首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Organisms in natural habitats participate in complex ecological interactions that include competition, predation, and foraging. Under natural aquatic environmental conditions, amphibian larvae can simultaneously receive multiple signals from conspecifics, predators, and prey, implying that predator-induced morphological defenses can occur in prey and that prey-induced offensive morphological traits may develop in predators. Although multiple adaptive plasticity, such as inducible defenses and inducible offensive traits, can be expected to have not only ecological but also evolutionary implications, few empirical studies report on species having such plasticity. The broad-headed larval morph of Hynobius retardatus, which is induced by crowding with heterospecific anuran (Rana pirica) larvae, is a representative example of prey-induced polyphenism. The morph is one of two distinct morphs that have been identified in this species; the other is the typical morph. In this paper, we report that typical larval morphs of Hynobius can respond rapidly to a predatory environment and show conspicuous predator-induced plasticity of larval tail depth, but that broad-headed morphs cannot respond similarly to a predation threat. Our findings support the hypothesis that induction or maintenance of adaptive plasticity (e.g., predator-induced polyphenism) trades off against other adaptive plastic responses (e.g., prey-induced polyphenism). For a species to retain both an ability to forage for larger prey and an ability to more effectively resist predation makes sense in light of the range of environments that many salamander larvae experience in nature. Our results suggest that the salamander larvae clearly discriminate between cues from prey and those from predators and accurately respond to each cue; that is, they adjust their phenotype to the current environment.  相似文献   

2.
Hoverman JT  Relyea RA 《Ecology》2007,88(3):693-705
Inducible defenses allow prey to modulate their phenotypic responses to the level of predation risk in the environment and reduce the cost of constitutive defenses. Inherent in this statement is that prey must alter their phenotypes during development in order to form these defenses. This has lead many ecologists and evolutionary biologists to call for studies that examine developmental plasticity to provide insights into the importance of development in controlling the trajectories of trait formation, the integration of phenotypes over ontogeny, and the establishment of developmental windows for trait formation and reversal. By moving away from studies that focus on a single point in development, we can obtain a more complete understanding of the phenotypic decisions and limitations of prey. We exposed freshwater snails (Helisoma trivolvis) to environments in which predatory water bugs (Belostoma flumineum) were always absent, always present, or added and removed at different points in development. We discovered that snails formed morphological defenses against water bugs. Importantly, after the initial induction of defenses, snails showed similar developmental trajectories as snails reared without predators. Further, the snails possessed wide developmental windows for inducible defenses that extended past sexual maturity. However, being induced later in development appeared to have an associated cost (i.e., decreased shell thickness) that was not found when water bugs were always present. This epiphenotype (i.e., new shell formation as an extension of the current shell) suggests that resource limitation plays an important role in responses to temporal variation in predation risk and may have critical ecological costs that limit the benefits of the inducible defense. Lastly, the ability of snails to completely reverse their defenses was limited to early in ontogeny due to the constraints associated with modular growth of shell material. In sum, we demonstrate that taking a developmental perspective is extremely valuable for understanding the ecology of inducible defenses.  相似文献   

3.
McCauley SJ  Rowe L  Fortin MJ 《Ecology》2011,92(11):2043-2048
Nonconsumptive predator effects are widespread and include plasticity as well as general stress responses. Caged predators are often used to estimate nonconsumptive effects, and numerous studies have focused on the larval stages of animals with complex life cycles. However, few of these studies test whether nonconsumptive predator effects, including stress responses, are exclusively sublethal. Nor have they assessed whether these effects extend beyond the larval stage, affecting success during stressful life-history transitions such as metamorphosis. We conducted experiments with larvae of a dragonfly (Leucorrhinia intacta) that exhibits predator-induced plasticity to assess whether the mere presence of predators affects larval survivorship, metamorphosis, and adult body size. Larvae exposed to caged predators with no ability to attack them had higher levels of mortality. In the second experiment, larvae reared with caged predators had higher rates of metamorphic failure, but there was no effect on adult body size. Our results suggest that stress responses induced by exposure to predator cues increase the vulnerability of prey to other mortality factors, and that mere exposure to predators can result in significant increases in mortality.  相似文献   

4.
Most marine fishes undergo a pelagic larval phase, the early life history stage that is often associated with a high rate of mortality due to starvation and predation. We present the first study that examines the effects of prey swimming behavior on prey-capture kinematics in marine fish larvae. Using a digital high-speed video camera, we recorded the swimming velocity of zooplankton prey (Artemia franciscana, Brachionus rotundiformis, a ciliate species, and two species of copepods) and the feeding behavior of red drum (Sciaenops ocellatus) larvae. From the video recordings we measured: (1) zooplankton swimming velocity in the absence of a red drum larva; (2) zooplankton swimming velocity in the presence of a red drum larva; and (3) the excursion and timing of key kinematic events during prey capture in red drum larvae. Two-way ANOVA revealed that: (1) swimming velocity varied among zooplankton prey; and (2) all zooplankton prey, except rotifers and ciliates, increased their swimming velocity in the presence of a red drum larva. The kinematics of prey capture differed between two developmental stages in S. ocellatus larvae. Hyoid-stage larvae (3–14 days old) fed on slow swimming B. rotundiformis (rotifers) while hyoid-opercular stage larvae (15 days and older) ate fast moving A. franciscana. Hyoid-opercular stage red drum larvae had a larger gape, hyoid depression and lower jaw angle, and a longer gape cycle duration relative to their hyoid-stage conspecifics. Interestingly, the feeding repertoire within either stage of red drum development was not affected by prey type. Knowledge of the direct relationship between fish larvae and their prey aids in our understanding of optimal foraging strategies and of the sources of mortality in marine fish larvae.  相似文献   

5.
D. S. Stoner 《Marine Biology》1994,121(2):319-326
The rate at which larvae successfully recruit into communities of marine benthic invertebrates is partially dependent upon how well larvae avoid benthic predators and settle on appropriate substrata. Therefore, to be able to predict recruitment success, information is needed on how larvae search for settlement sites, whether larvae preferentially settle on certain substrata, and the extent to which there are adequate cues for larvae to find these substrata. This article describes how larvae of the colonial ascidian Diplosoma similis find settlement sites on a coral reef. Direct field observations of larval settlement were made on a fringing reef in Kaneohe Bay, Oahu, Hawaii, between September 1985 and April 1986. A comparison of the substrata that larvae contacted prior to settlement relative to the percentage cover of these substrata on the study reef suggests that larvae are using a non-contact mode of substratum identification to locate suitable settlement sites. This mode of substratum identification allowed 74% of larvae to evade predation by benthic organisms who would otherwise have eaten larvae if they had been contacted. Of those larvae that evaded predation, 88% subsequently settled on the same two substrata upon which most adults are found (dead coral or the green alga Dictyosphaeria cavernosa). This pattern of settlement was probably a result of active selection, since the two substrata cover only 14.4% of the reef's surface and currents had little effect on the direction in which larvae swam. An important contributing factor to the high success rate of larval settlement on suitable substrata was the lack of any temporal decay in substratum preference. It is concluded that for Diplosoma similis larval supply is a sufficient predictor of larval settlement rate. However, for marine invertebrates whose larvae are passively dispersed and exhibit a greater temporal decay in substratum preference, larval settlement should generally have a greater dependency on spatial variation in the abundance of benthic predators and suitable substrata.  相似文献   

6.
K. Oishi  M. Saigusa 《Marine Biology》1999,133(2):237-247
Temporal fluctuations of abundance (or emergence) in small benthic and planktonic crustaceans were studied in shallow subtidal waters (1.5 to 3.5 m in tide height). The abundances were more or less rhythmic, and showed wide diversity ranging from very clear nocturnal patterns to patterns in sychrony with the tidal cycle alone. These abundance patterns were classified into categories relating to the degree of synchrony with day/night and tidal cycles. Nocturnal patterns were especially strong in benthic crustaceans, which would be inactive during the daytime, being attached to algae and stones or disappearing into rock crevices, and actively swim in the water at night. Mysis larvae also showed a clear nocturnal pattern. Their lifestyle might be similar to that of many benthic animals. Other planktonic crustaceans drifting in the water showed weak nocturnal patterns. In some planktonic crustaceans (e.g., Calanoida), the ratio of abundance in the surface and bottom samples was reversed between day and night. Their pattern might be a manifestation of weak diel vertical movement between day and night. Furthermore, most patterns of zooplankton and benthos were modified in synchrony with tides to various degrees. Small crustaceans may respond to changes of hydrologic variables fluctuating with the tides, which may exogenously produce a weak tidal component in their emergence patterns. Received: 12 January 1998 / Accepted: 29 August 1998  相似文献   

7.
Diel changes in the composition of crustacean zooplankton and the diets of fish predators from an intertidal eelgrass flat were monitored concurrently. The zooplankton is characterized by two major components. The obligate zooplankters (holoplanktonic calanoid copepods and meroplanktonic decapod larvae) appear to exhibit vertical migration, being present in higher densities near the surface of the water column at night. The facultative zooplankton (amphipods and ostracods) are benthic during the day, but move up into the water column at night. Planktivorous midwaterdwelling fish consume calanoid copepods and decapod larvae during the day and cease feeding or switch their diet to amphipods at night. Benthic-dwelling fish consume some amphipods during both day and night. The factors important in prey selection by fish and the functional significance of vertical migration in both components of the zooplankton are discussed in the light of the changing patterns of fish predation.This paper is Publication No. 183 in the Ministry for Conservation of Victoria, Environmental Studies Series.  相似文献   

8.
Benard MF 《Ecology》2006,87(2):340-346
In many organisms, specific predator species induce defensive phenotypes that are qualitatively different from the phenotypes induced by other predator species. This differential induction implies that there is no optimal phenotype that works best against all predators. However, few studies have actually tested the hypothesis that each predator-induced phenotype provides the highest survival rate in encounters with the predator that induced that phenotype. In this experiment, I reared Pacific treefrog (Pseudacris regilla) larvae with chemical cues from two different predators (bluegill sunfish and predaceous diving-beetle larvae), and without predator cues. The Pacific treefrog larvae in the three treatments differed in their morphology and foraging behavior. I then exposed tadpoles from each treatment to free-foraging predaceous diving beetles and bluegill sunfish. Tadpoles survived best when exposed to the predator whose cues they were reared with, and worst when exposed to the other predator. In both predator environments, the tadpoles reared in the nonpredator control treatment had intermediate survival between the two predator-induced groups. Thus, there is no generalized "antipredator" response to these predators; rather, there was a clear trade-off in survival abilities between the predators.  相似文献   

9.
The dynamic quantitative balance between prey and predator invertebrate species inhabiting the same shallow-shelf (sublittoral level bottom) benthic communities was first discussed by Thorson (1953). Thorson considered the exact timing of larval settlement of prey and predator species possessing pelagic development and temporal supression of the adult predators' feeding activities during reproduction at the time of the preys' settlement to constitute the major factors which facilitate survival of the prey species in such communities. However, information obtained demonstrates that Thorson's “mechanism of balance between predator and prey species of benthic communities” is not always effective in securing survival from predation not only of the prey's spat but even sometimes of the predator's spat also. Because of this, the “mechanism” can not be rated as universally effective in all situations. Analysis of the data so far published demonstrates that, in marine benthic communities, especially in shallow-shelf waters, it is not uncommon for gametes, larvae, or early juveniles of different prey species to pass alive through suspension (filter)-feeding and deposit-feeding adult invertebrates preying on them. Sometimes development can even continue after excretion by predators. The hypothesis of Voskresensky (1948) and Goycher (1949) of the importance of this phenomenon for the maintenance and recruitment of the mussel Mytilus edulis and other filter-feeding lamellibranchs of nearshore waters preying on their own and other lamellibranch pelagic larvae must be rejected on the basis of accumulated data on their feeding and general biology and on the adverse influence of the mucous of their faecal pellets and pseudofaeces on the larvae excreted by them alive. The data considered here demonstrate that, although the passing alive of larvae and spat of benthic invertebrates through benthic predators is not uncommon in shallow-shelf bottom-communities, it plays no important role in the processes of maintenance and recruitment of the species and communities involved nor of the marine benthos as a whole. The actual ecological significance of predation on pelagic larvae and bottom spat of benthic invertebrate prey species by all three main trophic groups of marine benthos (suspension or filter-feeders, deposit-feeders, carnivores) and its importance to predator-prey dynamics in marine benthic communities remains open to debate until more reliable quantitative data become available.  相似文献   

10.
Survival, developmental and consumption rate (Artemia nauplii ingested per day) as well as predation efficiency (ingested per available Artemia nauplii) were studied during the larval development of the shallow-water burrowing thalassinid Callianassa tyrrhena (Petagna, 1792), which exhibits an abbreviated type of development with only two zoeal stages and a megalopa. The larvae, hatched from berried females from S. Euboikos Bay (Aegean Sea, Greece), were reared at 10 temperature–food density combinations (19 and 24 °C; 0, 2, 4, 8 and 16 Artemia nauplii d−1). Enhanced starvation resistance was evident: 92 and 58% of starved zoeas I molted to zoea II, while metamorphosis to megalopa was achieved by 76 and 42% of the hatched zoeas at 19 and 24 °C, respectively. The duration of both zoeal stages was affected by temperature, food density and their interaction. Nevertheless, starvation showed different effects at the two temperatures: compared to the fed shrimp, the starved zoeae exhibited accelerated development at 19 °C (8.4 d) but delayed metamorphosis at 24 °C (5.9 d). On the other hand, both zoeal stages were able to consume food at an increased rate as food density and temperature increased. Predation efficiency also increased with temperature, but never exceeded 0.6. Facultative lecithotrophy, more pronounced during the first zoeal stage of C.tyrrhena, can be regarded as an adaptation of a species whose larvae can respond physiologically to the different temperature–food density combinations encountered in the wide geographical range of their natural habitat. Received: 28 February 1998 / Accepted: 21 October 1998  相似文献   

11.
Dawn Vaughn 《Marine Biology》2010,157(6):1301-1312
Predator-induced cloning (asexual reproduction), with reduced size as consequence of cloning, suggests a novel adaptation to the threat of predation. Although cloning is a common reproductive strategy of many plants and animals, cloning in response to stimuli from predators has, at present, been documented only in the larvae (plutei) of the sand dollar, Dendraster excentricus. Other studies report larval cloning in echinoderms under optimal conditions of food and temperature. A burst of asexuality should be favored when environmental conditions are conducive to growth, but it is less clear that cloning is advantageous when conditions indicate risk from predators. This study tested the hypothesis that the small size of predator-induced clones reduces vulnerability during encounters with planktivorous fish. Successful cloning was inferred from an increase in larval density, a reduction in larval size and stage, and some direct observations of budding. All clones were smaller than uncloned sibling larvae, suggesting an advantage against visual predators. Pair-wise predation trials demonstrated that planktivorous fish ate more uncloned sibling plutei than small clones. These results offer a new ecological context for asexual reproduction: rapid size reduction as a defense. If the identifiable cues for cloning in echinoderm larvae (food and predators) are linked in nature, then larval cloning may be a response to a single ecological scenario rather than two separate and unrelated conditions.  相似文献   

12.
Most species of benthic marine invertebrates have a single mode of larval development. Poecilogonous species are those that produce more than one type of larval offspring. Reports of variable development within one species, especially in combination with widely differing ecological habitat, are frequently attributed to cryptic species. The spionid polychaete Boccardia proboscidea Hartman, 1940 exhibits development that varies both within a single brood and among broods produced by different females. Some females have planktotrophic development and produce many small larvae with a 2 week planktonic period before metamorphosis. Other females produce broods containing both planktotrophic larvae as well as nurse-egg-ingesting (adelphophagic) offspring that hatch as juveniles. Molecular analysis (RAPD-PCR) showed that a significant proportion of genetic variance is attributable to geographic origin, and not to developmental type. Adults of both developmental types showed no consistent differences in taxonomically important features (e.g. type and arrangement of chaetae, modified fifth setiger, caruncle, branchiae, pygidium) when examined with SEM. These data support the hypothesis that developmental variability in this species is a case of poecilogony, and is not attributable to cryptic species. Received: 21 April 1998 / Accepted: 20 April 1999  相似文献   

13.
The importance life history plays in understanding population dynamics and the functional roles of species for predicting climate change scenarios are well established. Yet, in the marine environment, the complete life history is unknown for many species, especially the link between morphologically and ecologically distinct planktonic larvae, and their corresponding benthic adult forms. Integration of meroplankton abundance, benthic adult species, larval morphology, and molecular data was employed to unravel the complete life history of Polygordius, a dominant polychaete in sandy shelf sediments of the Mid-Atlantic Bight. Polygordius species are unusual, having two distinct planktonic larval forms: an exolarva and an endolarva. Extensive sampling in the southern Mid-Atlantic Bight with careful preservation of meroplankton (2006–2007) revealed the identity of multiple stages of exo- and endolarvae, and their spatial, seasonal, and vertical distribution. Molecular and morphological evidence indicated exolarvae are Polygordius jouinae and endolarva are an undescribed species. Structure and development of these larvae differed greatly. P. jouinae exolarvae were found off Delaware Bay to North Carolina. At some stations, they were abundant, with densities up to 4,013 m?3, comprising >90 % of the total meroplankton. Exolarvae spent up to a month in the plankton starting in March/May depending on year, settlement began in July when larvae were at least 2 mm in length, and by October were no longer observed in the plankton. These findings are consistent with the distribution patterns and life cycle known for adults. This is the first report of endolarvae north of Cape Hatteras.  相似文献   

14.
For marine invertebrates, larval developmental mode is inseparably linked to the nutritional content of the egg. Within the asterinid family of sea stars there have been multiple, independent, evolutionary transitions to lecithotrophic development from the ancestral, planktotrophic state. To investigate the evolution of maternal investment and development within the Asterinidae, we quantified individual lipid classes and total protein for eggs and larval stages of closely related species representing three developmental modes (planktotrophy, planktonic lecithotrophy and benthic lecithotrophy). Within species, maternal provisioning differed between females indicating that egg quality varied with parentage. Maternal investment was related to egg size but, after correcting for egg volume, we identified two major oogenic modifications associated with the evolution of lecithotrophic development: (1) a reduction in protein deposition that probably reflects the reduced structural requirements of nonfeeding larvae, (2) an increase in deposition of a single class of energetic lipid, triglyceride (TG). The exception was Parvulastra exigua, which has benthic, lecithotrophic development and lays eggs with a lipid to protein ratio close to that of planktotrophs. This oogenic strategy may provide P. exigua larvae with a protein “weight-belt” that assists in maintaining a benthic existence. Asterinids with planktotrophic development used a significant portion of egg TG to build a feeding bipinnaria larva. For Meridiastra mortenseni, female-specific differences in egg TG were still evident at the bipinnaria stage indicating that egg quality has flow-on effects for larval fitness. In lecithotrophic asterinids, TG reserves were not depleted in development to the larval stage whereas protein stores may help fuel early larval development. Available data indicate that there may be two evolutionarily stable egg lipid profiles for free-spawning, temperate echinoderms.  相似文献   

15.
Teplitsky C  Laurila A 《Ecology》2007,88(7):1641-1646
Competition is predicted to affect the expression of inducible defenses, but because costs of behavioral and morphological antipredator defenses differ along resource gradients, its effects on defenses may depend on the traits considered. We tested the predictions from different defense models in tadpoles of the common frog Rana temporaria, which exhibit both types of defenses. In an outdoor experiment, we exposed the tadpoles to nonlethal predators (Aeshna dragonfly larvae) and to a gradient of intraspecific competition. Morphological responses did not follow any of the expected patterns, since investment in defense was not affected by resource level. Instead, tail depth decreased in the absence of predators. Behavioral defenses followed a state-dependent model. Overall, the defense strategy of the tadpoles revealed a shift from morphological and behavioral defenses at low tadpole density to morphological defense only at high density. This difference probably reflects the different efficiency of the defenses. Hiding is an effective means of defense, but it is unsustainable when resources are scarce. Morphological responses become more important with increasing density to compensate for the increase in behavioral risk-taking. Our results indicate that competition can strongly affect reaction norms of inducible defenses and highlight the importance of integrating ecological parameters that affect the cost-benefit balance of phenotypic plasticity.  相似文献   

16.
In mid-summer 1975 throughout the Western Slope Water of the North Atlantic Ocean, massive numbers ofSalpa aspera performed a diel vertical migration of at least 800 m. This resulted in a movement of 85 to 90% of the total zooplankton biomass out of the upper 500 m during the day. Fecal pellet production and losses from this salp population were estimated to contribute approximately 12 mg C m-2 day-1 to the deep planktonic and benthic populations. If all this organic matter reached the deep-sea floor, it would represent over 100% of the daily deep-sea benthic infauna energy requirements.  相似文献   

17.
Our current knowledge of plankton ecology ascribes a large proportion of zooplankton losses to zooplankton cannibalism and carnivory, rather than via the activity of higher trophic levels beyond the plankton. However, planktonic ecosystem models, such as the widely used nutrient–phytoplankton–zooplankton (NPZ) type models, typically represent all zooplankton losses by mathematically (rather than biologically) justified closure functions. Even where it is assumed that these closure functions include zooplanktonic cannibalism and carnivory, these processes are not explicitly implemented within the grazing function of the zooplankton. Here it is argued that this representation of zooplankton losses through “closure” terms within planktonic food web models is neither appropriate nor necessary. The general consequences of implementing a simple function incorporating zooplankton cannibalism and carnivory (intra-guild predation) within a planktonic food web model are compared against models implementing different types of traditional closure functions. While the modelled biomass outputs may appear similar, the fate of annual primary production and f-ratios vary widely. There appears no justification for the continued use of traditional closure term to depict zooplankton loss processes on biological or modelling arguments. To do so can seriously misrepresent the fate of primary production and thence trophic dynamics.  相似文献   

18.
N. Lindquist 《Marine Biology》1996,126(4):745-755
Risk of larval mortality is an underlying theme in debates and models concerning the ecology and evolution of the differing reproductive characteristics among marine benthic invertebrates. In these discussions, predation is often assumed to be a major source of larval mortality. Previous studies, focused primarily on planktotrophic larvae, suggested that marine larvae generally were susceptible to, and poorly defended against, planktivorous fishes and invertebrates. Larval-planktivore interactions involving larger and more conspicuous lecithotrophic larvae that are typical of many brooding sessile invertebrates have not been well studied. This lack of data for diverse larval types has hindered testing broad generalities about marine larvae and planktivore prey-preferences. This study demonstrates that lecithotrophic larvae of many Caribbean and temperate western Atlantic invertebrates are distasteful to co-occurring corals and anemones. These larval predators frequently rejected larvae of sponges (6 of 9 species), gorgonians (7 of 9 species), corals (3 of 3 species), hydroids (2 of 2 species) and a bryozoan. Larvae of three temperate colonial ascidians were readily consumed. Frequencies of survivorship for larvae captured but rejected by corals and anemones were generally high and, in 20 of 24 assays, were not statistically different from those of unattacked control larvae. Levels of metamorphosis (when it occurred) of rejected larvae also rarely differed significantly from those of unattacked controls. These results provide further evidence that larval palatability to predators may not be as high as once thought, particularly for brooded larvae of sessile colonial invertebrates. The means by which larvae may avoid or deter predators, and the demographic consequences for marine invertebrates and for the evolution of invertebrate life-history patterns, need to be assessed.  相似文献   

19.
Successful settlement of pelagic fish larvae into benthic juvenile habitats may be enhanced by a shortened settlement period, since it limits larval exposure to predation in the new habitat. Because the spatial distribution of marine fish larvae immediately prior to settlement versus during settlement was unknown, field experiments were conducted at Ishigaki Island (Japan) using light trap sampling and underwater visual belt transect surveys to investigate the spatial distribution patterns of selected pre- and post-settlement fishes (Acanthuridae, Pomacentridae, Chaetodonidae and Lethrinidae) among four habitats (seagrass bed, coral rubble, branching coral and tabular coral). The results highlighted two patterns: patterns 1, pre- and post-settlement individuals showing a ubiquitous distribution among the four habitats (Acanthuridae) and pattern 2, pre-settlement individuals distributed in all habitats, but post-settlement individuals restricted to coral (most species of Pomacentridae and Chaetodontidae) or seagrass habitats (Lethrinidae). The first pattern minimizes the transition time between the larval pelagic stage and acquisition of a benthic reef habitat, the latter leading immediately to a juvenile lifestyle. In contrast, the second pattern is characterized by high settlement habitat selectivity by larvae and/or differential mortality immediately after settlement.  相似文献   

20.
The amount of genetic structure in marine invertebrates is often thought to be negatively correlated with larval duration. However, larval retention may increase genetic structure in species with long-lived planktonic larvae, and rafting provides a means of dispersal for species that lack a larval dispersal phase. We compared genetic structure, demographic histories and levels of gene flow of regional lineages (in most cases defined by biogeographic region) of five southern African coastal invertebrates with three main types of larval development: (1) dispersal by long-lived planktonic larvae (mudprawn Upogebia africana and brown mussel Perna perna), (2) abbreviated larval development (crown crab Hymenosoma orbiculare) and (3) direct development (estuarine isopod Exosphaeroma hylecoetes and estuarine cumacean Iphinoe truncata). We hypothesized that H. orbiculare, having abbreviated larval development, would employ a strategy of larval retention, resulting in genetic structure comparable to that of the direct developers rather than the planktonic dispersers. However, regional population structure was significantly lower in all species with planktonic larvae, including H. orbiculare, than in the direct developers. Moreover, nested clade analysis identified demographic histories resulting from low levels of gene flow (isolation by distance and allopatric fragmentation) in the direct developers only, and migration rates were significantly higher in all three species having planktonic larvae than in the direct developers. We conclude that the amount of genetic structure within marine biogeographic regions strongly depends on the presence or absence of free-swimming larvae. Whether such larvae are primarily exported or retained, whether they have long or short larval duration, and whether or not they are capable of active dispersal seems to have little effect on connectivity among populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号