首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to investigate the bioremedial potential of humic deposit (leonardite), the effects of the treatments of leonardite and a commercial bioaugmentation agent on the degradation of a variety of petroleum hydrocarbons (C13–C31) and soil enzyme activities (urease acid-alkaline phosphatase and dehydrogenase) were tested within a soil incubation experiment lasting 120 days. Experimentally crude-oil-contaminated soil (2.5%) was regulated to a C:N:P ratio (100:15:1; Oilcon), amended with 5% of leonardite and regulated to the same C:N:P ratio (Oilcon-L) or mixed with a commercial bioaugmentation product (Oilcon-B), respectively. In the short period of incubation (60 days), Oilcon and Oilcon-B treatments showed higher hydrocarbon degradations, whereas Oilcon-L showed higher hydrocarbon degradation over Oilcon and Oilcon-B treatments in the long-term (120 days). Applying contaminated soil with leonardite increased urease (LSD, 4.978, *P?<?0.05) and dehydrogenase (LSD, 0.660, *P?<?0.05) activities. However, acid and alkaline phosphatase activities showed no certain inclination between different treatments. Dehydrogenase seemed to be more related to hydrocarbon degradation process. Overall results showed that leonardite enhanced biodegradation of petroleum hydrocarbons and also stimulated soil ecological quality measured as soil enzyme activities.  相似文献   

2.
Soil enzymes are indicators of microbial activities in soil and are often considered as an indicator of soil health and fertility. They are very sensitive to the agricultural practices, pH of the soil, nutrients, inhibitors and weather conditions. To understand the effect of an insecticide, thiamethoxam, on different soil enzyme activities, the experiments were conducted at cotton experimental fields of Punjab Agricultural University, Ludhiana. The results here were presented to understand the impact of thiamethoxam on soil enzyme activities. Thiamethoxam was applied as seed treatment to control the pest. Soil from three localities, i.e. soil in which seed was treated with recommended dose at 2.1 g a.i. kg?1, soil in which seed was treated with four times recommended dose at 8.4 g a.i. kg?1 and from the control field, were tested for different enzyme activities. Phosphatase and dehydrogenase activities were high in control soil in comparison to control soil while no effect of this insecticide on urease activity. Thiamethoxam had inhibitory effects on dehydrogenase and phosphatase activities. Therefore, it can be attributed that agricultural practices, weather conditions and use of thiamethoxam might be responsible for the different level of enzyme activities in soil.  相似文献   

3.
Reforestation with black locust (Robinia pseudoacacia) is considered a successful technique that is often used for the reclamation of open-cast mine areas. An alternative reclamation technique could be the natural regeneration of vegetation with spontaneous grass species. In this study, we compared the concentrations of chemical and biochemical variables in soil samples taken under black locust canopy to those from sites covered by spontaneous grass vegetation (control samples) in a time sequence of spoil deposition (0–10 years), in order to assess which of the two reclamation techniques yields higher soil quality. Soil quality refers here to the ability of soils to function ecologically. This has a special interest since the main question for the restored soils is their capacity to perform a range of ecological functions under stress or disturbance. Furthermore, we aimed at identifying the effect of vegetation type on soil ecological succession. The effect of vegetation type on primary succession becomes apparent after 2 years of reclamation. R. pseudoacacia as a nitrogen-fixing plant enriched soil with organic and inorganic nitrogen and organic matter to a greater extent than the natural grasses. It also increased the amount of soil microbial biomass and the activity of alkaline phosphatase. However, the fact that black locust failed to enhance dehydrogenase activity and actually decreased the activity of urease, activities that represent specialized niche functions and therefore, are more vulnerable to stress or disturbance, suggests that the development of an indigenous grass community in combination with organic supplements might often be more appropriate for the reclamation of similar kinds of mine areas.  相似文献   

4.
Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)—wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker? technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the ‘best-adaptive N rate’ (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N2O and CO2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.  相似文献   

5.
An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580?±?20 μmol mol?1) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8–2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.  相似文献   

6.
In the process of mining activity, many kinds of heavy metals enter into soils with dust, causing serious contamination to the environment. In this study, six soils were sampled from cropland at different distances from a lead/zinc mine in Heilongjiang Province, China. The total contents of lead and zinc in the vicinal cropland exceeded the third level of environmental quality standard for soil in China, which indicated that soils in this area were moderately contaminated. Bacterial community diversity and population were greatly decreased when the concentrations of lead and zinc were beyond 1,500 and 995 mg kg(-1), respectively, as analyzed by plate counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The bands of DGGE patterns varied with the degree of contamination. The activities of soil urease, phosphatase, and dehydrogenase were negatively correlated with the concentrations of lead and zinc. The highest inhibitory effect of heavy metals on soil enzyme activities was observed in urease. It was noted that PCR-DGGE patterns combined with soil enzyme activity analysis can be indices for the soil quality assessment by heavy metal contamination.  相似文献   

7.
The objective of this study was to determine the effects of two insecticides, namely, acetamiprid and carbofuran on the enzymatic activities of arylamidase (as glucose formed from sinigrin) and myrosinase (as β-naphthylamine formed from l-leucine β-naphthylamide) in the black and red clay soils collected from a fallow groundnut (Arachis hypogaea L.) fields in the Anantapur District, Andhra Pradesh, India. The study was realized within the framework of the laboratory experiments in which the acetamiprid and carbofuran were applied to the soils at different doses (1.0, 2.5, 5.0, 7.5, 10.0 kg ha?1). Initially, the physicochechemical properties of the soil samples were analyzed. After 10 days of pesticide application, the soil samples were analyzed for the enzyme activities. Acetamiprid and carbofuran stimulated the arylamidase and myrosinase activities at lower concentrations after 10 days incubation. Striking stimulation in soil enzyme activities was noticed at 2.5 kg ha?1, persists for 20 days in both the soils. Overall, higher concentrations (5.0–10.0 kg ha?1) of acetamiprid and carbofuran were toxic or innocuous to the arylamidase and myrosinase activities. Nevertheless, the outcomes of the present study clearly indicate that the use of these insecticides (at field application rates) in the groundnut fields (black and red clay soils) stimulated the enzyme (arylamidase and myrosinase) activities.  相似文献   

8.
The present study aimed at evaluating the dissipation of S-metolachlor (S-MET) at three doses in maize growing on diverse physico-chemical properties of soil. The effect of herbicide on dehydrogenase (DHA) and acid phosphatase (ACP) activity was estimated. A modified QuEChERS method using LC-MS/MS has been developed. The limit of quantification (0.001 mg kg?1) and detection (0.0005 mg kg?1) were very low for soil and maize samples. The mean recoveries and RSDs for the six spiked levels (0.001–0.5 mg kg?1) were 91.3 and 5.8%. The biggest differences in concentration of S-MET in maize were observed between the 28th and 63rd days. The dissipation of S-MET in the alkaline soil was the slowest between the 2nd and 7th days, and in the acidic soil between the 5th and 11th days. DT50 of S-MET calculated according to the first-order kinetics model was 11.1–14.7 days (soil) and 9.6–13.9 days (maize). The enzymatic activity of soil was higher in the acidic environment. One observed the significant positive correlation of ACP with pH of soil and contents of potassium and magnesium and negative with contents of phosphorus and organic carbon. The results indicated that at harvest time, the residues of S-MET in maize were well below the safety limit for maize. The findings of this study will foster the research on main parameters influencing the dissipation in maize ecosystems.  相似文献   

9.
It is widely recognised that complex interactions occur between chemicals in mixtures. In many agricultural situations, the use of tank mixes and complex spray programs is a common practice. Insecticides, fungicides and a herbicide being applied in potato protection were used in this research. Interactions between linuron and insecticides, such as thiamethoxam or clothianidin, and fungicides, such as mancozeb or chlorothalonil, were examined in soil. The degradation rate of linuron in soil during laboratory incubation in six treatments was studied. Mixtures of linuron with mancozeb in sandy loam and clay loam soils had a significant effect on the persistence of this herbicide. For example, for the same herbicide, t 1/2 values for linuron were from 37 days in sandy loam to 44 days in clay loam. These values changed (64–67 days) when thiamethoxam and mancozeb were in soil. When mancozeb was added only, the half-life values were from 59 to 62 days, respectively. Other mixtures with chlorothalonil, thiamethoxam and clothianidin did not have any effect. In order to compare linuron degradation rates in soils, a single first-order model and expanded statistical analysis were used.  相似文献   

10.
Although there is large-scale adoption of Bt cotton by the farmers because of immediate financial gain, there is concern that Bt crops release Bt toxins into the soil environment which reduces soil chemical and biological activities. However, the majorities of such studies were mainly performed under pot experiments, relatively little research has examined the direct and indirect effects of associated cover crop of peanut with fertilization by combined application of organic and inorganic sources of nitrogen under field conditions. We compared soil chemical and biological parameters of Bt cotton with pure crop of peanut to arrive on a valid conclusion. Significantly higher dehydrogenase enzyme activity and KMnO4-N content of soil were observed in Bt cotton with cover crop of peanut over pure Bt cotton followed by pure peanut at all the crop growth stages. However, higher microbial population was maintained by pure peanut over intercropped Bt cotton, but these differences were related to the presence of high amount of KMnO4-N content of soil. By growing cover crop of peanut between Bt cotton rows, bacteria, fungi, and actinomycetes population increased by 60%, 14%, and 10%, respectively, over Bt cotton alone. Bt cotton fertilized by combined application of urea and farm yard manure (FYM) maintained higher dehydrogenase enzyme activity, KMnO4-N content of soil and microbial population over urea alone. Significant positive correlations were observed for dry matter accumulation, dehydrogenase enzyme activity, KMnO4-N content, and microbial population of soil of Bt cotton, which indicates no harmful effects of Bt cotton on soil biological parameters and associated cover crop. Our results suggest that inclusion of cover crop of peanut and FYM in Bt cotton enhanced soil chemical and biological parameters which can mask any negative effect of the Bt toxin on microbial activity and thus on enzymatic activities.  相似文献   

11.
Quizalofop ethyl, a phenoxy propionate herbicide, is used for postemergence control of annual and perennial grass weeds in broad-leaved crops in India. The experiments were designed to study the dissipation kinetics of quizalofop ethyl on onion for two seasons. A simple, rapid, and sensitive method for estimation of quizalofop ethyl residues in onion and soil was developed and validated. The recoveries of quizalofop ethyl residues from onion and soil at different spiking level range from 84.81 to 92.68 %. The limit of quantification of this method was found to be 0.01 μg g?1. The risk assessment through consumption of the onion in comparison to its acceptable daily intake which is an important parameter for the safety of the consumer was also evaluated. Standardized methodology supported by recovery studies was adopted to estimate residues of quizalofop ethyl on onion and soil. The average initial deposits of quizalofop ethyl on onion were observed to be 0.25 and 0.33 mg kg?1, following single application of the herbicide at 50 g active ingredient (a.i.) ha?1 during 2009 and 2010, respectively. The half-life values (T 1/2) of quizalofop ethyl on onion crop were worked out to be 0.85 and 0.79 days, respectively, during 2009 and 2010. At harvest time, the residues of quizalofop ethyl on onion and soil were found to be below the determination limit of 0.01 mg kg?1 following single application of the herbicide at 50 and 100 g a.i. ha?1 for both the periods.  相似文献   

12.
In order to evaluate the potential risks of human visitation on macroinvertebrate communities in streams, we investigated the effect of trampling using two short-term experiments conducted in a Brazilian ecotourism karst region. We asked three questions: (a) Does trampling increase the drift rate of aquatic macroinvertebrates and organic matter? (b) Does trampling change the macroinvertebrate community organization? (c) If trampling alters the community structure, is a short time (5 days, a between weekends interval?-?peaks of tourism activities) sufficient for community restructuring? Analysis of variance of richness, total abundance, abundance of the most abundant genus (e.g., Simothraulopsis and Callibaetis), and community composition showed that trampling immediately affects macroinvertebrate community and that the intervals between the peaks of visitation (5 days) are not sufficient to complete community restructuring. Considering that bathing areas receive thousands of visitors every year and that intervals of time without visitation are nearly nonexistent, we suspect that the negative effects on the macroinvertebrate community occur in a cumulative way. Finally, we discuss some simple procedures that could potentially be used for reducing trampling impacts in lotic environments.  相似文献   

13.
The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils.  相似文献   

14.
Metribuzin is a widely used herbicide around the world but it could lead to soil and water contamination. Metribuzin retention on a silty–clay agricultural soil of Algeria was studied in laboratory batch experiments to assess the contamination risk of the groundwater. Factors conditioning the fate of metribuzin were investigated: soil nature, metribuzin formulation, NPK fertilizer, and soil pH. Freundlich sorption isotherms gave the coefficients K F between 1.2 and 4.9 and 1/n a between 0.52 and 0.93. The adsorption is directly dependent on organic and clay soil contents. Formulated metribuzin (Metriphar) reduces the adsorption (K F?=?1.25) compared to pure metribuzin (K F?=?2.81). The addition of an NPK fertilizer decreases the soil pH (6.67 for the soil without fertilizer and 5.86 for 2 % of fertilizer) and increases metribuzin adsorption (K F is 4.83 for 2 % of fertilizer). The pH effect on the adsorption is corroborated in experiments changing the soil pH between 5 (K F is 4.17) and 8 (K F is 1.57) under controlled conditions. Desorption isotherms show a hysteresis and only 30 to 40 % of the initially adsorbed metribuzin is released. The estimated GUS index is ≥2.8 for a DT50?≥?30 days. K F values and the hysteresis show that metribuzin is little but strongly retained on the soil. Formulated metribuzin and addition of fertilizer affect the retention. However, the GUS index indicates a high mobility and a significant risk of leaching. The most appropriate risk management measure would be an important increase in organic matter content of the soil by addition of organic amendments.  相似文献   

15.
Efficacious botanical derivatives can provide an alternative to synthetic pesticides for organic farming systems. However, there is lack of information regarding the side effects of organic pesticides on key soil ecological processes. In this study, we investigated the effects of aqueous extracts from Urginea maritima and Euphorbia myrsinites exhibiting translaminar and systemic activity against pests on microbial biomass and enzymatic activities in soil. Two grams of plant material was extracted with 100 ml of water and then diluted 1:100, 2:100, and 4:100 with distilled water. Diluted plant extracts were applied around hypocotyl of tomato by soil drench. The effect of both plant extracts on microbial biomass C, amount of total N and organic C, and enzymatic activity in soil was significant. After the last application, the highest microbial biomass C was determined in the lowest U. maritima concentration (U 1:100). Soils treated with the highest concentration of U. maritima (U 4:100) had always lower SMBC content than control soil. All concentrations of E. myrsinites decreased microbial biomass C by 18% to 27% compared to the control. Total nitrogen and organic carbon decreased in soils without (control) and with treated U. maritima extract from first application to last application. Phosphatase, urease, and β-glucosidase activities were monitored in plant extract-treated soils. Except U. maritima 1:100 treatments of second and fourth applications, the other treatments of plant extracts negatively affected enzymatic activity in soil. U. maritima and E. myrsinites plant extracts exhibited different effects on soil microbial biomass and activity, probably because of their different chemical contents.  相似文献   

16.
The present study was performed under natural environment to assess levels of different heavy metals in soil and Abelmoschus esculentus plants along with soil microbial population irrigated with five rates of distillery effluent (DE) viz. 10, 25, 50, 75 and 100 % concentration in comparison with control (Bore well water). Results revealed that among various concentrations of DE, irrigation with 100 % DE significantly (P < 0.001) increased Zn (+63.46 %), Cu (+292.37 %), Zn (+3763.63 %), Cd (+264.29 %), Ni (+48.39 %) and Cr (+815.74 %), while decreased total bacteria (?45.23 %), fungi (?17.77 %) and actinomycetes (?42.57 %) in the soil. Enrichment factor of various heavy metals for soil was in the order Ni > Cr > Cd > Zn > Cu, and for A. esculentus plants, it was in the order Ni > Cr > Cu > Cd > Zn after irrigation with distillery effluent. The enrichment factor value was found maximum for Ni in comparison to other metals at 100 % DE concentration as compared with BWW. However, the values of these metals were below the recommended permissible limit.  相似文献   

17.
In order to identify the viable option of tillage practices in rice–maize–cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2–C emissions were quantified in between plants and rows throughout the year in rice–maize–cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2–C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4–78.1, 37.1–128.1, and 28.6–101.2 mg m?2 h?1 under CT and 10.7–60.3, 17.3–99.1, and 17.2–79.1 mg m?2 h?1 under MT in rice, maize, and cowpea, respectively. The CO2–C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2–C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2–C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and heterotrophic microbial populations were in the order of maize?>?cowpea?>?rice, irrespective of the tillage treatments. Environmental sustainability point of view, minimum tillage practices in rice–maize–cowpea cropping system in tropical low land soil could be adopted to minimize CO2–C emission, sustain yield, and maintain soil health.  相似文献   

18.
The glyphosate-based herbicide, Roundup®, is one of the most used pesticides worldwide. In concert with the advent of transgenic crops resistant to glyphosate, the use of this pesticide has led to an increase in agricultural yields. The objective of this study was to evaluate the genotoxic effect that the herbicide Roundup® (at a concentration of 6.67 μg/L, corresponding to 3.20 μg/L glyphosate) can have on the fish Corydoras paleatus. Treatment groups were exposed for 3, 6, and 9 days, and effects were analyzed using the piscine micronucleus test (PMT) and comet assay. A group subjected to filtered water only was used as a negative control. The PMT did not show differences between the control and exposed groups for any of the treatment times. In contrast, the comet assay showed a high rate of DNA damage in group exposed to Roundup® for all treatment times, both for blood and hepatic cells. We conclude that for the low concentration used in this research, the herbicide shows potential genotoxic effects. Future research will be important in evaluating the effects of this substance, whose presence in the environment is ever-increasing.  相似文献   

19.
The aim of this study was to characterize soils contaminated by different levels of heavy metals and hydrocarbons (Madonna Dell'Acqua, Pisa, Italy). The soils were chemically and biochemically analysed by measuring the standard chemical properties and some enzyme activities related to microbial activity (dehydrogenase activity) and the soil carbon cycle (total and extracellular beta-glucosidase activities). The metabolic capacities of soil microorganisms to degrade hydrocarbons through catechol 2,3-dioxygenase were also described. The microbial diversity of contaminated and uncontaminated soils was estimated by denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA sequences. The PCR/single-strand conformation polymorphism (PCR/SSCP) method was used to estimate the genetic diversity of PAH-degrading genes in both contaminated and uncontaminated soils. A greater bacterial diversity and lower catechol 2,3-dioxygenase activity was detected in unpolluted soils. The complexity of the microbial community (Shannon and Simpson indices) as well as the dehydrogenase soil activity negatively correlated with contamination levels. The greatest PAH-degrading gene diversity and the most intense catechol 2,3-dioxygenase activity were found in the soils with the highest levels of hydrocarbons. Heavy metals and hydrocarbon pollution has caused a genetic and metabolic alteration in microbial communities, corresponding to a reduction in microbial activity. A multi-technique approach combining traditional biochemical methods with molecular-based techniques, along with some methodological improvements, may represent an important tool to expand our knowledge of the role of microbial diversity in contaminated soil.  相似文献   

20.
In the peri-urban areas of central India, sewage water is a valuable resource for agricultural production. In this study, impact of domestic sewage water irrigation for 5 years on Vertisol with no previous history of sewage irrigation was investigated in an ongoing field experiment at Bhopal (India) under subtropical monsoon type climate. The wheat (Triticum aestivum) crop was grown during post-rainy winter season with 30 cm of irrigation (groundwater or sewage water) and four nutrient treatments (T1, 0; T2, 100%; T3, 50%; and T4, 50% of general recommended doses of NPK + FYM at 10 Mg/ha). Results showed that sewage irrigation of about 150 cm over a period of 5 years resulted significant increases in salinity as well as available fractions of N, P, K, and micronutrients, viz., Zn, Fe, and Mn in soils. Carbon and phosphorus applied through sewage water were accumulated more in subsoil layer compared to topmost plough layer. Soil microbiological activity, as indicated by soil respiration, microbial biomass C, as well as dehydrogenase enzyme activity was higher in sewage water-irrigated soils. There was also significant increase in fungal and actinomycetes as well as total coliform population in such soils. Nutrients supplied through sewage water were not able to raise the productivity of wheat to the level that obtained through fertilizers at the recommended level which indicated that additional nutrients through fertilizers are required to obtain higher productivity of wheat under sewage farming. Protein and Zn content in wheat grains were more when the crop was grown with sewage irrigation. Overall results show that except for increase in coliform population, short duration (5 years) of municipal sewage water irrigation did not have any appreciable harmful effect on soil quality as well as crop productivity; rather, it proved beneficial in improving soil fertility, wheat productivity, and produce quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号