首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates adsorption-desorption and the leaching potential of glyphosate and aminomethylphosphonic acid (AMPA) in control and amended—addition of cow dung or rice husk ash—acidic Malaysian soil with high oxide mineral content. The addition of cow dung or rice husk ash increased the adsorptive removal of AMPA. The isotherm data of glyphosate and AMPA best fitted the Freundlich model. The constant Kf for glyphosate was high in the control soil (544.873 mg g?1) followed by soil with cow dung (482.451 mg g?1) then soil with rice husk ash (418.539 mg g?1). However, for AMPA, soil with cow dung was high (166.636 mg g?1) followed by soil with rice husk ash (137.570 mg g?1) then the control soil (48.446 mg g?1). The 1/n values for both glyphosate and AMPA adsorptions were <?1 indicating their strong affinity for adsorbents. Desorption of both glyphosate and AMPA occurred only in the control soil. The compounds were not detected in soils with added cow dung or rice husk ash. The addition of cow dung or rice husk ash increased glyphosate mobility. However, ground water ubiquity scores for both control and amended soils were <?2.8. This indicated glyphosate is a transitional herbicide; therefore, its leaching potential in the soil is low, despite the addition of cow dung or rice husk ash. Addition of these wastes decreased the mobility and leaching potential of AMPA. The addition of cow dung or rice husk ash could be beneficial in increasing adsorption and enhancing degradation of these compounds.  相似文献   

2.
This study investigated the impacts of two best management practices (BMPs) recommended by US Environmental Protection Agency on Pb weathering and leachability in shooting range soils. The two BMPs included replacing soil berm with sand berm and periodically removing bullets or shot from a berm. A column experiment corresponding to the first BMP was conducted by mixing the bullets with sand/soil, or placing bullets on the surface of sand/soil. After a 16–18-week incubation under high or low rainfall simulations, total Pb concentrations in sand were lower than that in soil. Total leachable Pb in sand (8.48 and 5.52 μg?kg?1) was also lower than that in soil (60.0 and 30.4 μg?kg?1) when bullets were mixed with sand/soil; however, they were comparable when bullets were placed on the sand/soil surface. These results indicate that lower Pb concentration in the sand than in soil may be attributed to reduced weathering of bullets. Mechanical removal of Pb bullets in the field transferred Pb from large to finer particles, increasing total Pb in the soil (<2 mm) from 2,170 to 5,000 mg?kg?1. In contrast, mechanical removal of Pb shot effectively reduced the shot in the soil by 86–92 %. Thus, we concluded that, while replacing soil berm with sand berm can slow down Pb weathering, it may increase Pb leachability in the long term. Removal of Pb bullets and Pb shot can be effective, but caution needs to be exercised to minimize the adverse impacts, especially in pistol/rifle ranges because of increased total Pb content in the soil.  相似文献   

3.
Fipronil belongs to phenylpyrazole class of chemical compounds. Degradation of fipronil in sandy loam soil was investigated under field conditions by applying fipronil (Regent 5 % SC) at 50 (T 1) and 100 g a.i. ha?1 (T 2) in field. Samples were drawn periodically in triplicate on 0 (1 h after treatment), 1, 3, 7, 10, 15, 30, 60, and 90 days after treatment and analyzed on GC-ECD system equipped with capillary column. The residues of fipronil in both the doses dissipated in the range of 93.33–100 % in 90 days. Limit of detection (LOD) and limit of determination (LODe/LOQ) were 0.0003 and 0.001 mg kg?1, respectively. Dissipation followed a biphasic first-order kinetics with half-life values of 10.81 and 9.97 days for fipronil alone and 8.14 and 13.05 days for fipronil along with metabolites in soil at (T 1) and (T 2) treatments, respectively.  相似文献   

4.
Supervised field trials were conducted at four different agro-climatic locations of India to evaluate the dissipation pattern and risk assessment of spiromesifen on tomato. Spiromesifen 240 SC was sprayed on tomato at 150 and 300 g a.i.?ha?1. Samples of tomato fruits were drawn at 0, 1, 3, 5, 7, 10 and 15 days after treatment and soil at 15 days after treatment. Quantification of residues was done on gas chromatograph–mass spectrophotometer in selective ion monitoring mode in the mass range of 271–274 (m/z). The limit of quantification of the method was found to be 0.05 mg kg?1, while the limit of determination was 0.015 mg kg?1. Residues were found below the LOQ of 0.05 mg kg?1 in 10 days at both the doses of application at all the locations. Spiromesifen dissipated with a half-life of 0.93–1.38 days at the recommended rate of application and 1.04–1.34 days at the double the rate of application. Residues of spiromesifen in soil were detectable level (<0.05 mg kg?1) after 15 days of treatment. A preharvest interval (PHI) of 1 day has been recommended on tomato on the basis of data generated under All India Network Project on Pesticide Residues. Spiromesifen 240 SC has been registered for its use on tomato by Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India. The maximum residue limit (MRL) of spiromesifen on tomato has been fixed by Food Safety Standard Authority of India, Ministry of Health and Family Welfare, Government of India as 0.3 μg/g after its risk assessment.  相似文献   

5.
A new, simple, sensitive, and selective spectrophotometric method for the determination of copper in water and soil samples has been demonstrated. The method is based on the reaction of Cu(I) with neocuproine (2,9-dimethyl-1, 10-phenanothroline) and extracted with N-phenyl benzimidoylthiourea in chloroform. The value of molar absorptivity of the complex in the term of Cu(I) is 1.45 × 105 L mol???1 cm???1 at λ max 460 nm in chloroform. The detection limit of copper in water and soil is 2 ng mL???1 and 4 ng g???1, respectively. The method is free from the interference of the ions commonly found to be associated with the copper determination in water and soil samples. The application of the proposed method has been successfully tested for the determination of copper in different types of water and soil samples.  相似文献   

6.
The approach of this paper is to predict the sand mass distribution in an urban stormwater holding pond at the Stormwater Management And Road Tunnel (SMART) Control Centre, Malaysia, using simulated depth average floodwater velocity diverted into the holding during storm events. Discriminant analysis (DA) was applied to derive the classification function to spatially distinguish areas of relatively high and low sand mass compositions based on the simulated water velocity variations at corresponding locations of gravimetrically measured sand mass composition of surface sediment samples. Three inflow parameter values, 16, 40 and 80 m3 s?1, representing diverted floodwater discharge for three storm event conditions were fixed as input parameters of the hydrodynamic model. The sand (grain size?>?0.063 mm) mass composition of the surface sediment measured at 29 sampling locations ranges from 3.7 to 45.5 %. The sampling locations of the surface sediment were spatially clustered into two groups based on the sand mass composition. The sand mass composition of group 1 is relatively lower (3.69 to 12.20 %) compared to group 2 (16.90 to 45.55 %). Two Fisher’s linear discriminant functions, F 1 and F 2, were generated to predict areas; both consist of relatively higher and lower sand mass compositions based on the relationship between the simulated flow velocity and the measured surface sand composition at corresponding sampling locations. F 1?=??9.405?+?4232.119?×?A???1795.805?×?B?+?281.224?×?C, and F 2?=??2.842?+?2725.137?×?A???1307.688?×?B?+?231.353?×?C. A, B and C represent the simulated flow velocity generated by inflow parameter values of 16, 40 and 80 m3 s?1, respectively. The model correctly predicts 88.9 and 100.0 % of sampling locations consisting of relatively high and low sand mass percentages, respectively, with the cross-validated classification showing that, overall, 82.8 % are correctly classified. The model predicts that 31.4 % of the model domain areas consist of high-sand mass composition areas and the remaining 68.6 % comprise low-sand mass composition areas.  相似文献   

7.
On percolating water equivalent to 1,156 mm of rainfall, spiromesifen formulation did not leach out of 25-cm long columns, and 62.7 % of this was recovered in 5–10-cm soil depth. In columns treated with the analytical grade, 52.40 % of the recovered spiromesifen was confined to 0–5-cm soil depth, with 0.04 % in leachate fraction, suggesting high adsorption in soil. Results revealed that percolating 400 mL of water, residues of enol metabolite of spiromesifen was detected up to 20–25-cm soil layer, with 23.50 % residues of spiromesifen in this layer and 1.73 % in the leachate fraction indicating that metabolite is more mobile as compared to the parent compound. Results suggested a significant reduction in leaching losses of enol metabolite in amended soil columns with 5 % nano clay, farmyard manure (FYM), and vermicompost. No enol spiromesifen was recovered in the leachate in columns amended with nano clay, vermicompost, and FYM; however, 85.30, 70.5, and 65.40 %, respectively, was recovered from 0–5 cm-soil depth of column after percolating water equivalent to 1,156 mm of rainfall. Spiromesifen formulation is less mobile in sandy loam soil than analytical grade spiromesifen. The metabolite, enol spiromesifen, is relatively more mobile than the parent compound and may leach into groundwater. The study suggested that amendments were very effective in reducing the downward mobility of enol metabolite in soil column. Further, it resulted in greater retention of enol metabolite in the amendment application zone.  相似文献   

8.
Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n?=?191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg?1, and the background concentration was 0.5 mg kg?1. After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg?1 of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg?1) was higher than in Ultisols (0.3 mg kg?1). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R 2?=?0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.  相似文献   

9.
A modified LC-MS method for the analysis of mepiquat residue in wheat, potato, and soil was developed and validated. A hydrophilic interaction liquid chromatographic column has been successfully used to retain and separate the mepiquat. Mepiquat residue dynamics and final residues in supervised field trials at Good Agricultural Practice (GAP) conditions in wheat, potato, and soil were studied. The limits of quantification for mepiquat in all samples were all 0.007 mg kg?1, which were lower than their maximum residue limits. At fortification levels of 0.04, 0.2, and 2 mg kg?1 in all samples, recoveries ranged from 77.5 to 116.4 % with relative standard deviations of 0.4–7.9 % (n?=?5). The dissipation half-lives (T 1/2) of mepiquat in soil (wheat), wheat plants, soil (potato), and potato plants were 4.5–6.3, 3.0–5.6, 2.2–4.6, and 2.4–3.2 days, respectively. The final residues of mepiquat were below 0.153 mg kg?1 in soil (wheat), 0.052–1.900 mg kg?1 in wheat, below 0.072 mg kg?1 in soil (potato), and below 1.173 mg kg?1 in potato at harvest time. Moreover, pesticide risk assessment for all the detected residues was conducted. A maximum 0.0012 % of acceptable daily intake (150 mg kg?1) for national estimated daily intake indicated low dietary risk of these products.  相似文献   

10.
Wind erosion is a primary cause of desertification as well as being a serious ecological problem in arid and semi-arid areas across the world. To determine mechanisms for restoring desertified lands, an unrestored shifting sand dune and three formerly shifting sand dunes (desertified lands) that had been enclosed and afforested for 5, 15, and 25 years were selected for evaluation on the south edge of the Tengger Desert, China. Based on sampling heights between 0.2 and 3 m, the critical threshold average wind speed was 6.5 m s?1 at 2 m where the sand transport rate was reduced from 285.9 kg m?2 h?1 on the unrestored dunes to 9.1 and 1.8 kg m?2 h?1 on the sites afforested and enclosed for 5 and 15 years, respectively. The percentage of wind eroded area was reduced from 99.9% on the unrestored dune to 94.5, 9.0, and 0.5% on the sites afforested and enclosed for 5, 15, and 25 years, respectively. Wind erosion was effectively reduced after 15 years. Although there were different driving factors for wind erosion mitigation on the different restoration stages, an increase in the vegetation cover, surface roughness, soil shear strength, soil clay content, organic matter, and reduction in the near-surface wind speed were the primary variables associated with the restoration chronosequence. We conclude that reducing the wind speed and developing a biological crust through vegetation restoration were the critical components for restoration of desertified land.  相似文献   

11.
The prevalence of fluorosis is mainly due to the consumption of more fluoride (F?1) through drinking water, vegetables, and crops. The objective of the study was mapping of F?1 endemic area of Newai Tehsil, Tonk district, Rajasthan, India. For the present study, water, soil (0–45 cm), and vegetation samples were collected from 17 villages. Fluoride concentration in water samples ranged from 0.3 to 9.8 mg/l. Out of 17 villages studied, the amounts of F?1 content of eight villages were found to exceed the permissible limits. Labile F?1 content and total F?1 content in soil samples ranges 11.00–70.05 mg/l and 50.3–179.63 μg g?1, respectively. F?1 content in tree species was found in this order Azadirachta indica 47.3255.76 μg g?1 > Prosopis juliflora 40.16–49.63 μg g?1 > Acacia tortilis 34.39–43.60 μg g?1. While in case of leafy vegetables, F?1 content order was Chenopodium album 54.23–98.42 μg g?1 > Spinacea oleracea 30.41–64.09 μg g?1 > Mentha arvensis 35.4851.97 μg g?1. The order of F?1 content in crops was found as 41.04 μg g?1 Pennisetum glaucum > 13.61 μg g?1 Brassica juncea > 7.98 μg g?1 Triticum sativum in Krishi Vigyan Kendra (KVK) farms. Among vegetation, the leafy vegetables have more F?1 content. From the results, it is suggested that the people of KVK farms should avoid the use of highly F?1 containing water for irrigation and drinking purpose. It has been recommended to the government authority to take serious steps to supply drinking water with low F?1 concentration for the fluorosis affected villages. Further, grow more F?1 hyperaccumulator plants in F?1 endemic areas to lower the F?1 content of the soils.  相似文献   

12.
This study performed on randomly selected seven sample plots in leguminous black locust (Robinia pceudoacacia L.) plantations and five sample plots in umbrella pine (Pinus pinea L.) plantations on coal mine soil/spoils. Soil samples were taken from eight different soil depths (0–1, 1–3, 3–5, 5–10, 10–20, 20–30, 30–40, and 40–50 cm) into the soil profile. On soil samples, bulk density, fine soil fraction (Ø < 2 mm), sand, silt and clay rates, soil acidity (pH), organic carbon (Corg), and total nitrogen (Nt) contents were investigated. Also, some forest floor properties (unit mass, organic matter, and total nitrogen) were determined, and results were compared statistically between umbrella pine and black locust. As a result, 17 years after plantations, total forest floor accumulation determined as 6,107 kg ha???1 under black locust compared to 13,700 kg ha???1 under umbrella pine. The more rapid transformation of leguminous black locust forest floor creates organic carbon that migrates further into the mineral profile, and rapid accumulation of C and N in the soil profile was registered. Slower transformation processes of forest floor under umbrella pine result in lower soil N ratio and greater quantity of forest floor. Higher soil pH under leguminous black locust was determined significantly than umbrella pine. In conclusion, the composition of symbiotic nitrogen fixation of black locust appears to be a possible factor favoring carbon and nitrogen accumulation and, consequently, soil development. Clearly, both tree species have favorable impacts on initial soil formation. The umbrella pine generates the more forest floor layer; in contrast, black locust forest floor incorporates into the soil more rapidly and significantly increases soil nitrogen in upper soil layers.  相似文献   

13.
Metribuzin is a widely used herbicide around the world but it could lead to soil and water contamination. Metribuzin retention on a silty–clay agricultural soil of Algeria was studied in laboratory batch experiments to assess the contamination risk of the groundwater. Factors conditioning the fate of metribuzin were investigated: soil nature, metribuzin formulation, NPK fertilizer, and soil pH. Freundlich sorption isotherms gave the coefficients K F between 1.2 and 4.9 and 1/n a between 0.52 and 0.93. The adsorption is directly dependent on organic and clay soil contents. Formulated metribuzin (Metriphar) reduces the adsorption (K F?=?1.25) compared to pure metribuzin (K F?=?2.81). The addition of an NPK fertilizer decreases the soil pH (6.67 for the soil without fertilizer and 5.86 for 2 % of fertilizer) and increases metribuzin adsorption (K F is 4.83 for 2 % of fertilizer). The pH effect on the adsorption is corroborated in experiments changing the soil pH between 5 (K F is 4.17) and 8 (K F is 1.57) under controlled conditions. Desorption isotherms show a hysteresis and only 30 to 40 % of the initially adsorbed metribuzin is released. The estimated GUS index is ≥2.8 for a DT50?≥?30 days. K F values and the hysteresis show that metribuzin is little but strongly retained on the soil. Formulated metribuzin and addition of fertilizer affect the retention. However, the GUS index indicates a high mobility and a significant risk of leaching. The most appropriate risk management measure would be an important increase in organic matter content of the soil by addition of organic amendments.  相似文献   

14.
Chlorantraniliprole, an anthranilic diamide insecticide with novel mode of action, is found effective against several lepidopteran as well as coleopteran, dipteran, and hemipteran pests. The present studies were carried out to study the persistence pattern of chlorantraniliprole on sugarcane field soil following application of granule formulation. The residues of chlorantraniliprole were estimated using high performance liquid chromatograph (HPLC) and confirmed by liquid chromatograph-mass spectrometry (LC-MS/MS). Following application of chlorantraniliprole (Ferterra 0.4G) at 100 and 200 g a.i. ha?1, the average initial deposits of chlorantraniliprole were observed to be 0.88 and 1.59 mg kg?1, respectively. These residues dissipated below the limit of quantification (LOQ) of 0.01 mg kg?1 after 56 days of the application of insecticides at both the dosages. The half-life values (t 1/2) of chlorantraniliprole were worked out to be 8.36 and 8.25 days, at recommended and double the recommended dosages, respectively.  相似文献   

15.
A novel nanomaterial has been developed for speciation of Cr(III) and Cr(VI) in water and soil samples. In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) modified by the surfactant Triton X-114 has been successfully synthesized and used in magnetic mixed hemimicelles solid-phase extraction procedure. The procedure was based on the reaction of chromium(III) with 1-(2-pyridilazo)-2-naphtol as a ligand, yielding a complex, which was entrapped “in situ” in the surfactant hemimicelles. The concentration of chromium(III) was determined using flame atomic absorption spectrometry. After reduction of Cr(VI) to Cr(III) by ascorbic acid, the system was applied to the total chromium. Cr(VI) was then calculated as the difference between the total Cr and the Cr(III) content. This method can also be used for complicated matrices such as soil samples without any special pretreatment. Under the optimum conditions of parameters, the recoveries of Cr(III) by analyzing the spiked water and soil samples were between 98.6 and 100.8 % and between 96.5 and 100.7 %, respectively. Detection limits of Cr(III) were between 1.4 and 3.6 ng?mL?1 for water samples and 5.6 ng?mg?1 for soil samples.  相似文献   

16.
Impact of wastewater irrigation on some biological properties was studied in an area where treated sewage water is being supplied to the farmers since 1979 in the western part of National Capital Territory of New Delhi under Keshopur Effluent Irrigation Scheme. Three fields were selected which had been receiving irrigation through wastewater for last 20, 10 and 5 years. Two additional fields were selected in which the source of irrigation water was tubewell. The soil bacterial and fungal population density was studied in soil layers of 0?C15, 15?C30, 30?C60 and 60?C120 cm depths. Groundwater samples were collected from the piezometers installed in the field irrigated with sewage water for last 20, 10 and 5 years. Results indicate that there was significant increase in bacterial and fungal count in sewage-irrigated soils as compared to their respective control. The population density of bacteria and fungi in waste water-irrigated soils increased with the duration of sewage water application and decreased with increasing depth. The bacterial and fungal count was also directly proportional to organic carbon, sand and silt content and negatively correlated to the clay content, electrical conductivity, pH and bulk density of the soil. Groundwater under sewage-irrigated fields had higher values of most probable number (MPN) index as compared to that of tubewell water-irrigated fields. All the shallow and deep groundwaters were found to be contaminated with faecal coliforms. The vadose zone had filtered the faecal coliform to the tune of 98?C99%, as the MPN index was reduced from ??18,000 per 100 ml of applied waste water to 310 per 100 ml of groundwater under 20 years sewage-irrigated field. The corresponding values of MPN were 250 and 130 per 100 ml of shallow groundwater under 10 and 05 years sewage-irrigated fields, respectively. Rapid detection of faecal contamination suggested that the Citrobacter freundii and Salmonella were dominant in shallow groundwater, while Escherichia coli was dominant in deep groundwater collected from sewage-irrigated field.  相似文献   

17.
The analytical method of famoxadone residue and its dissipation in grape and soil were investigated. Famoxadone (68.75% water-dispersible granule) was applied at two dosages (1.25 and 2.5 g l???1). Soil and grape samples were collected at intervals and analyzed for famoxadone residues. The results showed that the degradation rate of famoxadone in grape and soil were similar, and their dynamics could be described by C?=?1.1738e ???0.0562t with correlation coefficient r?=?0.9044 in grape and C?=?5.6565e ???0.0515t with r?=?0.9620 in soil, respectively. Half-lives were 12.3 and 13.5 days in grape and soil, respectively. The results indicated that at harvest time, the residues of famoxadone in grape were well below the EU’s maximum residue level (2 mg kg???1) and was safe to apply in grape.  相似文献   

18.
The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha?1 h?1 year?1. Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3 % of the cluster has soil loss below 20 t ha?1 year?1. The soil loss from crop land varied from 2.9 to 3.6 t ha?1 year?1 in low rainfall years to 31.8 to 34.7 t ha?1 year?1 in high rainfall years with a mean annual soil loss of 12.2 t ha?1 year?1. The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha?1 year?1 in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3 % of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water using farm ponds and percolation tanks. This methodology can be adopted for estimating the soil loss from similar ungauged watersheds with deficient data and for planning suitable soil and water conservation interventions for the sustainable management of the watersheds.  相似文献   

19.
Evaluation of leaching behavior of pendimethalin in sandy loam soil   总被引:1,自引:0,他引:1  
The mobility of pendimethalin in sandy loam soil was studied in soil columns under laboratory conditions at two application rates, 1.0 and 2.0 kg a.i. ha???1, with simulated rainfall of 300 mm. The maximum concentration of the herbicide was found in the top 10 cm layer, though it was found distributed in soil at all the depths at both the doses.  相似文献   

20.
Some wetland plant species are adapted to growing in the areas of higher metal concentrations. Use of such vegetation in remediation of soil and water contaminated with heavy metals is a promising cost-effective alternative to the more established treatment methods. Throughout the year, composite industrial effluents bringing various kinds of heavy metals contaminate our study site, the East Calcutta Wetlands, a Ramsar site at the eastern fringe of Kolkata city (formerly Calcutta), India. In the present study, possible measures for remediation of contaminated soil and water (with elements namely, Ca, Cr, Cu, Pb, Zn, Mn, and Fe) of the ecosystem had been investigated. Ten common regional wetland plant species were selected to study their efficiency and diversity in metal uptake and accumulation. Results showed that Bermuda grass (Cynodon dactylon) had the highest total Cr concentration (6,601 ± 33 mg kg???1 dw). The extent of accumulation of various elements in ten common wetland plants of the study sites was: Pb (4.4?C57 mg kg???1 dw), Cu (6.2?C39 mg kg???1 dw), Zn (59?C364 mg kg???1 dw), Mn (87?C376 mg kg???1 dw), Fe (188?C8,625 mg kg???1 dw), Ca (969?C3,756 mg kg???1 dw), and Cr (27?C660 mg kg???1 dw) indicating an uptake gradient of elements by plants as Ca>Fe>Mn>Cr>Zn>Cu>Pb. The present study indicates the importance of identification and efficiency of metal uptake and accumulation capabilities by plants in relation to their applications in remediation of a contaminated East Calcutta Wetland ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号