首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
镍和钴都是人体所必需的微量元素,但负荷过大则有害。1933年Bridge首先报道了镍污染对镍精炼工所造成鼻癌和肺癌的危害。随着工业的发展,镍和钴的应用日益增多,常造成环境污染,对居民健康亦能引起多方面的危害。大气中镍、钴污染主要经呼吸道进入人体,并迅速分布于全身各器官,且有一定的蓄积性。故选择发镍和发钴含量作为指标。我们于1988年5至6月对成都市某厂周观察区和对照区的中、小学生进行了发镍和发钴含量测定,以探索大气中镍,钴污染与人体负荷水平的关系。  相似文献   

2.
以砾石为填料采用生物滤池法和以纤维束为填料采用生物接触氧化法,分别预处理沈抚灌渠污水。试验结果表明,在水力停留时间在3.5h,控制气水比分别为5:1和4:1的反应条件下,砾石填料对COD和NH3-N的平均去除率分别为53.9%和53.6%;纤维束软填料对COD和NH3-N的平均去除率分别为55.7%和47.7%。前者对COD和NH3-N的处理效果都达到了预定要求,而后者对NH3-N的处理效果没有达到要求。  相似文献   

3.
唐奕  黄健盛  杨皓洁  李翔  杨平 《四川环境》2009,28(6):41-44,49
开发一种改进型生物转盘处理生活污水,将盘片改为转笼状,并向其中加入颗粒活性发作为载体,研究该系统对生活污水的处理效果。结果表明:在转盘转速为15rpm和HRT分别为10h、8h、6h、4.5h情况下,进水COD平均浓度约为223mg/L,出水COD平均浓度分别为15.6、17.9、23.4、28.2mg/L,平均去除率为93.0%、91.9%、89.5%、86.6%;进水NH3-N平均浓度约为22mg/L,出水NH3-N平均浓度分别为0.32、1.13、2.30、5.71mg/L,平均去除率为98.5%、94.8%、89.7%、74.6%。  相似文献   

4.
本试验采用二乙基二硫代氨基甲酸钠(DDTC)作为螯合试剂,甲基异丁酮(MIBK)作为萃取溶剂,于酒石酸铵介质中,在pH8—8.5的条件下定量萃取,并在同一有机相中用空气——乙炔火焰原子吸收法测定天然水中PPb级的铜、铅、锌、镉、铁、钴、镍、锰等金属元素。同一水样10次分析的精密度,以标准偏差表示为:Cu<15%,Zn<5%,Cd<20%,Fe<3%,Co<25%,Ni<30%。当标准添加Cu、Zn、Cd、Ni20PPb,Fe、Pb100PPb时,各元素的回收率在80—110%之间。同一水样,使用本方法与离子交换——原子吸收法对照分析,得到了较  相似文献   

5.
过去对镍、钴的一些测定方法,因操作繁锁、消耗有机溶剂量大,或需昂贵的仪器设备,在使用上受到一定的限制。为此,本文在段士斌研究的基础上,结合极谱测尿镍的方法,提出了人发中镍和钴的催化导数极谱连绩测定法。  相似文献   

6.
采用SBR系统处理城市垃圾渗滤液,研究了不同C/N、130和MLSS对同时硝化反硝化脱氮效率的影响。结果表明:总氮去除率随着C/N、MLSS升高而上升;DO越低,总氮去除率越高;当进水CODCr与NH3-N浓度分别为420mg/L和112mg/L,DO和MLSS分别为1.5mg/L和5016mg/L时,CODCr、NH3-N及TN去除率分别为81.54%、96.57%和46.66%。根据试验结果,对同时硝化反硝化一个代表周期作了分析。  相似文献   

7.
ICP-AES法测定土壤中铜、钒、镍和铬   总被引:6,自引:1,他引:5  
在HNO3-H2O2-HF体系中微波消解土壤样品,用电感耦合等离子发射光谱法测定土壤中的铜、钒、镍、铬,设定了最佳的样品处理条件和仪器条件,该方法测定铜、钒、镍、铬检出限分别为0.01mg/kg、0.05mg/kg、0.5mg/kg、0.10mg/kg,回收率为98.4%~102.0%,方法简便、准确。  相似文献   

8.
以萍乡地区具有典型代表性的城郊农村为例,对城郊农村土壤重金属的含量水平、分布特征进行研究分析。结果表明,萍乡地区城郊农村土壤中镉、汞、砷、铜、铅、铬、锌、镍、硒和钴的平均含量均未超过国家土壤环境质量二级标准,但汞、镍、钴的含量均超过了江西省土壤重金属相应元素的背景值,其中尤以汞最为显著。从研究区域的空间位置来看,居住区、农田区、蔬菜种植区的汞、镍、钴含量普遍偏高。  相似文献   

9.
催化铁内电解法预处理对后续生物过程的影响   总被引:3,自引:0,他引:3  
本文研究了催化铁内电解预处理对后续生物反应器中活性污泥以及微生物的影响。经催化铁内电解处理后的污水带有大量的Fe^2+和Fe^3+进入生物处理阶段,EPS中蛋白质与多糖的比值提高,活性污泥的沉降性能也得以改善,沉降速度比对照组提高4.2倍;Fe^3+使微生物物种多样性增加,与EPS的结合形式,改善了菌体之间的连接,增强了污泥对污染物的吸附和絮凝,EPS中吸咐污染物比对照组多约12.5mgTOC/gVSS。  相似文献   

10.
《环境教育》2013,(6):99-99
江西江锂科技有限公司成立于2007年5月,坐落于江西省分宜县工业园,现有员工1600余名,占地3000余亩,主要从事锂、镍、钴、铜、锌等有色金属产品的研发、生产及经营,是"中国制造业500强"企业,国家高新技术企业,江西省"十百千万亿"重点企业,江西省最具影响力企业。公司经过六年的不懈努力,现已形成了年产3万吨电解镍、1万吨镍丝镍带、60万吨硫酸、20万吨铁精粉、50万吨高镁矿以及12万  相似文献   

11.
Bentonite clay has been used for the adsorption of Fe(II) from aqueous solutions over a concentration range of 80-200 mg/l, shaking time of 1-60 min, adsorbent dosage from 0.02 to 2 g and pH of 3. The process of uptake follows both the Langmuir and Freundlich isotherm models and also the first-order kinetics. The maximum removal (>98%) was observed at pH of 3 with initial concentration of 100 mg/l and 0.5 g of bentonite. The efficiency of Fe(II) removal was also tested using wastewater from a galvanized pipe manufacturing industry. More than 90% of Fe(II) can be effectively removed from the wastewater by using 2.0 g of the bentonite. The effect of cations (i.e. zinc, manganese, lead, cadmium, nickel, cobalt, chromium and copper) on the removal of Fe(II) was studied in the concentration range of 10-500 mg/l. All the added cations reduced the adsorption of Fe(II) at high concentrations except Zn. Column studies have also been carried out using a certain concentration of wastewater. More than 99% recovery has been achieved by using 5 g of the bentonite with 3M nitric acid solution.  相似文献   

12.
This study was conducted to investigate the effectiveness of a continuous free surface flow wetland for removal of heavy metals from industrial wastewater, in Gadoon Amazai Industrial Estate (GAIE), Swabi, Pakistan. Industrial wastewater samples were collected from the in-let, out-let and all cells of the constructed wetland (CW) and analyzed for heavy metals such as lead (Pb), cadmium (Cd), iron (Fe), nickel (Ni), chromium (Cr) and copper (Cu) using standard methods. Similarly, samples of aquatic macrophytes and sediments were also analyzed for selected heavy metals. Results indicate that the removal efficiencies of the CW for Pb, Cd, Fe, Ni, Cr, and Cu were 50%, 91.9%, 74.1%, 40.9%, 89%, and 48.3%, respectively. Furthermore, the performance of the CW was efficient enough to remove the heavy metals, particularly Cd, Fe, and Cu, from the industrial wastewater fed to it. However, it is suggested that the metal removal efficiency of the CW can be further enhanced by using proper management of vegetation and area expansion of the present CW.  相似文献   

13.
Soils in Technical Area 16 at Los Alamos National Laboratory (LANL) are severely contaminated from past explosives testing and research. Our objective was to conduct laboratory and pilot-scale experiments to determine if zerovalent iron (Fe(0)) could effectively transform RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in two LANL soils that differed in physicochemical properties (Soils A and B). Laboratory tests indicated that Soil A was highly alkaline and needed to be acidified [with H2SO4, Al2(SO4)3, or CH3COOH] before Fe(0) could transform RDX. Pilot-scale experiments were performed by mixing Fe(0) and contaminated soil (70 kg), and acidifying amendments with a high-speed mixer that was a one-sixth replica of a field-scale unit. Soils were kept unsaturated (soil water content = 0.30-0.34 kg kg(-1)) and sampled with time (0-120 d). While adding CH3COOH improved the effectiveness of Fe(0) to remove RDX in Soil A (98% destruction), CH3COOH had a negative effect in Soil B. We believe that this difference is a result of high concentrations of organic matter and Ba. Adding CH3COOH to Soil B lowered pH and facilitated Ba release from BaSO4 or BaCO3, which decreased Fe(0) performance by promoting flocculation of humic material on the iron. Despite problems encountered with CH3COOH, pilot-scale treatment of Soil B (12 100 mg RDX kg(-1)) with Fe(0) or Fe(0) + Al2(SO4)3 showed high RDX destruction (96-98%). This indicates that RDX-contaminated soil can be remediated at the field scale with Fe(0) and soil-specific problems (i.e., alkalinity, high organic matter or Ba) can be overcome by adjustments to the Fe(0) treatment.  相似文献   

14.
Pesticide spills are common occurrences at agricultural cooperatives and farmsteads. When inadvertent spills occur, chemicals normally beneficial can become point sources of ground and surface water contamination. We report results from a field trial where approximately 765 m3 of soil from a metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] spill site was treated with zerovalent iron (Fe0). Preliminary laboratory experiments confirmed metolachlor dechlorination by Fe0 in aqueous solution and that this process could be accelerated by adding appropriate proportions of Al2(SO4)3 or acetic acid (CH3COOH). The field project was initiated by moving the stockpiled, contaminated soil into windrows using common earth-moving equipment. The soil was then mixed with water (0.35-0.40 kg H2O kg(-1)) and various combinations of 5% Fe0 (w/w),2% Al2(SO4)3 (w/w), and 0.5% acetic acid (v/w). Windrows were covered with clear plastic and incubated without additional mixing for 90 d. Approximately every 14 d, the plastic sheeting was removed for soil sampling and the surface of the windrows rewetted. Metolachlor concentrations were significantly reduced and varied among treatments. The addition of Fe0 alone decreased metolachlor concentration from 1789 to 504 mg kg(-1) within 90 d, whereas adding Fe0 with Al2(SO4)3 and CH3COOH decreased the concentration from 1402 to 13 mg kg(-1). These results provide evidence that zerovalent iron can be used for on-site, field-scale treatment of pesticide-contaminated soil.  相似文献   

15.
Annual production of oil-fired fly ash in Taiwan is approximately 43 000 tons, of this approximately 13 000 tons is electrostatically precipitated, the rest is cyclonically collected. Structurewise, both consist of porous unburned carbon, vanadium and nickel oxide, and water-soluble sulfate. Electrostatically precipitated fly ash contains large amounts of ammonium sulfate. If these ashes are not properly disposed of, they become environmental problems, such as dusting, leakage of acid liquids, and pollution with heavy metals. This paper discusses the experimental extraction of vanadium and nickel from oil-fired fly ash. The results indicated that leaching of oil-fired fly ash in 0.5 N of sulfuric acid led to an extraction of 65% vanadium, 60% nickel, and 42% iron, along with an increase in the concentration of sulfuric acid. When leached in 2 N sodium hydroxide solution, the extraction of vanadium was 80%, and the extraction of nickel was negligible. If leached in an ammonia water, the extraction of nickel increased, along with an increase in the concentration of ammonia in water. When leached with 4 N ammonia water, the extraction of nickel was 60%, the extraction of vanadium was less than that obtainable from leaching in sulfuric acid solution or in sodium hydroxide solution. If electrostatically precipitated fly ash was leached in a solution of 0.25 N ammonia water and 2 N ammonium sulfate, it would yield an extraction of 60% nickel and 8% vanadium—leading to a selective extraction of nickel. This study has established an extraction flowsheet in which fly ash was first leached in an ammoniacal solution containing ammonium sulfate to recover nickel. The leached residues were then leached in an alkaline solution to recover vanadium.  相似文献   

16.
Solvent extraction of iron(III) from actual sulphate waste pickle liquor was investigated using trialkylphosphine oxide diluted with kerosene. The waste pickle liquor was procured from a local company which deals with the manufacturing of pipes and tubes made of iron and steel. Various parameters were studied to optimise a suitable condition for the maximum extraction of iron. The composition of the aqueous feed used in the experiment was 60.88 g/L Fe(III), 53 g/L acid with traces of Cu, Ni and Co. An ambient extraction at 30 °C yielded acceptable kinetics and loading efficiency for 40% trialkylphosphine oxide with a saturated loading capacity of 51.85 g/L in four contacts at O/A ratio of 1/1 in a multiple contact mode. Iron from the loaded organic was stripped using various strippants such as distilled water, H2SO4 and oxalic acid. Since only 32% of loaded Fe could be stripped with 2 M H2SO4 in five contacts, further stripping was done with 5% oxalic acid which showed a very promising result. It was found that almost 100% of Fe(III) could be stripped out with 5% oxalic acid at O/A of 1/1 in five contacts.  相似文献   

17.
Samples of some popular brands of canned sardines in soybean oil in the Nigerian market were analyzed for levels of cadmium, lead, iron, cobalt, nickel, manganese, chromium, copper and zinc after wet digestion with acids by graphite furnace atomic absorption spectrophotometry. The mean concentrations for the metals in the different brands were as follows: cadmium 0.11–0.26 μg/g, iron 8.04–48.18 μg/g, cobalt 0.01–7.23 μg/g, nickel 0.04–3.26 μg/g, manganese 0.64–1.37 μg/g, chromium 0.01–0.10 μg/g, copper 0.10 μg/g and zinc 0.09–4.63 μg/g. Significant differences were observed in the heavy metal levels in the different brands of canned sardines except for copper and chromium. Cadmium, nickel and lead exceeded statutory safe limits.  相似文献   

18.
吹脱法应用于低浓度废水处理,可有效去除水中的溶解性气体和挥发性油类,同时还可增加水中的溶解氧,为进一步的生物处理创造有利条件。利用现场动态实验对影响除油的因素进行了试验研究,确定最佳处理条件为:气水比5∶1、淋水密度5.0m3/(m2·h),实验表明在最佳运行状态下,吹脱法对地下水中油类物质的去除率能够达到50%,还能去除水中的铁、氨氮等污染物质,是一种非常有效的预处理方法。为了弄清目前炼油厂废水的处理水平,通过对三个典型炼油废水处理厂的调查,分别对其处理流程、处理效果、采用的主要处理药剂及处理工艺进行了介绍,分析了每套处理设施的长处以及与先进设施对比存在的不足。  相似文献   

19.
Pesticide-contaminated soil may require remediation to mitigate ground and surface water contamination. We determined the effectiveness of zerovalent iron (Fe(0)) to dechlorinate metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl ethyl) acetamide] in the presence of aluminum and iron salts. By treating aqueous solutions of metolachlor with Fe(0), we found destruction kinetics were greatly enhanced when Al, Fe(II), or Fe(II) salts were added, with the following order of destruction kinetics observed: Al2(SO4)3 > AlCl3 > Fe2(SO4)3 > FeCl3. A common observation was the formation of green rusts, mixed Fe(II)-Fe(III) hydroxides with interlayer anions that impart a greenish-blue color. Central to the mechanism responsible for enhanced metolachlor loss may be the role these salts play in facilitating Fe(II) release. By tracking Al and Fe(II) in a Fe(0) + Al2(SO4)3 treatment of metolachlor, we observed that Al was readily sorbed by the corroding iron with a corresponding release of Fe(II). The manufacturing process used to produce the Fe(0) also profoundly affected destruction rates. Metolachlor destruction rates with salt-amended Fe(0) were greater with annealed iron (indirectly heated under a reducing atmosphere) than unannealed iron. Moreover, the optimum pH for metolachlor dechlorination in water and soil differed between iron sources (pH 3 for unannealed, pH 5 for annealed). Our results indicate that metolachlor destruction by Fe(0) treatment may be enhanced by adding Fe or Al salts and creating pH and redox conditions favoring the formation of green rusts.  相似文献   

20.
Removal of selenate from water by zerovalent iron   总被引:1,自引:0,他引:1  
Zerovalent iron (ZVI) has been widely used in the removal of environmental contaminants from water. In this study, ZVI was used to remove selenate [Se(VI)] at a level of 1000 microg L(-1) in the presence of varying concentrations of Cl-, SO(2-)4, NO(-)3, HCO(-)3, and PO(3-)4. Results showed that Se(VI) was rapidly removed during the corrosion of ZVI to iron oxyhydroxides (Fe(OH)). During the 16 h of the experiments, 100 and 56% of the added Se(VI) was removed in 10 mM Cl- and SO(2-)4 solutions under a closed contained system, respectively. Under an open condition, 100 and 93% of the added Se(VI) were removed in the Cl- and SO(2-)4 solutions, respectively. Analysis of Se species in ZVI-Fe(OH) revealed that selenite [Se(IV)] and nonextractable Se increased during the first 2 to 4 h of reaction, with a decrease of Se(VI) in the Cl- experiment and no detection of Se(VI) in the SO(2-)4 experiment. Two mechanisms can be attributed to the rapid removal of Se(VI) from the solutions. One is the reduction of Se(VI) to Se(IV), followed by rapid adsorption of Se(IV) to Fe(OH). The other is the adsorption of Se(VI) directly to Fe(OH), followed by its reduction to Se(IV). The results also show that there was little effect on Se(VI) removal in the presence of Cl- (5, 50, and 100 mM), NO(-)3 (1, 5, and 10 mM), SO(2-)4 (5 mM), HCO(-)3 (1 and 5 mM), or PO(3-)4 (1 mM) and only a slight effect in the presence of SO(2-)4 (50 and 100 mM), HCO(-)3 (10 mM), and PO(3-)4 (5 mM) during a 2-d experiment, whereas 10 mM PO(3-)4 significantly inhibited Se(VI) removal. This work suggests that ZVI may be an effective agent to remove Se from Se-contaminated agricultural drainage water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号