首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biodegradation of phenols (5, 60, 600 mg l−1) under anaerobic conditions (nitrate enriched and unamended) was studied in laboratory microcosms with sandstone material and groundwater from within an anaerobic ammonium plume in an aquifer. The aqueous phase was sampled and analyzed for phenols and selected redox sensitive parameters on a regular basis. An experiment with sandstone material from specific depth intervals from a vertical profile across the ammonium plume was also conducted. The miniature microcosms used in this experiment were sacrificed for sampling for phenols and selected redox sensitive parameters at the end of the experiment. The sandstone material was characterized with respect to oxidation and reduction potential and Fe(II) and Fe(III) speciation prior to use for all microcosms and at the end of the experiments for selected microcosms.The redox conditions in the anaerobic microcosms were mixed nitrate and Fe(III) reducing. Nitrate and Fe(III) were apparently the dominant electron acceptors at high and low nitrate concentrations, respectively. When biomass growth is taken into account, nitrate and Fe(III) reduction constituted sufficient electron acceptor capacity for the mineralization of the phenols observed to be degraded even at an initial phenols concentration of 60 mg l−1 (high) in an unamended microcosm, whereas nitrate reduction alone is unlikely to have provided sufficient electron acceptor capacity for the observed degradation of the phenols in the unamended microcosm.For microcosm systems, with solid aquifer materials, dissolution of organic substances from the solid material may occur. A quantitative determination of the speciation (mineral types and quantity) of electron acceptors associated with the solids, at levels relevant for degradation of specific organic compounds in aquifers, cannot always be obtained. Hence, complete mass balances of electron acceptor consumption for specific organic compounds degradation are difficult to confine. For aquifer materials with low initial Fe(II) content, Fe(II) determinations on solids and in aqueous phase samples may provide valuable information on Fe(III) reduction. However, in microcosms with natural sediments and where electron acceptors are associated with the sediments, complete mass-balances for substrates and electron acceptors are not likely to be obtained.  相似文献   

2.
The environmental fate of ethylenediaminetetraacetic acid (EDTA) has been extensively studied, while much less is known about the environmental behaviour of diethylenetriaminepentaacetic acid (DTPA). In this study, it was confirmed that DTPA is persistent toward biodegradation. The biodegradability of DTPA was investigated in the absence and in the presence of Fe(III) by using CO2 evolution test and Manometric respirometry test. The CO2 evolution and oxygen uptake of iron-free (DTPA was added as free acid) and Fe(III)DTPA were less than in inoculum blank. Possible inhibitor effect was analysed by testing biodegradation of sodium benzoate with and without iron-free or Fe(III)DTPA in the Manometric respirometry test. Only slight inhibition was observed when DTPA was added as free acid. Photodegradation of iron-free DTPA and Fe(III)-DTPA complex was studied by using sunlight and UV radiation at the range 315-400 nm emitted by black light lamps. The results indicate that DTPA added as free acid degrades photochemically in humic lake water. Fe(III)DTPA was shown to be very photolabile in humic lake water in the summer; the photochemical half-life was below one hour. Photodegradation products were identified by the mass spectrometric technique (GC-MS). It was shown that photodegradation of Fe(III)DTPA does not result in total mineralization of the compound. Diethylenetriaminetetraacetic acid, diethylenetriaminetriacetic acid, ethylenediaminetriacetic acid, N,N'- and/or N,N-ethylenediaminediacetic acid, iminodiacetate, ethylenediaminemonoacetic acid and glycine were identified as photodegradation products of Fe(III)DTPA. Based on these observations, we propose a photodegradation pathway for Fe(III)DTPA.  相似文献   

3.
A historical input of trace metals into tidal marshes fringing the river Scheldt may be a cause for concern. Nevertheless, the specific physicochemical form, rather than the total concentration, determines the ecotoxicological risk of metals in the soil. In this study the effect of tidal regime on the distribution of trace metals in different compartments of the soil was investigated. As, Cd, Cu and Zn concentrations in sediment, pore water and in roots were determined along a depth profile. Total sediment metal concentrations were similar at different sites, reflecting pollution history. Pore water metal concentrations were generally higher under less flooded conditions (mean is (2.32 ± 0.08) × 10−3 mg Cd L−1 and (1.53 ± 0.03) × 10−3 mg Cd L−1). Metal concentrations associated with roots (mean is 202.47 ± 2.83 mg Cd kg−1 and 69.39 ± 0.99 mg Cd kg−1) were up to 10 times higher than sediment (mean is 20.48 ± 0.19 mg Cd kg−1 and 20.42 ± 0.21 mg Cd kg−1) metal concentrations and higher under dryer conditions. Despite high metal concentrations associated with roots, the major part of the metals in the marsh soil is still associated with the sediment as the overall biomass of roots is small compared to the sediment.  相似文献   

4.
Samples from 75 sample locations in a landfill leachate pollution plume reveal a significant disappearance of specific organic compounds (SOC's) within the first 100 m of the plume. Only the herbicide Mecoprop® (MCPP) migrates further. Since sorption and dilution cannot account for the decreasing concentrations, degradation is considered to be the governing process. Non-volatile organic carbon shows a corresponding fate probably acting as a substrate for the microbial processes. The first 20 m of the plume are methanogenic/sulfidogenic, judged on the chemistry of the groundwater, followed by a significant ferrogenic zone exhibiting a substantial capacity to degrade the SOC's. The presence of intermediary products (here an oxidized camphor compound) supports the concept of degradation within the ferrogenic zone. This investigation draws the attention to the significant natural attenuation of organic contaminants and to the so far neglected ferrogenic zone in controlling the fate of organic contaminants in leachate plumes.  相似文献   

5.
Ou X  Chen S  Quan X  Zhao H 《Chemosphere》2008,72(6):925-931
Relationship between the photoinductive activity and the properties of humic acids (HA) fractions were investigated with and without Fe(III). Three fractions were separated based on the molecular weight (M(w)) and were obtained following the order of M(w): F(A)>F(B)>F(C). Compared to F(A) and F(B), photodegradation of atrazine under simulated sunlight was much faster in solution containing F(C), whose structure was dominated by greater aromaticity, more oxygen groups and fluorophores. The interaction of HA fractions and Fe(III) was studied using fluorescence spectrometry and F(C) had the largest quenching constant. The capacity of electron transfer, estimated from the amount of photoformed Fe(II), was also highest for F(C). Thus, the Fe(III)-F(C) complex was efficient in phototransformation of atrazine in nearly neutral aqueous solutions. These results suggest that the aromaticity and oxygen groups content of HA exert great influence on the binding ability of metals and on the fate of pollutants in natural waters.  相似文献   

6.
The attenuation of bulk organic matter and trace organic contaminants (TOrCs) was evaluated for various aquifer recharge and recovery (ARR)-ozone (O3) hybrid treatment process combinations using soil-batch reactor and bench-scale ozonation experiments as a proof of concept prior to pilot and/or field studies. In water reclamation and especially potable reuse, refractory bulk organic matter and TOrCs are of potential health concern in recycled waters. In this study, the role of biotransformation of bulk organic matter and TOrCs was investigated considering different simulated treatment combinations, including soil passage (ARR) alone, ARR after ozonation (O3-ARR), and ARR prior to ozonation (ARR-O3). During oxic (aerobic) ARR simulations, soluble microbial-like substances (e.g., higher molecular weight polysaccharides and proteins) were easily removed while (lower molecular weight) humic substances and aromatic organic matter were not efficiently removed. During ARR-ozone treatment simulations, removals of bulk organic matter and TOrCs were rapid and effective compared to ARR alone. A higher reduction of effluent-derived organic matter, including aromatic organic matter and humic substances, was observed in the ARR-O3 hybrid followed by the O3-ARR hybrid. An enhanced attenuation of recalcitrant TOrCs was observed while increasing the ozone dose slightly (O3: DOC = 1). TOrC removal efficiency also increased during the post-ozone treatment combination (i.e., ARR-O3). In addition, the carcinogenic wastewater disinfection byproduct N-nitrosodimethylamine (NDMA) was eliminated below the method reporting limit (<5 ng L−1) both during ARR treatment alone and the ARR-ozone hybrid.  相似文献   

7.
Slag arising in ferrochromium and stainless steel production is known to contain residual levels of trivalent chromium. As the chromium is normally bound in the slag matrix in various silicate or spinel phases, and hence not easily mobilised, utilisation or controlled disposal of such slag is generally considered unproblematic. Experimental test work with a number of slag materials indicates, however, that very gradual oxidation of trivalent to hexavalent chromium does occur when the slag is exposed to atmospheric oxygen, rendering a quantifiable but small portion of chromium in this much more mobile and toxic form. Mechanisms and rates of the oxidation reaction were investigated in a number of long-term studies using both original slag materials and artificial mixes of chromium and calcium oxides. Powders of these materials, some of them rolled into balls, were left to age under different conditions for periods of up to 12 months. In the slag samples, which contained between 1 and 3 wt.% chromium, 1000–10 000 μg Cr(VI) were found per gram of chromium within 6–9 months of exposure to an ambient atmosphere. The rate of the oxidation reaction decreased exponentially, and the reaction could generally be said to have ceased within 12 months. In mixtures of calcium and chromium oxides the oxidation reaction is presumed to occur at the boundaries between chromium oxide and calcium oxide phases through diffusion of oxygen along the grain boundaries and of Cr3+ across the boundaries, resulting in the formation of calcium chromate. In the slags, where calcium and chromium oxide can form a solid solution, the oxidation is likely to occur at the exposed surface of grains containing this solution.  相似文献   

8.
This article reports on a field modelling study to investigate the processes controlling the plume evolution of para-toluenesulfonamide (p-TSA) in anoxic groundwater in Berlin, Germany. The organic contaminant p-TSA originates from the industrial production process of plasticisers, pesticides, antiseptics and drugs and is of general environmental concern for urban water management. Previous laboratory studies revealed that p-TSA is degradable under oxic conditions, whereas it appears to behave conservatively in the absence of oxygen (O2). p-TSA is ubiquitous in the aquatic environment of Berlin and present in high concentrations (up to 38 μg L?1) in an anoxic aquifer downgradient of a former sewage farm, where groundwater is partly used for drinking water production. To obtain refined knowledge of p-TSA transport and degradation in an aquifer at field scale, measurements of p-TSA were carried out at 11 locations (at different depths) between 2005 and 2010. Comparison of chloride (Cl?) and p-TSA field data showed that p-TSA has been retarded in the same manner as Cl?. To verify the transport behaviour under field conditions, a two-dimensional transport model was setup, applying the dual-domain mass transfer approach in the model sector corresponding to an area of high aquifer heterogeneity. The distribution of Cl? and p-TSA concentrations from the site was reproduced well, confirming that both compounds behave conservatively and are subjected to retardation due to back diffusion from water stagnant zones. Predictive simulations showed that without any remediation measures, the groundwater quality near the drinking water well galleries will be affected by high p-TSA loads for about a hundred years.  相似文献   

9.
Iron-catalyzed oxidation of As(III) to As(V) can be highly effective for toxic arsenic removal via Fenton reaction and Fe(II) oxygenation. However, the contribution of ubiquitous organic ligands is poorly understood, despite its significant role in redox chemistry of arsenic in natural and engineered systems. In this work, selected naturally occurring organic ligands and synthetic ligands in co-oxidation of Fe(II) and As(III) were examined as a function of pH, Fe(II), H2O2, and radical scavengers (methanol and 2-propanol) concentration. As(III) was not measurably oxidised in the presence of excess ethylenediaminetetraacetic acid (EDTA) (i.e. Fe(II):EDTA < 1:1), contrasting with the rapid oxidation of Fe(II) by O2 and H2O2 at neutral pH under the same conditions. However, partial oxidation of As(III) was observed at a 2:1 ratio of Fe(II):EDTA. Rapid Fe(II) oxidation in the presence of organic ligands did not necessarily result in the coupled As(III) oxidation. Organic ligands act as both iron speciation regulators and radicals scavengers. Further quenching experiments suggested both hydroxyl radicals and high-valent Fe species contributed to As(III) oxidation. The present findings are significant for the better understanding of aquatic redox chemistry of iron and arsenic in the environment and for optimization of iron-catalyzed arsenic remediation technology.  相似文献   

10.
Environmental Science and Pollution Research - The photochemical role of Fe(III)-citrate complex is significant in natural waters due to its ubiquitous existence and excellent photoreactivity at...  相似文献   

11.
Lee C  Yoon J 《Chemosphere》2004,57(10):1449-1458
The determination of quantum yields for the photolysis of Fe(III)-hydroxo complexes is important for the quantitative investigation of hydroxyl radical (*OH) production, not only in a natural water body, but also in the photo-Fenton process. A novel kinetic method, using a *OH probe compound, was established for the determination of the quantum yields in this study. The method was based on measuring the pseudo-first-order rate constant of the photodecomposition of dimethylsulfoxide (DMSO) in which DMSO and its primary products scavenged the *OH at an identical rate. The preliminary experiments for the photodecomposition kinetics supported the suitability of DMSOs as a probe compound for determining quantum yields. The individual quantum yields for the photolysis of the monomeric Fe(III) complexes, in the wavelength range 240-380 nm, were determined by the photodecomposition kinetics of the hydroxyl radical (*OH) probe compound (DMSO). The determined values of the individual quantum yields were 0.046+/-0.00052 for Fe3+ (H2O)6 (hexaaquo ion) and 0.69+/-0.025 for Fe(OH)2+ (H2O)5 (hydroxypentaaquo ion) at 254 nm, and showed decreasing values with increasing wavelength, in the ranges of 240-380 nm. The quantum yields between 240 and 280 nm were newly reported in this study, and the values obtained between 280 and 380 nm were in good agreement with the literature values.  相似文献   

12.
Huang L  Dong W  Zhang R  Hou H 《Chemosphere》2007,66(5):833-840
In this paper, we addressed the utilization of photochemical method as an innovative technology for the destruction and removal of two potent greenhouse gases, SF(6) and SF(5)CF(3). The destruction and removal efficiency (DRE) of the process was determined as a function of excitation wavelength, irradiation time, initial ratio of acetone to SF(5)X (X represented F or CF(3)), initial SF(5)X concentration, additive oxygen and water vapor concentration. A complete removal was achieved by a radiation period of 55min and 120min for SF(6)-CH(3)COCH(3) system and SF(5)CF(3)-CH(3)COCH(3) system respectively under 184.9nm irradiation. Extra addition of water vapor can enhance DRE by approximately 6% points in both systems. Further studies with GC/MS and FT-IR proved that no hazardous products such as S(2)F(10), SO(2)F(2), SOF(2), SOF(4) were generated in this process.  相似文献   

13.
Song HP  Li XG  Sun JS  Xu SM  Han X 《Chemosphere》2008,72(4):616-621
In this study, the feasibility of applying a magnetotactic bacterial isolate (MTB), Stenotrophomonas sp. to the removal of Au(III) was investigated. Biosorption experiments showed that Au(III) biosorption capacity exhibited no significant difference in the initial pH range of 1.0-5.5, while decreased more significantly in the initial pH range of 5.5-13.0. Langmuir isotherm indicated that the maximum Au(III) biosorption capacity of Stenotrophomonas sp. were 506, 369 and 308 mg g(-1) dry weight biomass at the initial pH values of 2.0, 7.0 and 12.0, respectively. Thiourea was proved to be an effective desorbent to recover Au from the MTB biomass and 91% Au adsorbed on the biomass could be recovered at equilibrium when the thiourea concentration was 0.8M. The magnetic separator developed by our research team used for separating Au loaded MTB biomass showed high separation efficiency, with 100% biomass removed at the magnetic intensity of 1200 Gs in 180 min. The analyses from FTIR and XRD further confirmed that the reduction of Au(III) to Au(0) by the reductants on the MTB biomass occurred, and the deposition of nano-crystal Au(0) particles, ranging from 24.7 to 31.4 nm, could be estimated on the biomass surface.  相似文献   

14.
The migration behavior of U(IV) and U(VI) in the presence of humic acid was studied in a quartz sand system. Laboratory column experiments were performed using humic acid, U(VI) in humic acid absence, U(IV) and U(VI) in humic acid presence, and for comparison a conservative tracer. In experiments using humic acid, both redox species of U migrate nearly as fast as the conservative tracer. Humic acid accelerates the U(VI) breakthrough compared to the humic acid-free system. There are strong indications for a similar effect on the U(IV) transport. At the same time, a part of U(IV) and U(VI) associated with the humic acid is immobilized in the quartz sand due to humic colloid filtration thus producing a delaying effect. Tailing at a low concentration level was observed upon tracer elution. The experimental breakthrough curves were described by reactive transport modeling using equations for equilibrium and kinetic reactions. The present study demonstrates that humic acids can play an important role in the migration of actinides. As natural organic matter is ubiquitous in aquifer systems, the humic colloid-borne transport of actinides is of high relevance in performance assessment.  相似文献   

15.
Intention, Goal, Scope, Background The effect of chloride concentration and pH on the UV oxidation systems was examined. Phenol and methanol were used as organic substances. The treatment of these chemicals by UV oxidation using a newly developed lab scale pretest UV-Free Surface Reactor (UV-FSR) with and without Cl– addition at different pH values, is evaluated. Results of this study indicated that the Cl– concentration of the water and the chemical structure of the substances is more important than the pH of the water. There was no AOX at the beginning of the experiments, but a de-novo synthesis of AOX was observed during the batch experiments. This is caused by the high chloride content of the wastewaters. It can be supposed that OHradicals oxidize some chloride-ions to form chlorine, which further reacts with organic compounds. During the treatment, these AOX compounds which are produced from the beginning of the reaction are destroyed again. Evaluations of these experiments were done according to TOC and AOX results. Approximately 80% and 99% TOC removal efficiencies were obtained for the treatment of Phenol and Methanol-containing wastewaters, respectively. Objective In the literature, there are no relevant publications concerning the AOX formation of wastewater by wet oxidation- iron catalysed or by application of UV. For that reason, the main objectives of this study were: 1. to see the influence of chloride concentration and pH on the AOXde-novo formation with newly developed UV-Free Surface Reactor (UV-FSR), 2. to make a comparison of different AOPs, 3. to observe the effect of the chloride concentration on the TOC degradation efficiency, 4. to optimise reaction conditions. Methods In synthetic wastewaters, Methanol (CH3OH) and Phenol (C6H5 OH) are used as pollutants. The concentration of each substance was 1000 mg/l and COD values were calculated theoretically. The H2O2 addition was calculated according to the COD with a convenient stoichiometric factor (e.g. 1). During experiments, the pH was always kept constant with the addition of either 25% H2SO4 or 33% NaOH depending on the experimental conditions. Each substance was treated with the addition of 1000 mg/l Cl–, 10000 mg/l Cl– and without Cl– addition at pH 3, pH 7 and pH 10, respectively. NaCl was used as a Cl– source. Adsorbable Organic Halogenides (AOX) were determined using a TOX analyser (European Standard EN 1485 H 14, 1996). TOC measurements were carried out using an Elementar High TOC Analyzer equipped with an auto sampler. The H2O2 concentration was measured according to German Standard Methods (DIN 38409, Part 15, 1987). Results and Discussion The first step was to determine the effect of pH on the AOX formation in the process. Therefore, experiments were carried out at three different pHs: acidic (pH 3), neutral (pH 7) and basic (pH 10) conditions at a constant initial Methanol concentration of 1000 mg/l and a hydrogen peroxide concentration of 3185 mg/l (1 x stoichiometric). All results were evaluated according to applied pH. At these conditions, the amount of H2O2 (53 ml / 10 l) concentration was nearly zero after 1 hour batch treatment of Methanol. There was no AOX at the beginning of the experiments, but the AOX value increased after 6–18 min. At the end of 1 hour batch treatment this produced AOX was treated again. The maximum AOX production was obtained with the addition of 10000 mg/l Cl–, whereas there is no AOX production during the experiment when Cl– was not used. In all studies, however, TOC values decreased to almost zero after 1 hour batch treatment. After the experiments with Methanol, Phenol treatment was carried out at different pHs as a second experiment. pH was kept constant with the addition of either H2SO4 or NaOH depending on the experimental conditions. During experiments with Phenol, the colour of the water changed from colourless to a yellowish- red. After 1 hour treatment, the colour of the water was red. Therefore, these experiments were continued until the water became colourless again, and this took about 5 hours. Although there was no AOX at the beginning of the experiments, it increased after 30 min to 1 hour oxidation with the addition of 1000 mg/l Cl– and 10000 mg/l Cl–. There was no AOX production during the experiments when Cl– was not added. At the end of 5 hours of treatment, formed AOX was degraded and the TOC concentration decreased from 766 mg/l to approximately 200 mg/l. Conclusion. These experiments of this study showed that the effects of Cl– concentration of the water and the chemical structure of the substances is more than that of the pH on the AOX formation. During the batch experiments, a de-novo synthesis of AOX was observed very impressively due to the high chloride content of the wastewaters. It can be implied that OH-radicals oxidize some chloride-ions to form chlorine, which further reacts with organic compounds so that AOXde-novo is formed. At the end of the reaction times these AOX compounds are also destroyed. Recommendation and Outlook It is more cost effective to use these processes for only purposes such as toxicity reduction, enhancement of biodegradability, decolourisation and removal of micropollutants. However, the most important point is the optimization of the reaction conditions for the process of concern. The AOP applied can be used, for instance, for AOX reduction and TOC removal of industrial wastewaters.  相似文献   

16.

Background, aim, and scope

This study demonstrated the adsorption capacity of microcystin-LR (MC-LR) onto sediment samples collected from different reservoirs (Emerald and Jade reservoirs) and rivers (Dongshan, Erhjen, and Wukai rivers) in Taiwan to investigate the fate, transport behavior, and photodegradation of MC-LR.

Main features

Langmuir adsorption and photodegradation studies were carried out in the laboratory and tested the capability of sediments for MC-LR adsorption. These data suggested that sediments play a crucial role in microcystins degradation in aquatic systems.

Results and discussion

The results of batch experiments revealed that the adsorption of MC-LR varied significantly with texture, pH, and organic matter content of sediments. Silty and clay textures of the samples were associated with larger content of organic matter, and they displayed the enhanced MC-LR adsorption. Low pH sediment showed increased adsorption of MC-LR. The effective photodegradation of MC-LR (1.6 ??g/mL) was achieved within 60 min under 254 nm light irradiation.

Conclusion

A comparative study of adsorption capacity of all sediment samples was carried out and discussed with respect to different aspects. Among all, sediments collected from Jade reservoir showed enhanced MC-LR adsorption (11.86 ??g/g) due to favored textural properties (BET surface area = 20.24 m2/g and pore volume = 80.70 nm).

Perspectives

These data provide important information that may be applied to management strategies for improvement of water quality in reservoirs and rivers and other water bodies in Taiwan.  相似文献   

17.
Redox cycling of Fe(II)/Fe(III) during the catalyzed aqueous S(IV) oxidation by dissolved oxygen in the presence of Fe(II) and/or Fe(III) at an initial pHi of 4.4, often observed in atmospheric waters, was studied in detail. It has been found that the reaction rate is not considerably affected by the oxidation state of iron at the start of the reaction. An equilibrium between Fe(II) and Fe(III) was established a few minutes after the start of the reaction, regardless of the oxidation state of iron at the beginning of the experiment. The prevailing oxidation state of iron in a particular phase of the reaction depends on the concentration of S(IV) in the reaction solution. It has been found that the formation of polymerized hydroxo Fe(III) species is also included in the mechanism of the Fe-catalyzed oxidation of S(IV). The formation of these species was confirmed by the on-line measurement of Fe(II) and Fereac. The results also clearly demonstrate that the pHi of the solution is a major factor, controlling the concentration of Fe(III) ions, the form of S(IV) species, and consequently the reaction rate of S(IV) oxidation by oxygen.  相似文献   

18.
19.
On the basis of a recent epidemiological study it is hypothesized that pyrite content in coal is an important factor in coal workers’ pneumoconiosis (CWP) pathogenesis. While the role of pyrite in pathogenesis remains to be resolved, the ability of the mineral to generate reactive oxygen species (ROS) through various mechanisms is likely a contributing factor. The aim of this study was to elucidate the importance of the pyrite content of coal in generating an inflammatory stress response (ISR), which is defined as the upregulation of ROS normalized by cell viability. The ISR of A549 human lung epithelial cells in the presence of natural coal samples with variable pyrite contents was measured. Normalized to surface area, five particle loadings for each coal reference standard were analyzed systematically for a total of 24 h. The ISR generated by coals containing 0.00, 0.01, and 0.49 wt.% pyritic sulfur is comparable to,though less than, the ISR generated by inert glass beads (299% of the control). The coals containing 0.52 and 1.15 wt.% pyritic sulfur generated the greatest ISR (798% and 1426% of the control, respectively).  相似文献   

20.
The Republic of Korea found dioxin at concentrations exceeding the Korean maximum residue limit (MRL) in pork (2 pg TEQ g−1 fat) imported from Chile in June 2008. Korea and Chile collaborated and investigated to find out the sources of contamination. An isotope dilution method and high resolution gas chromatography/mass spectrometry (HR-GC/MS) were used for the analysis of PCDD/Fs. PCDD/Fs were found from 2.17 to 36.7 pg TEQ g−1 fat from Chilean pork. 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, and 2,3,4,6,7,8-HxCDF were found as the major congeners in pork samples. 2,3,4,7,8-PeCDF showed the highest concentration and contributed about 30% among the congeners in most of the samples. 2,3,7,8-TCDD, 1,2,3,7,8,9-HxCDD, OCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF, 1,2,3,7,8,9-HxCDF, and OCDF were not detected or exist at background levels in the less contaminated samples. Remarkably high concentrations of PCDD/Fs were found in samples of zinc oxide (17 147 pg TEQ g−1), zinc oxide based premix (6673 pg TEQ g−1), and the residue crust (800 pg TEQ g−1) in a mixing chamber in the feed mill. From the results of various investigations, this case concluded that zinc oxide in the feed was the major source of the dioxin contamination in pork. The dioxins were formed from a metal refinery process to collect zinc oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号