首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some morphological characteristics of the giant kelp Macrocystis pyrifera in the Falkland Islands were studied from December 1985 until March 1987 in a shallow and relatively sheltered coastal zone and from December 1985 until January 1987 in a deeper offshore field exposed to swells. Seasonal fluctuations in lamina wet weight, density and form as well as pneumatocyst wet weight form and stipe density (i.e., wet weight per unit length) paralleled fluctuations in frond wet weight. Morphological differences between canopies of the giant kelp in the coastal zone and the offshore bed were probably mainly due to differences in water movement and depth between the two sites. Laminae and pneumatocysts of submersed-frond sites had different shapes than those of canopy-forming portions of fronds at the same sites, and their internodes were longer.  相似文献   

2.
During 1976 and 1977, movements and foraging activities of Pempheris schomburgki were studied on the shallow coral reefs of northeastern St. Croix, U.S. Virgin Islands. P. schomburgki emerge from daytime refuges on the backreef at about local sunset. Fifteen to 20 min after sunset, local milling groups move beyond the confines of the reef and assemble into larger groups. Twenty-five to 30 min after sunset they move in several waves along complex routes through the reef to forereef feeding grounds. Migrations of up to 1 km occur along the forereef. The reverse sequence occurs in the morning, but is earlier with respect to ambient light levels. The principal stages of these activities appear to be triggered by a combination of absolute light level, rate of change of light and state of adaptation of the eye. Migrating aggregations gradually split up into small, well-dispersed feeding groups, relatively evenly spaced along the forereef. Few individuals feed on the backreef. The principal available food consists of meroplanktonic crustaceans not available during the daytime. P. schomburgki mainly select the larger-sized individuals (mean length 5 to 6 mm), although some particles less than 1 mm are taken. These events probably represent adaptations to optimize diurnal sheltering sites, feeding grounds and the avoidance of predator activity.  相似文献   

3.
It has been hypothesized that herbivorous fishes and the regular echinoidDiadema antillarum Philippi compete for benthic algae as their major food resource. Mass mortality ofD. antillarum in February 1984 provided the opportunity to test the hypothesis that herbivorous fishes and sea urchins were competing previously. Visual censuses of herbivorous fishes conducted over 4 yr in four reef zones on Tague Bay Reef, St. Croix, U.S. Virgin Islands, before and after the mass mortality indicated that population densities increased approximately three-fold in backreef and shallow (2m) forereef zones and two-fold, and four-fold in mid (5m) and deep (10m) forereef zones, respectively. Juvenile parrotfishes constituted the major component of these increases, except in the shallow forereef where acanthurids became most abundant. Grazing intensity by herbivorous fishes increased in three of the four reef zones immediately following the mass mortality. These data support the hypothesis that exploitative competition for algal resources was occurring prior to the sea urchin mass-mortality, although alternative hypotheses cannot be discounted completely. Despite the increases in the abundances of, and grazing by, herbivorous fishes, the algal community continued to increase in percent cover and biomass, indicating that increased grazing by fishes does not compensate for the loss of grazing byD. antillarum in controlling algal abundance and community structure.  相似文献   

4.
The bacteria associated with the surface of fronds of the sublittoral brown alga Laminaria longicruris were investigated over a 13-month period on the coast of Nova Scotia (Canada). A psychrophilic population was found to be associated with the frond during the winter and a mesophilic population with the decaying frond during the summer. Numbers of psychrophiles varied inversely with ambient water temperature, and were present in the greatest number on the eroded tips of fronds. Laminaran hydrolyzing isolates were characteristic of the psychrophilic flora and a group of isolates hydrolyzing mannitol, protein and alginate characteristic of the mesophilic population. Increases in the numbers and proportions of bacteria utilizing plant substrates were found to accompany macroscopic evidence of frond decomposition. A comparison of the bacterial floras of L. longicruris fronds from a sheltered and exposed location showed them to be quantitatively and qualitatively comparable.  相似文献   

5.
Relationships between the duration of antennular attachment of cyprids ofBalanus amphitrite and forces associated with detachment were assessed in a small flume. For six of twelve sets of measurements obtained on separate dates between 27 January and 2 June 1989, drag forces associated with detachment were significantly and positively correlated with duration of attachment within the range 100 to 103 s. In general, the instantaneous drag force exerted on cyprids at detachment was more strongly correlated with duration of attachment than was either the maximum or mean force exerted prior to detachment. Our indirect method of estimating drag forces from shear velocities measured 0.5 cm from cyprids (i.e., 10 body lengths) probably underestimated the true association between detachment force and attachment time since the spatial coherence of shear velocities characterizing turbulent flows in the flume was not strong at these scales. The relationship between attachment time and drag force at detachment suggests that spatial and temporal variability in fluid forces in situ may contribute to stochastic variations in intensities of settlement ofB. amphitrite. Stresses sustained by the antennular adhesive of cyprids ofB. amphitrite were calculated to standardize forces to the area of antennular contact and permit comparisons with similar measurements made onSemibalanus balanoides by other investigators. Stresses sustained by the adhesive ofB. amphitrite were an order of magnitude lower than those reported for the adhesive of the larger cyprids ofS. balanoides. This difference may reflect differences in the stress sustainable by the adhesive secreted onto antennular pads when loaded purely in tension (measured previously) rather than in a combination of shear and tension (calculated here). Alternatively, there may be interspecific differences in the adhesive used for reversible attachment or in behavioral responses of exploring cyprids to strong flow.  相似文献   

6.
The distribution of phenotypic and genetic variation across environments can provide insights into local adaptation. The tropical sea anemone Condylactis gigantea inhabits a broad spectrum of coral-reef habitats and displays a variety of phenotypes, particularly with respect to color. At the coast of Discovery Bay, Jamaica, individuals with either pink or green tentacle tips show distinct distributions. Pink morphs are more abundant in the lagoon and in deeper areas, while green morphs are more abundant in the forereef and in shallower areas. We use DNA sequence data (ITS1-5.8S) to investigate if variation in color is associated with genetic differentiation in lagoon and forereef habitats about 5 km apart. Population genetic analyses reveal two distinct ITS1-5.8S variants, which differ in relative frequency. The two variants are present in both habitats, but a dearth of intermediates suggests reduced gene flow. In the lagoon, but not the forereef, ITS variants show an association with color. In order to address the potential ecological significance of color, we study UV absorbance and UV acclimatization capacities of pink and green color morphs in the lagoon. Color morphs differed significantly in UV-B absorbance. These results suggest genetic and ecological differentiation in the face of gene flow over short distances.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

7.
A number of species of macroalagae possess a flat, strap-like blade morphology in habitats exposed to rapidly-moving water whereas those at protected sites have a wider, undulate blade shape. We have explored the functional consequences of flat, narrow vs. wide, undulate blade morphologies in the giant bull kelpNereocystis luetkeana. Our study focused on the behavior of blades in ambient water currents and the consequences of that behavior to breakage and to photosynthesis. In flowing water, the narrow, flat blades flap with lower amplitude and collapse together into a more streamlined bundle than do wide, undulate blades, and hence experience lower drag per blade area at a given flow velocity. If the algae at current-swept sites had ruffled blades, drag forces would sometimes be sufficient to break the stipes. However, flat blades in a streamlined bundle experience more self-shading than do undulate blades, which remain spread out in water currents. Thus, there is a morphological trade-off between reducing drag and reducing self-shading. Photosynthetic14C-HCO3 uptake rates decrease in slow flow when the boundary layer along the blade surface across which diffusion takes place is relatively thick. However, blade flapping, which stirs water near the blade surface, enhances carbon uptake rates in slow water currents for both the undulate and the flat morphologies.  相似文献   

8.
K. Lüning 《Marine Biology》1969,2(3):218-223
The seasonal growth of the brown alga Laminaria hyperborea (Gunn.) Foslie, which forms dense forests in the sublittoral zone of Helgoland, a rocky island in the Southern North Sea, was investigated by transplanting specimens of medium size onto PVC or wooden plates fixed to sub-tidal grwoth stations. The 2-year study revealed that, during the season of fast growth (January to June), young plants produce each year a new frond, larger in size than in the preceding year. This observation can be interpreted, in part, by assuming that the growth of the young frond is accomplished not only by its own assimilatory surplus, but also by reserve materials of the old frond assimilated during the preceding season of slow growth. This assumption is supported by experimental evidence: (1) Even in complete darkness Laminaria hyperborea is capable of producing a small new frond during the season of fast growth; (2) New fronds with stipe, but without old frond, grow (during the same period) considerably faster than isolated new fronds separated from the possible sources of reserve materials. Maximum growth occurs in normal plants which possess their old frond until April or May.An abbreviated version of this paper has been presented at the Sixth International Seaweed Symposium, held at Santiago de Compostela, Spain, September 9 to 13, 1968.  相似文献   

9.
The capacity for long-distance dispersal is an important factor in determining the spread of invasive species. For algae, positive buoyancy generally is correlated with increased dispersal potential, and the light environment has been previously identified as a possible determinant of buoyancy in several species. We examined the effect of light intensity on the buoyancy of fragments of the invasive green alga Codium fragile ssp. fragile. Under natural and controlled conditions, the buoyancy of samples taken from the thallus tip was higher than those from near the holdfast. Both laboratory and field experiments also showed that buoyancy was dynamic and switched from positive to negative under reduced light intensity, but this change required several days. We also observed seasonal changes in buoyancy, presumably due to natural variations in light intensity, with the buoyancy of fragments washed up on the shore highest in mid-summer. These results show that buoyancy is a dynamic property of the C. fragile ssp. fragile thallus and suggest that buoyant fragments contribute to long-range dispersal and accelerated regional spread of this invader. This finding suggests that dispersal is more likely during conditions of high light intensity and illustrates the need to understand how variations in the natural environment can affect the dispersal potential of invasive species.  相似文献   

10.
An adult giant kelp plant (Macrocystis pyrifera), moved from an inshore kelp forest to an offshore, low-nitrogen environment near Santa Catalina Island, California (USA), maintained growth for 2 wk on internal nitrogen reserves. Frond elongation rates decreased significantly during the third week, and plant growth rate (wet wt) dropped from an initial inshore rate of 3.6 to 0.9% d-1. During this 3 wk period, nitrogen contents and free amino acid concentrations decreased, while mannitol and dry contents increased in frond tissues. After depletion of internal nitrogen reserves, the nitrogen content of lamina and stipe tissues averaged 1.1 and 0.7% dry wt, respectively. The experimental plant was exposed to higher ambient nitrogen concentrations during the last 2 wk. Rates of frond elongation and plant growth increased, but nitrogen content and amino acids in frond tissues remained low. Of the total nitrogen contained in frond tissue of the plant before transplantation, 58% was used to support growth in the absence of significant external nitrogen supply. Amino acids constituted a small proportion of these internal nitrogen reserves. Net movement of nitrogen occurred within large fronds, but not between different frond size classes. The nitrogen content of holdfast tissue remained relatively constant at 2.4% dry wt and accounted for 18 to 29% of the total nitrogen. Holdfast nitrogen was not used to support growth of nitrogen-depleted fronds. In comparison to Laminaria longicruris, which is adapted to long seasonal periods of low nitrogen availability, M. pyrifera has small nitrogen-storage capacity. However, internal reserves of M. pyrifera appear adequate to make nitrogen starvation uncommon in southern California kelp forests.  相似文献   

11.
A survey of translocation in laminariales (Phaeophyceae)   总被引:1,自引:0,他引:1  
A survey of translocation of photoassimilates in 13 genera of Laminariales is presented. All showed long-distance transport of 14C-labeled products from mature source tissue to meristematic sinks (haptera and intercalary growing regions). In plants with several laminae forming one frond, older laminae may provide assimilates for the growth of younger ones, and in Macrocystis spp., where fronds of different ages and developmental stage arise from a common holdfast, mature fronds initiate and support new fronds. Translocation velocities vary from species to species but are in the range of 55 to 570 mm/h. The results strongly support the hypothesis that Laminariales in general have an effective translocation system, on which their thallus growth depends.  相似文献   

12.
An integral model that combines all advantages of Superposition Method (SM), Entrainment Restriction Approach (ERA) and Second Order Approach (SOA) is proposed to predict the mean axial velocity and concentration fields of a group of N interacting vertical round turbulent buoyant jets. SM is successful in predicting the fields of mean axial velocity and mean concentration for a group of N interacting jets or plumes and ERA is advantageous in predicting the above fields for either two or large number (N → ∞) of interacting buoyant jets in the whole range of buoyancy. SOA takes into consideration in a dynamic way the turbulent contribution to the momentum and buoyancy fluxes and provides better accuracy than the usual procedures. A novelty of the proposed model is the production and utilisation of advanced profile distributions, convenient for the mean axial velocities and concentrations in a cross-section of the entire group of buoyant jets. These profiles are developed on the basis of flux conservation of momentum, buoyancy and kinetic energy for the mean motion. They enhance dynamic adaptation of the individual buoyant jet axes to the group centreline. Due to these profile distributions, the present model owns generality of application and better accuracy of predictions compared to usual integral models using simple Gaussian or top-hat profiles; thus it conferred the name Advanced Integral Model (AIM). AIM is herein applied to predict the mean flow properties of two different arrangement types of any number of buoyant jets: (a) linear diffusers and (b) rosette-type risers. Present results are compared to available experimental data and traditional solutions based on Gaussian profiles. Findings may be useful for design purposes and environmental impact assessment.  相似文献   

13.
Over 15 000 coral recruits were counted on settlement plates from three mid-shelf reefs and six fringing reefs in the northern section of the Great Barrier Reef during two summers (1986 and 1987) and one winter (1987). The density of coral recruits on some settlement plates from a fringing reef was up to 4.88 cm–2, the highest value ever reported. Mean density of recruits was greater on fringing reefs (81.1 recruits/settlement plate) than on mid-shelf reefs (15.6 recruits/settlement plate), but there was greater spatial variation in abundance of recruits between the fringing reef sites. Other differences between the mid-shelf reefs and the fringing reefs were that different taxa were dominant, and that settlement orientation differed, with mid-shelf recruits settling preferentially on horizontally oriented surfaces and fringingreef recruits preferring vertical surfaces. Of the three midshelf reefs, Green Island reef recorded the highest recruitment rate for each of the two summers, despite having a depauperate adult coral population following predation by the asteroidAcanthaster planci. This suggests that coral larvae frequently travel between reefs. In contrast with an earlier study, there was no consistent difference in abundance of recruits between forereef and backreef locations. Overall, the results indicated great spatial variation in the availability of coral larvae, both on the scale of whole reefs and within-reef habitats.  相似文献   

14.
Habitat associations are an integral part of coral reef community structure. Commonly, one organism lives in such close association within or near another that a spatial refuge occurs, whereby one of the organisms provides protection to the other. This is often the result of defenses of the host deterring an associate organism’s consumers. In Moorea, French Polynesia, the range and abundance of the brown macroalga, Turbinaria ornata, have increased drastically since 1980 such that dense aggregations of this macroalga are a dominant component of the backreef habitat. Turbinaria ornata is both mechanically and chemically defended from herbivores. Other species of macroalgae grow within aggregations of Turbinaria and may benefit from these defenses. This study investigates whether aggregations of Turbinaria create a refuge from herbivory for associate macroalgae. When Turbinaria aggregations were removed experimentally, there was a significant increase in the number of associate algal species. Moreover, an herbivory assay using the palatable local alga Acanthophora spicifera identified herbivory as the mechanism for lower diversity on bommies lacking Turbinaria aggregations. The local increase in algal richness due to the refuge from herbivory afforded by Turbinaria may be an important contribution to macroalgal and community dynamics on reefs in Moorea, French Polynesia.  相似文献   

15.
The mechanics of buoyant jet flows issuing with a general three-dimensional geometry into an unbounded ambient environment with uniform density or stable density stratification and under stagnant or steady sheared current conditions is investigated. An integral model is formulated for the conservation of mass, momentum, buoyancy and scalar quantities in the turbulent jet flow. The model employs an entrainment closure approach that distinguishes between the separate contributions of transverse shear (leading to jet, plume, or wake internal flow dynamics) and of azimuthal shear mechanisms (leading to advected momentum puff or thermal flow dynamics), respectively. Furthermore, it contains a quadratic law turbulent drag force mechanism as suggested by a number of recent detailed experimental investigations on the dynamics of transverse jets into crossflow. The model is validated in several stages: First, comparison with basic experimental data for the five asymptotic, self-similar stages of buoyant jet flows, i.e., the pure jet, the pure plume, the pure wake, the advected line puff, and the advected line thermal, support the choice and magnitude of the turbulent closure coefficients contained in the entrainment formulation. Second, comparison with many types of non-equilibrium flows support the proposed transition function within the entrainment relationship, and also the role of the drag force in the jet deflection dynamics. Third, a number of spatial limits of applicability have been proposed beyond which the integral model necessarily becomes invalid due to its parabolic formulation. These conditions, often related to the breakdown of the boundary layer nature of the flow, describe features such as terminal layer formation in stratification, upstream penetration in jets opposing a current, or transition to passive diffusion in a turbulent ambient shear flow. Based on all these comparisons, that include parameters such as trajectories, centerline velocities, concentrations and dilutions, the model appears to provide an accurate and reliable representation of buoyant jet physics under highly general flow conditions.  相似文献   

16.
The photosynthetic responses of the south Pacific kelp Lessonia nigrescens of the coast of Valdivia, Chile (40°S), were investigated by exposing its different thallus parts, fronds, stipes and holdfasts, to UV radiation in the laboratory. Biologically effective doses (BEDphotoinhibition300) between 400 and 800 kJ m−2 were required for a 40% inhibition in photosynthesis under UVA+UVB radiation. At BEDphotoinhibition300 close to 250 kJ m−2 (in treatments without UVB), the inhibition of photosynthesis did not exceed 20%. These UV doses were in the range of current daily doses measured in Valdivia on cloudless summer days. In general, exposure to UVB for periods longer than 12 h reduced photosynthesis, measured as maximal quantum yield (F v/F m) and electron transport. The fronds were the most UV-sensitive section of this alga, coinciding with the highest pigments contents and carbon fixation. Evidence of a photodamage was also seen. After a 48 h exposure to PAR+UVA+UVB, a decrease of F v/F m in the fronds was close to 41%, while in the stipes and holdfasts it was 12 and 18%, respectively. Although the thalli from the different size classes showed marked differences in their morphology and morphometry, no obvious differences in the UV tolerance of the fronds were detected. The results indicated that the UV-related responses are integrated in the suite of morpho-functional adaptations of the alga. Although the fronds are spatially more exposed to solar radiation than basal structures (stipes and holdfast), due their high turnover rate they may compensate better detrimental effects of UV. In contrast, stipes and the holdfast are key support structures characterized by low replacement rates and designed to confer hydrodynamic resistance to drag forces.  相似文献   

17.
This study deals with meiofauna associated with a sublittoral population of the kelp Laminaria ochroleuca located on the northern coast of Spain. By sampling once a year over a 4-year period, we examined patterns of faunal distribution as a function of some environmental factors at the meso-scale level (depth, and exposure to waves and surge). We also examined the relationship between L. ochroleuca abundance (as dry weight biomass and number of plants per sampling quadrat) and abundance and diversity of meiofauna. Finally, we investigated patterns of within-plant distribution (algal frond vs. algal holdfast), using also the meiofauna of the adjacent bottom as a referent to estimate the level of "phytal dependence" of the meiofauna collected on L. ochroleuca. We found that the bulk of permanent meiofauna consisted of nematodes, copepods, mites, polychaetes, tanaids and ostracods, with copepods being predominant on the fronds of the alga and nematodes in the holdfasts. The temporary meiofauna consisted of juvenile amphipods, bivalves and gastropods, together with barnacle nauplii and cyprids. Abundance and major composition of meiofaunal taxa were unrelated to both depth and hydrodynamic exposure of the sampling quadrats. However, we detected significant qualitative and quantitative faunal differences as a function of microhabitat. All meiofaunal groups were more abundant in holdfast samples than in frond and bottom samples. The gross taxonomic composition of meiofauna in bottom samples was similar to that in holdfast samples, but substantially different from that of meiofauna associated with the fronds. The L. ochroleuca holdfasts, in which dense aggregations of meiofauna can occur, appear to function as ecotone between phytal and rocky-bottom microhabitats. All together, our results suggest that the distribution of meiofauna within the Laminaria bed is mostly affected by factors operating at the microhabitat level rather than the meso-scale level.Communicated by L. Hagerman, Helsingør  相似文献   

18.
Seasonal changes in ambient NO 3 and NH 4 + , tissue composition (N, C, and C/N ratio), and frond growth rates for Macrocystis pyrifera (L.) Agardh were examined. Ambient NO 3 showed distinct seasonal variations. Frond growth rates were variable, but showed no clear correlation to ambient NO 3 . The average N content of plant tissue did, however, show the same seasonal variations as ambient NO 3 . The longitudinal distribution of total tissue N and various components of tissue N along fronds were also analyzed. Several distinct patterns were found: high levels of protein N at growing tips and elevated levels of soluble N in lower parts of the frond. Free amino acids accounted for a major portion of the soluble N, but neither NO 3 nor NH 4 + accumulated in the plant tissue. The longitudinal distribution of N along the fronds is compared to reported variations in C metabolism, and it is concluded that C and N sourcesink relations do not always coincide and bidirectional translocation may occur.  相似文献   

19.
The tropical and subtropical marine green alga Caulerpa taxifolia has invaded several temperate regions throughout the world, including southeastern Australia. In this study, I examined how invasive C. taxifolia from temperate southeastern Australia differed from native C. taxifolia from subtropical Moreton Bay, Australia, in the traits proposed as being important to its invasion success: thallus size and density, levels of asexual reproduction (fragmentation) and total biomass. Against the prediction of a large size for invasive C. taxifolia, native populations from Moreton Bay had larger stolons and fronds than invasive populations. However, invasive populations consistently had much higher densities of stolons, fronds and fragmented fronds; and a greater biomass compared to native populations. Average densities at invasive sites exceeded 4,700 stolons and 9,000 fronds/m2 and were as high as 27,000 stolons and 95,000 fronds/m2, which are the highest reported for C. taxifolia anywhere. Average densities of fragmented fronds at invasive sites were as high as 6,000/m2 and up to 45% of all stolons at invasive sites could be directly linked to asexual recruitment via fragmented fronds. Importantly, at invasive locations there was a strong association between asexual reproduction and abundance demonstrated by positive correlations between the density of fragmented fronds and total biomass. These findings are the first to describe quantitative differences between native and invasive C. taxifolia and to demonstrate a link between the high levels of asexual reproduction and high abundance in invasive populations. Although the causes and consequences of high levels of asexual reproduction remain to be explored, this study suggests that changes in demographic and life-history traits during the invasion by C. taxifolia into temperate habitats may contribute to its success there.Communicated by M. S. Johnson, Crawley  相似文献   

20.
The morphology and shape of algae can affect their survival in wave-swept environments because of the hydrodynamic drag created by water flow. Studies of morphology and drag are typically conducted at relatively low water velocities, and the influence of algal morphology on drag, over the range of water velocities algae must cope with in their natural environment, remains unclear. Here, we tested the link between morphological variation and hydrodynamic drag for a dominant kelp with complex morphology (Ecklonia radiata), over a range of water velocities representative of conditions on wave-swept reefs. Our results indicated that kelps on subtidal reefs must withstand maximal orbital water velocities in excess of 2–3 m s?1. Our measurements of drag, resulting from flows ranging from 1 to 3 m s?1, revealed that shape- and width-related thallus and lamina characters were important to drag at low speed, but that total thallus area (or biomass) was the main determinant of drag at high flow. Drag coefficients converged at increasing speed suggesting that, at high flow, significant thallus reconfiguration (more streamlined shape) decoupled drag from morphology. This implies that, at peak velocities, only size (total area), not morphology, is important to drag and the probability of dislodgment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号