evaluated. Over 3.5 yr and production of four corn crops, groundwater monitoring indicated leaching of atrazine, DIA, and DEA, with DEA accounting for more than half of all residues in most samples. Predominance of DEA, which increased after the second atrazine application, was interpreted as an indication of rapid and extensive atrazine degradation in soil and indicated that an adapted community of atrazine degrading organisms had developed. A companion laboratory study found a sixfold increase in atrazine degradation rate in soil after three applications. Groundwater data also revealed that atrazine and degradates concentrations were significantly lower in samples collected beneath cover crop plots when compared with concentrations below fallow plots. Together, these findings demonstrated a relatively small although potentially significant risk for leaching of atrazine and its dealkylated degradates to groundwater and that the use of a cover crop like Sunn Hemp during summer months may be an effective mitigation measure.  相似文献   

8.
Maize (Zea mays L.) production in the smallholder farming areas of Zimbabwe is based on both organic and mineral nutrient sources. A study was conducted to determine the effect of composted cattle manure, mineral N fertilizer, and their combinations on NO3 concentrations in leachate leaving the root zone and to establish N fertilization rates that minimize leaching. Maize was grown for three seasons (1996-1997, 1997-1998, and 1998-1999) in field lysimeters repacked with a coarse-grained sandy soil (Typic Kandiustalf). Leachate volumes ranged from 480 to 509 mm yr(-1) (1395 mm rainfall) in 1996-1997, 296 to 335 mm yr(-1) (840 mm rainfall) in 1997-1998, and 606 to 635 mm yr(-1) (1387 mm rainfall) in 1998-1999. Mineral N fertilizer, especially the high rate (120 kg N ha(-1)), and manure plus mineral N fertilizer combinations resulted in high NO3 leachate concentrations (up to 34 mg N L(-1)) and NO3 losses (up to 56 kg N ha(-1) yr(-1)) in 1996-1997, which represent both environmental and economic concerns. Although the leaching losses were relatively small in the other seasons, they are still of great significance in African smallholder farming where fertilizer is unaffordable for most farmers. Nitrate leaching from sole manure treatments was relatively low (average of less than 20 kg N ha(-1) yr(-1)), whereas the crop uptake efficiency of mineral N fertilizer was enhanced by up to 26% when manure and mineral N fertilizer were applied in combination. The low manure (12.5 Mg ha(-1)) plus 60 kg N ha(-1) fertilizer treatment was best in terms of maintaining dry matter yield and minimizing N leaching losses.  相似文献   

9.
Various N fertilizer sources are available for lawn turf. Few field studies, however, have determined the losses of nitrate (NO(3)-N) from lawns receiving different formulations of N fertilizers. The objectives of this study were to determine the differences in NO(3)-N leaching losses among various N fertilizer sources and to ascertain when losses were most likely to occur. The field experiment was set out in a completely random design on a turf typical of the lawns in southern New England. Treatments consisted of four fertilizer sources with fast- and slow-release N formulations: (i) ammonium nitrate (AN), (ii) polymer-coated sulfur-coated urea (PCSCU), (iii) organic product, and (iv) a nonfertilized control. The experiment was conducted across three years and fertilized to supply a total of 147 kg N ha(-1) yr(-1). Percolate was collected with zero-tension lysimeters. Flow-weighted NO(3)-N concentrations were 4.6, 0.57, 0.31, and 0.18 mg L(-1) for AN, PCSCU, organic, and the control, respectively. After correcting for control losses, average annual NO(3)-N leaching losses as a percentage of N applied were 16.8% for AN, 1.7% for PCSCU, and 0.6% for organic. Results indicate that NO(3)-N leaching losses from lawn turf in southern New England occur primarily during the late fall through the early spring. To reduce the threat of NO(3)-N leaching losses, lawn turf fertilizers should be formulated with a larger percentage of slow-release N than soluble N.  相似文献   

10.
Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.  相似文献   

11.
Monitoring of nitrate leaching in sandy soils: comparison of three methods   总被引:2,自引:0,他引:2  
Proper N fertilizer and irrigation management can reduce nitrate leaching while maintaining crop yield, which is critical to enhance the sustainability of vegetable production on soils with poor water and nutrient-holding capacities. This study evaluated different methods to measure nitrate leaching in mulched drip-irrigated zucchini, pepper, and tomato production systems. Fertigation rates were 145 and 217 kg N ha(-1) for zucchini; 192 and 288 kg N ha(-1) for pepper; and 208 and 312 kg N ha(-1) for tomato. Irrigation was either applied at a fixed daily rate or based on threshold values of soil moisture sensors placed in production beds. Ceramic suction cup lysimeters, subsurface drainage lysimeters and soil cores were used to access the interactive effects of N rate and irrigation management on N leaching. Irrigation treatments and N rate interaction effects on N leaching were significant for all crops. Applying N rates in excess of standard recommendations increased N leaching by 64, 59, and 32%, respectively, for pepper, tomato, and zucchini crops. Independent of the irrigation treatment or nitrogen rate, N leaching values measured from the ceramic cup lysimeter-based N leaching values were lower than the values from the drainage lysimeter and soil coring methods. However, overall nitrate concentration patterns were similar for all methods when the nitrate concentration and leached volume were relatively low.  相似文献   

12.
Fall season fertilization is a widely recommended practice for turfgrass. Fertilizer applied in the fall, however, may be subject to substantial leaching losses. A field study was conducted in Connecticut to determine the timing effects of fall fertilization on nitrate N (NO3-N) leaching, turf color, shoot density, and root mass of a 90% Kentucky bluegrass (Poa pratensis L.), 10% creeping red fescue (Festuca rubra L.) lawn. Treatments consisted of the date of fall fertilization: 15 September, 15 October, 15 November, 15 December, or control which received no fall fertilizer. Percolate water was collected weekly with soil monolith lysimeters. Mean log(10) NO3-N concentrations in percolate were higher for fall fertilized treatments than for the control. Mean NO3-N mass collected in percolate water was linearly related to the date of fertilizer application, with higher NO3-N loss for later application dates. Applying fall fertilizer improved turf color and density but there were no differences in color or density among applications made between 15 October and 15 December. These findings suggest that the current recommendation of applying N in mid- to late November in southern New England may not be compatible with water quality goals.  相似文献   

13.
High N fertilizer and irrigation amounts applied to potato (Solanum tuberosum L.) on coarse-textured soils often result in nitrate (NO3) leaching and low recovery of applied fertilizer N. This 3-yr study compared the effects of two rates (140 and 280 kg N ha(-1)) of a single polyolefin-coated urea (PCU) application versus split applications of urea on 'Russet Burbank' potato yield and on NO3 leaching and N recovery efficiency (RE) on a loamy sand. Standard irrigation was applied in all years and excessive irrigation was used in another experiment in the third year. At the recommended rate of 280 kg N ha(-1), NO3 leaching during the growing season was 34 to 49% lower with PCU than three applications of urea. Under standard irrigation in the third year, leaching from five applications of urea (280 kg N ha(-1)) was 38% higher than PCU. Under leaching conditions in the first year (> or = 25 mm drainage water in at least one 24-h period) and excessive irrigation in the third year, PCU at 280 kg N ha(-1) improved total and marketable tuber yields by 12 to 19% compared with three applications of urea. Fertilizer N RE estimated by the difference and 15N isotope methods at the 280 kg N ha(-1) rate was, on average, higher with PCU (mean 50%) than urea (mean 43%). Fertilizer N RE values estimated by the isotope method (mean 51%) were greater than those estimated by the difference method (mean 47%). Results from this study indicate that PCU can reduce leaching and improve N recovery and tuber yield during seasons with high leaching.  相似文献   

14.
Land application of animal manures, such as pig slurry (PS), is a common practice in intensive-farming agriculture. However, this practice has a pitfall consisting of the loss of nutrients, in particular nitrate, toward water courses. The objective of this study was to evaluate nitrate leaching for three application rates of pig slurry (50, 100, and 200 Mg ha(-1)) and a control treatment of mineral fertilizer (275 kg N ha(-1)) applied to corn grown in 10 drainage lysimeters. The effects of two irrigation regimes (low vs. high irrigation efficiency) were also analyzed. In the first two irrigation events, drainage NO(3)-N concentrations as high as 145 and 69 mg L(-1) were measured in the high and moderate PS rate treatments, respectively, in the low irrigation efficiency treatments. This indicates the fast transformation of the PS ammonium into nitrate and the subsequent leaching of the transformed nitrate. Drainage NO(3)-N concentration and load increased linearly by 0.69 mg NO(3)-N L(-1) and 4.6 kg NO(3)-N ha(-1), respectively, for each 10 kg N ha(-1) applied over the minimum of 275 kg N ha(-1). An increase in irrigation efficiency did not induce a significant increase of leachate concentration and the amount of nitrate leached decreased about 65%. Application of low PS doses before sowing complemented with sidedressing N application and a good irrigation management are the key factors to reduce nitrate contamination of water courses.  相似文献   

15.
In some high-fertility, high-stocking-density grazing systems, nitrate (NO(3)) leaching can be great, and ground water NO(3)-N concentrations can exceed maximum contaminant levels. To reduce high N leaching losses and concentrations, alternative management practices need to be used. At the North Appalachian Experimental Watershed near Coshocton, OH, two management practices were studied with regard to reducing NO(3)-N concentrations in ground water. This was following a fertilized, rotational grazing management practice from which ground water NO(3)-N concentrations exceeded maximum contaminant levels. Using four small watersheds (each approximately 1 ha), rotational grazing of a grass forage without N fertilizer being applied and unfertilized grass forage removed as hay were used as alternative management practices to the previous fertilized pastures. Ground water was sampled at spring developments, which drained the watershed areas, over a 7-yr period. Peak ground water NO(3)-N concentrations before the 7-yr study period ranged from 13 to 25.5 mg L(-1). Ground water NO(3)-N concentrations progressively decreased under each watershed and both management practices. Following five years of the alternative management practices, ground water NO(3)-N concentrations ranged from 2.1 to 3.9 mg L(-1). Both grazing and haying, without N fertilizer being applied to the forage, were similarly effective in reducing the NO(3)-N levels in ground water. This research shows two management practices that can be effective in reducing high NO(3)-N concentrations resulting from high-fertility, high-stocking-density grazing systems, including an option to continue grazing.  相似文献   

16.
Nitrate (NO(3)) loss from arable systems to surface and groundwater has attracted considerable attention in recent years in Ireland. Little information exists under Irish conditions, which are wet and temperate, on the effects of winter cover crops and different tillage techniques on NO(3) leaching. This study investigated the efficacy of such practices in reducing NO(3) leaching from a spring barley (Hordeum vulgare L.) system in the Barrow River valley, southeast Ireland. The study compared the effect of two tillage systems (plow-based tillage and noninversion tillage) and two over-winter alternatives (no vegetative cover and a mustard cover crop) on soil solution NO(3) concentrations at 90 cm depth over two winter drainage seasons (2003/04 and 2004/05). Soil samples were taken and analyzed for inorganic N. During both years of the study, the use of a mustard cover crop significantly reduced NO(3) losses for the plowed and reduced cultivation treatments. Mean soil solution NO(3) concentrations were between 38 and 70% lower when a cover crop was used, and total N load lost over the winter was between 18 and 83% lower. Results from this study highlight the importance of drainage volume and winter temperatures on NO(3) concentrations in soil solution and overall N load lost. It is suggested that cover crops will be of particular value in reducing NO(3) loss in temperate regions with mild winters, where winter N mineralization is important and high winter temperatures favor a long growing season.  相似文献   

17.
Few studies have examined the water quality impact of manure use in no-tillage systems. A lysimeter study in continuous corn (Zea mays L.) was performed on Maury silt loam (fine, mixed, semiactive, mesic Typic Paleudalf) to evaluate the effect(s) of tillage (no-till [NT] and chisel-disk [CD]), nitrogen fertilizer rate (0 and 168 kg N ha(-1)), and dairy manure application timing (none, spring, fall, or fall plus spring) on NO3-N, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), and alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)acetanilide] concentrations in leachate collected at a 90-cm depth. Herbicides were highest immediately after application, declining to less than 4 mug L(-1) in about two months. Manure and manure timing by tillage interactions had little effect on leachate herbicides; rather, the data suggest that macropores rapidly transmitted atrazine and alachlor through the soil. Tillage usually did not significantly affect leachate NO3-N, but no-tillage tended to cause higher NO(3)-N. Manuring caused higher NO3-N concentrations; spring manuring had more impact than fall, but fall manure contained about 78% of the N found in spring manure. Nitrate under spring "only fertilizer" treatment exceeded 10 mg L(-1) 38% of the time, compared with 15% for spring only manure treatment. After three years, manured soil leachate NO3-N exceeded that for soil receiving only N fertilizer. Soil profile (90 cm) NO3-N after corn harvest exceeding 22 kg N ha(-1) was associated with winter leachate NO3-N greater than 10 mg N L(-1). Manure can be used effectively in conservation tillage systems on this and similar soils. Accounting for all N inputs, including previous manure applications, will be important.  相似文献   

18.
Timing of manure application affects N leaching. This 3-yr study quantified N losses from liquid manure application on two soils, a Muskellunge clay loam and a Stafford loamy sand, as affected by cropping system and timing of application. Dairy manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under continuous maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Variable rates of supplemental sidedress N fertilizer were applied as needed. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring, with supplemental N fertilizer topdressed as NH4NO3 in early spring at 75 kg N ha(-1). Drain water was sampled at least weekly when lines were flowing. Three-year FWM (flow-weighted mean) NO3-N concentrations on loamy sand soil averaged 2.5 times higher (12.7 mg L(-1)) than those on clay loam plots (5.2 mg L(-1)), and those for fall applications on maize-cropped land averaged >10 mg L(-1) on the clay loam and >20 mg L(-1) on the loamy sand. Nitrate-N concentrations among application seasons followed the pattern early fall > late fall > early spring = early + late spring. For grass, average NO3-N concentrations from manure application remained well below 10 mg L(-1). Fall manure applications on maize show high NO3-N leaching risks, especially on sandy soils, and manure applications on grass pose minimal leaching concern.  相似文献   

19.
Application of biochar has been suggested to improve water- and fertilizer-retaining capacity of agricultural soil. The objective of this study was to evaluate the effects of bagasse charcoal (sugarcane [ L.] bagasse-derived biochar) on nitrate (NO) leaching from Shimajiri Maji soil, which has low water- and fertilizer-retaining capacity. The nitrate adsorption properties of bagasse charcoal formed at five pyrolysis temperatures (400-800° C) were investigated to select the most suitable bagasse charcoal for NO adsorption. Nitrate was able to adsorb onto the bagasse charcoal formed at pyrolysis temperatures of 700 to 800° C. Nitrate adsorption by bagasse charcoal (formed at 800° C) that passed through a 2-mm sieve was in a state of nonequilibrium even at 20 h after the addition of 20 mg N L KNO solution. Measurements suggested that the saturated and unsaturated hydraulic conductivity of bagasse charcoal (800° C)-amended soils are affected by changes in soil tortuosity and porosity and the presence of meso- and micropores in the bagasse charcoal, which did not contribute to soil water transfer. In NO leaching studies using bagasse charcoal (800° C)-amended soils with different charcoal contents (0-10% [w/w]), the maximum concentration of NO in effluents from bagasse charcoal-amended soil columns was approximately 5% less than that from a nonamended soil column because of NO adsorption by bagasse charcoal (800° C). We conclude that application of bagasse charcoal (800°C) to the soil will increase the residence time of NO in the root zone of crops and provide greater opportunity for crops to absorb NO.  相似文献   

20.
Diffuse N losses from agriculture are a major cause of excessive nitrate concentrations in surface and groundwaters. Leaching through the soil is the main pathway of nitrate loss. For environmental management, an anticipatory assessment and monitoring of nitrate leaching risk by indicator (index) approaches is increasingly being used. Although complex Nitrogen Loss Indicator (NLI) approaches may provide more information, relatively simple NLIs may have advantages in many practical situations, for instance, when data availability is restricted.In this study, we tested four simple NLIs to assess their predictive properties: 1. N balance (Nbal); 2. Exchange frequency of soil solution (EF); 3. Potential nitrate concentration in leachate (PNCL); 4. A composite NLI (balance exchange frequency product, BEP). Field data of nitrate leaching from two sites in northeast Germany along with published data from several sites in Germany, Scotland and the USA were utilized.Nbal proved to be a relatively poor indicator of Nloss for the time frame of one year, whereas its prediction accuracy improved for longterm-averaged data. Correlation between calculated EF and experimental data was high for single-year data, whereas it was lower for longterm-averaged data. PNCL gave no significant correlations with measured data and high deviations. The results for BEP were intermediate between those for Nbal and EF.The results suggest that the use of EF is appropriate for assessing N leaching loss for single-year data and specific sites with comparable N input and management practices, whereas for longterm-averaged data, Nbal is better suited. BEP is an appropriate NLI both for single year and longterm data which accounts for source and transport factors and thus is more flexible than source-based Nbal and transport-based EF. However, such simplified NLIs have limitations: 1. The N cycle is not covered completely; 2. Processes in the vadose zone and the aquifer are neglected, 3. Assessment of management factors is restricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号