首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, recalcitrant, and potentially carcinogenic pollutants. Plants and their associated rhizosphere microbes can promote PAH dissipation, offering an economic and ecologically attractive remediation technique. This study focused on the effects of different types of vegetation on PAH removal and on the interaction between the plants and their associated microorganisms. Aged PAH-polluted soil with a total PAH level of 753 mg kg(-1) soil dry weight was planted with 18 plant species representing eight families. The levels of 17 soil PAHs were monitored over 14 mo. The size of soil microbial populations of PAH degraders was also monitored. Planting significantly enhanced the dissipation rates of all PAHs within the first 7 mo, but this effect was not significant after 14 mo. Although the extent of removal of lower-molecular-weight PAHs was similar for planted and unplanted control soils after 14 mo, the total mass of five- and six-ring PAHs removed was significantly greater in planted soils at the 7- and 14-mo sampling points. Poaceae (grasses) were the most effective of the families tested, and perennial ryegrass was the most effective species; after 14 mo, soils planted with perennial ryegrass contained 30% of the initial total PAH concentration (compared with 51% of the initial concentrations in unplanted control soil). Although the presence of some plant species led to higher populations of PAH degraders, there was no correlation across plant species between PAH dissipation and the size of the PAH-degrading population. Research is needed to understand differences among plant families for stimulating PAH dissipation.  相似文献   

2.
Papermill biosolids (PB) can provide multiple benefits to the soil system. The purpose of this study was to quantify the effects of a high C/N ratio (C/N = 100) de-inked PB on soil physical and chemical properties, including soil bulk density, infiltration rates, wet aggregate stability, total soil carbon, and heavy metal concentrations. Four rates of PB (0, 50, 100, and 150 Mg ha(-1)) were applied annually, for up to 3 yr, on four agricultural soils in Ontario, Canada. Decreases in soil bulk density between 0.27 and 0.35 g cm(-3), relative to the nonamended treatment, were observed in soils receiving PB treatments over 3 yr. Total soil carbon increased within 1 yr on PB-amended soils planted to soybeans but not on soils planted to corn. Hydraulic conductivities (K fs) were greater in all soils receiving PB amendments relative to the nonamended treatment throughout the study. Other properties measured, such as pH and electrical conductivity, were relatively unchanged after 2 yr of PB applications. While some increases in heavy metal accumulation occurred, there were no clear trends observed at any of the sites related to PB rates. The results of this study provide support to the idea that annual applications of PB can add significantly to the stability of soil structure.  相似文献   

3.
Laws mandating phosphorus (P)-based nutrient management plans have been passed in several U.S. Mid-Atlantic states. Biosolids (sewage sludge) are frequently applied to agricultural land and in this study we evaluated how biosolids treatment processes and biosolids P tests were related to P behavior in biosolids-amended soils. Eight biosolids generated by different treatment processes, with respect to digestion and iron (Fe), aluminum (Al), and lime addition, and a poultry litter (PL), were incubated with an Elkton silt loam (fine-silty, mixed, active, mesic Typic Endoaquult) and a Suffolk sandy loam (fine-loamy, siliceous, semiactive, thermic Typic Hapludult) for 51 d. The amended soils were analyzed at 1 and 51 d for water-soluble phosphorus (WSP), iron-oxide strip--extractable phosphorus (FeO-P), Mehlich-1 P and pH. The biosolids and PL were analyzed for P, Fe, and Al by USEPA 3050 acid-peroxide digestion and acid ammonium oxalate, Mehlich-1, and Mehlich-3 extractions. Biosolids and PL amendments increased extractable P in the Suffolk sandy loam to a greater extent than in the Elkton silt loam throughout the 51 d of the incubation. The trend of extractable WSP, FeO-P, and Mehlich-1 P generally followed the pattern: [soils amended with biosolids produced without the use of Fe or Al] > [PL and biosolids produced using Fe or Al and lime] > [biosolids produced using only Fe and Al salts]. Mehlich-3 P and the molar ratio of P to [Al + Fe] by either the USEPA 3050 digestion or oxalate extraction of the biosolids were good predictors of changes in soil-extractable P following biosolids but not PL amendment. Therefore, the testing of biosolids for P availability, rather than total P, is a more appropriate tool for predicting extractable P from the biosolids-amended soils used in this study.  相似文献   

4.
Knowledge of water movement in the plant-xylem system and contaminant bioavailability in the soil environment is crucial to evaluate the success of phytoremediation practices. This study investigated the removal of 2,4,6-trinitrotoluene (TNT) from a contaminated sandy soil by a single poplar (Populus fastigiata) tree through the examinations of temporal variations of xylem water potential, root water uptake, and soil TNT bioavailability. A mathematical model, CTSPAC (Coupled Transport of water, heat, and solutes in the Soil-Plant-Atmosphere Continuum), was modified for the purpose of this study. The model was calibrated using laboratory measurements before its application. Our simulations show that the xylem water potential was high in the roots and low in the leaves with a potential head difference of 3.55 cm H2O, which created a driving force for water flow and chemical transport upward from the roots through the stem to the leaves. The daily average root water uptake rate was 25 cm3 h(-1) when an equilibrium condition was reached after 24 h. Our simulations further reveal that no TNT was found in the stem and leaves and only about 1% of total TNT mass was observed in the roots due to the rapid biodegradation and transformation of TNT into its daughter products. About 13% of the soil TNT was removed by the poplar tree, resulting mainly from root uptake since TNT is a recalcitrant compound. In general, the soil TNT bioavailability decreased with time due to the depletion of soil solution TNT by the poplar tree. A constant bioavailability (i.e., 3.1 x 10(-6)) was obtained in 14 d in which the soil TNT concentration was about 10 mg L(-1). Our study suggests that CTSPAC is a useful model to simulate phytoremediation of TNT-contaminated sites.  相似文献   

5.
There is increasing concern about the environmental fate and impact of biosolids-associated anthropogenic organic chemicals, among which 4-nonylphenol (4-NP) is one of the most studied chemicals. This is primarily because 4-NP is an endocrine disruptor and has been frequently detected in environmental samples. Due to its high hydrophobicity, 4-NP has high affinity for biosolids. Land application of 4-NP-containing biosolids could potentially introduce large quantities of this chemical into the environment. A laboratory experiment was conducted to investigate the effect of artificial sunlight on 4-NP degradation in biosolids applied to soil. When exposed to artificial sunlight for 30 d, the top-5-mm layer of biosolids showed a 55% reduction of 4-NP, while less than 15% of the 4-NP was degraded when the biosolids were kept in the dark. Our results indicate that sensitized photolysis reaction plays an important role in reducing the levels of 4-NP in land-applied biosolids. Surface application rather than soil incorporation of biosolids could be effective in reducing biosolids-associated organic chemicals that can be degraded through photolysis reactions. However, the risks of animal ingestion, foliar deposition, and runoff should also be evaluated when biosolids are applied on the soil surface.  相似文献   

6.
Effect of biosolids processing on lead bioavailability in an urban soil   总被引:3,自引:0,他引:3  
The potential for biosolids products to reduce Pb availability in soil was tested on a high Pb urban soil with biosolids from a treatment plant that used different processing technologies. High Fe biosolids compost and high Fe + lime biosolids compost from other treatment plants were also tested. Amendments were added to a Pb-contaminated soil (2000 mg kg(-1) Pb) at 100 g kg(-1) soil and incubated for 30 d. Reductions in Pb bioavailability were evaluated with both in vivo and in vitro procedures. The in vivo study entailed feeding a mixture of the Pb-contaminated soil and AIN93G Basal Mix to weanling rats. Three variations of an in vitro procedure were performed as well as conventional soil extracts [diethylenetriaminepentaacetic acid (DTPA) and Ca(NO3)2] and sequential extraction. Addition of the high Fe compost reduced the bioavailability of soil Pb (in both in vivo and in vitro studies) by 37 and 43%, respectively. Three of the four compost materials tested reduced Pb bioavailability more than 20%. The rapid in vitro (pH 2.3) data had the best correlation with the in vivo bone results (R = 0.9). In the sequential extract, changes in partitioning of Pb to Fe and Mn oxide fractions appeared to reflect the changes in in vivo Pb bioavailability. Conventional extracts showed no changes in metal availability. These results indicate that addition of 100 g kg(-1) of high Fe and Mn biosolids composts effectively reduced Pb availability in a high Pb urban soil.  相似文献   

7.
Agronomic use of biosolids as a fertilizer material remains controversial in part due to public concerns regarding the potential pollution of soils, crop tissue, and ground water by excess nutrients and trace elements in biosolids. This study was designed to assess the effects of long-term commercial-scale application of biosolids on soils and crop tissue sampled from 18 production farms throughout Pennsylvania. Biosolids application rates ranged from 5 to 159 Mg ha(-1) on a dry weight basis. Soil cores and crop tissue samples from corn (Zea mays L.), soybean (Glycine spp.), alfalfa (Medicago sativa L.), orchardgrass (Dactylis spp.) hay, and/or sorghum [Sorghum bicolor (L.) Moench] were collected for three years from georeferenced locations at each farm. Samples were tested for nutrients, trace elements, and other variables. Biosolids-treated fields had more post-growing season soil NO3 and Ca and less soil K than control fields and there was some evidence that soil P concentrations were higher in treated fields. The soil concentrations of Cu, Cr, Hg, Mo, Mn, Pb, and Zn were higher in biosolids-treated fields than in control fields; however, differences were < or = 0.06 of the USEPA Part 503 cumulative pollutant loading rates (CPLRs). There were no differences in the concentrations of measured nutrients or trace elements in the crop tissue grown on treated or control fields at any time during the study. Commercial-scale biosolids application resulted in soil trace element increases that were in line with expected increases based on estimated trace element loading. Excess NO3 and apparent P buildup indicates a need to reassess biosolids nutrient management practices.  相似文献   

8.
Phytoremediation offers an ecologically and economically attractive remediation technique for soils contaminated with polycyclic aromatic hydrocarbons (PAHs). In addition to the choice of plant species, agronomic practices may affect the efficiency of PAH phytoremediation. Inorganic nutrient amendments may stimulate plant and microbial growth, and clipping aboveground biomass might stimulate root turnover, which has been associated with increases in soil microbial populations. To assess the influence of fertilization and clipping on PAH dissipation in a nutrient-poor, aged PAH-contaminated soil, a 14-mo phytoremediation study was conducted using perennial ryegrass (Lolium perenne) as a model species. Six soil treatments were performed in replicate: unplanted; unplanted and fertilized; planted; planted and fertilized; planted and clipped; and planted, clipped, and fertilized. Plant growth, soil PAH concentrations, and the concentrations of total and PAH-degrading microorganisms were measured after 7 and 14 mo. Overall, planting (with nearly 80% reduction in total PAHs) and planting + clipping (76% reduction in total PAHs) were the most effective treatments for increased PAH dissipation after 14 mo. Fertilization greatly stimulated plant and total microbial growth, but negatively affected PAH dissipation (29% reduction in total PAHs). Furthermore, unplanted and fertilized soils revealed a similar negative impact (25% reduction) on PAH dissipation after 14 mo. Clipping did not directly affect PAH dissipation, but when combined with fertilization (61% reduction in total PAHs), appeared to mitigate the negative impact of fertilization on PAH dissipation. Therefore, fertilization and clipping may be included in phytoremediation design strategies, as their combined effect stimulates plant growth while not affecting PAH dissipation.  相似文献   

9.
The amount of biosolids recycled in agriculture has steadily increased during the last decades. However, few models are available to predict the accompanying risks, mainly due to the presence of trace element and organic contaminants, and benefits for soil fertility of their application. This paper deals with using data mining to assess the benefits and risks of biosolids application in agriculture. The analyzed data come from a 10-yr field experiment in northeast France focusing on the effects of biosolid application and mineral fertilization on soil fertility and contamination. Biosolids were applied at agriculturally recommended rates. Biosolids had a significant effect on soil fertility, causing in particular a persistent increase in plant-available phosphorus (P) relative to plots receiving mineral fertilizer. However, soil fertility at seeding and crop management method had greater effects than biosolid application on soil fertility at harvest, especially soil nitrogen (N) content. Levels of trace elements and organic contaminants in soils remained below legal threshold values. Levels of extractable metals correlated more strongly than total metal levels with other factors. Levels of organic contaminants, particularly polycyclic aromatic hydrocarbons, were linked to total metal levels in biosolids and treated soil. This study confirmed that biosolid application at rates recommended for agriculture is a safe option for increasing soil fertility. However, the quality of the biosolids selected has to be taken into account. The results also indicate the power of data mining in examining links between parameters in complex data sets.  相似文献   

10.
The long-term application of biosolids that periodically contained elevated metal concentrations has raised questions about potential effects on animal health. To address these concerns, we determined metal concentrations (As, Cd, Cu, Pb, Hg, Mo, Ni, Se, and Zn) in both soil and bermudagrass [Cynodon dactylon (L.) Pers.] forage from 10 fields in the following categories of biosolids application: six or more years (>6YR), less than six years (<6YR), and no applications (NS). Soil metal concentrations in all groups were similar to values reported for mineral soils in Georgia, and well below USEPA cumulative limits. Average metal concentrations in the forage were below the maximum tolerable level (MTL) for beef cattle, although two biosolids-amended fields in the >6YR group produced forage that was at or near the MTL for Cd and Mo, and one field in the <6YR group produced forage above the MTL for Cd. The Cu to Mo ratios in forage decreased with increasing time of sludge application, with the average in the >6YR group at a proposed 5:1 Cu to Mo ratio limit to protect ruminant health. Sulfur concentrations in the forage from all three groups was near the MTL of 4 g kg(-1). The study indicated that toxic levels of metals have not accumulated in the soils due to long-term biosolids application. Overall forage quality from the biosolids-amended fields was similar to that of commercially fertilized fields; however, due to the relatively high S and potential for a low Cu to Mo ratio, Cu supplements should be used to ensure ruminant health.  相似文献   

11.
Increasing antibiotic resistance genes in the environment may pose a threat to public health. In this study, tetracycline and sulfonamide resistance genes (Tet-W, Tet-O, and Sul-I) were quantified in 24 manure samples from three farms and 18 biosolids samples from seven different wastewater treatment plants using quantitative polymerase chain reaction methods. Concentrations of Tet-W and Tet-O genes were observed to be significantly higher (p < 0.05) in manure than in biosolids samples. The background soil samples showed significantly lower concentration of the above genes compared with manure and biosolids. Lime-stabilized biosolids showed significantly (p < 0.05) lower concentration of antibiotic resistance genes compared with other biosolids treatment methods. Elevated levels of antibiotic resistance genes (Tet-W, Tet-O, and Sul-I) were observed in the amended soil samples after the land application of manure or biosolids (Site A) monitored for a period of about 4 mo. However, at another site (Site B), no significant increase (p > 0.05) in concentration of antibiotic resistance genes was observed after biosolids application on soil. Even though the concentration of antibiotic resistance genes in manure was statistically higher than that in biosolids, when they were applied on land, the contribution to the soil depended on the background soil concentration and the soil characteristics. Further study of multiple soil samples in various locations is needed.  相似文献   

12.
Detectable levels of dioxins have been reported in biosolids, but very little information is available on the effect of long-term application of biosolids on dioxins accumulation in soil and uptake by plants. We analyzed dioxins in soil and corn tissue samples from field plots after 30 continuous applications of biosolids at 0 (Control), 16.8, and 67.2 Mg biosolids ha(-1) yr(-1) resulting in 0, 504, and 2016 Mg ha(-1) cumulative loadings of biosolids, respectively. The levels of dioxins in soil were only 79.9, 115.5, and 247.5 ng toxic equivalents (TEQs) kg(-1) in the 0, 504, and 2016 Mg biosolids ha(-1) plots, respectively. Dioxins were not detected in the corn grain, and only trace levels (6.8-7.5 ng TEQs kg(-1)) were found in the corn stover; however, these values were not statistically different between control and biosolids-amended soils. These observations suggest that although long-term application of biosolids may increase the levels of dioxins in soil, it does not affect dioxins uptake by corn.  相似文献   

13.
Phytoavailability of biosolids phosphorus   总被引:1,自引:0,他引:1  
Efficient utilization of biosolids P for agronomic purposes requires accounting for differences in the phytoavailability of P in various biosolids. Greenhouse studies were conducted with a common pasture grass grown in two P-deficient soils amended with 12 biosolids and a commercial fertilizer (triple superphosphate, TSP) to quantify P uptake and to assess the relative phytoavailabilities of the P sources. Biosolids were grouped into three general categories of phytoavailability relative to TSP: high (> 75% of TSP), moderate (25-75% of TSP), and low (< 25% of TSP). Two biosolids, produced via biological phosphorus removal (BPR) processes, were in the high category, and mimicked fertilizer P with regard to P phytoavailability. Most biosolids produced by conventional wastewater and solids digestion and additional treatments like composting were in the moderate category. Also included in this category was a BPR that had been pelletized and another BPR supplemented with Al. The low category included biosolids containing greater than normal (> 50 g kg(-1)) total Fe and Al concentrations and processed to high (> 60%) solids content.  相似文献   

14.
From 1974 to 1984, 543 Mg ha(-1) of biosolids were applied to portions of a land-reclamation site in Fulton County, IL. Soil organic C increased to 5.1% then decreased significantly (p < 0.01) to 3.8% following cessation of biosolids applications (1985-1997). Metal concentrations in amended soils (1995-1997) were not significantly different (p > 0.05) (Ni and Zn) or were significantly lower (p < 0.05) (6.4% for Cd and 8.4% for Cu) than concentrations from 1985-1987. For the same biosolids-amended fields, metal concentrations in corn (Zea mays L.) either remained the same (p > 0.05, grain Cu and Zn) or decreased (p < 0.05, grain Cd and Ni, leaf Cd, Cu, Ni, Zn) for plants grown in 1995-1997 compared with plants grown immediately following termination of biosolids applications (1985-1987). Biosolids application increased (p < 0.05) Cd and Zn concentrations in grain compared with unamended fields (0.01 to 0.10 mg kg(-1) for Cd and 23 to 28 mg kg(-1) for Zn) but had no effect (p > 0.05) on grain Ni concentrations. Biosolids reduced (p < 0.05) Cu concentration in grain compared with grain from unamended fields (1.9 to 1.5 mg kg(-1)). Biosolids increased (p < 0.05) Cd, Ni, and Zn concentrations in leaves compared with unamended fields (0.3 to 5.6 mg kg(-1) for Cd, 0.2 to 0.5 mg kg(-1) for Ni, and 32 to 87 mg kg(-1) for Zn), but had no significant effect (p > 0.05) on leaf Cu concentrations. Based on results from this field study, USEPA's Part 503 risk model overpredicted transfer of these metals from biosolids-amended soil to corn.  相似文献   

15.
Some speculate that bioaerosols from land application of biosolids pose occupational risks, but few studies have assessed aerosolization of microorganisms from biosolids or estimated occupational risks of infection. This study investigated levels of microorganisms in air immediately downwind of land application operations and estimated occupational risks from aerosolized microorganisms. In all, more than 300 air samples were collected downwind of biosolids application sites at various locations within the United States. Coliform bacteria, coliphages, and heterotrophic plate count (HPC) bacteria were enumerated from air and biosolids at each site. Concentrations of coliforms relative to Salmonella and concentrations of coliphage relative to enteroviruses in biosolids were used, in conjunction with levels of coliforms and coliphages measured in air during this study, to estimate exposure to Salmonella and enteroviruses in air. The HPC bacteria were ubiquitous in air near land application sites whether or not biosolids were being applied, and concentrations were positively correlated to windspeed. Coliform bacteria were detected only when biosolids were being applied to land or loaded into land applicators. Coliphages were detected in few air samples, and only when biosolids were being loaded into land applicators. In general, environmental parameters had little impact on concentrations of microorganisms in air immediately downwind of land application. The method of land application was most correlated to aerosolization. From this large body of data, the occupational risk of infection from bioaerosols was estimated to be 0.78 to 2.1%/yr. Extraordinary exposure scenarios carried an estimated annual risk of infection of up to 34%, with viruses posing the greatest threat. Risks from aerosolized microorganisms at biosolids land application sites appear to be lower than those at wastewater treatment plants, based on previously reported literature.  相似文献   

16.
In this paper, we demonstrate that the rheological behavior of pasty sewage sludges, regardless of origin, treatment or composition, follows a Herschel-Bulkley model. The yield stress and solid volume fraction are found to be the only two distinctive rheological characteristics of these materials. By scaling the shear rate and the shear stress with two parameters depending only on the yield stress and the solid fraction, the flow curves of 48 pasty sludges all fall along a unique dimensionless master curve. This result may be used in practice to determine, from simple, independent measurements, the rheological behavior of any pasty sludge: the yield stress can be measured with the help of the 'slump test' and the solid concentration determined from the organic and mineral matter contents. The results obtained with this technique are in very good agreement with those obtained by direct rheometry.  相似文献   

17.
This study was part of a larger effort to generate field data appropriate to the assessment of biosolids molybdenum (Mo) risk to ruminants. Corn (Zea mays L.) is an important component of cattle diet, and is a logical crop for biosolids amendment owing to its high N requirement. Paired soil and corn stover samples archived from two unique field experiments were analyzed to quantify the relationship (uptake coefficient, UC) between stover Mo and soil Mo load. Both studies used biosolids with total Mo concentrations typical of modern materials. Data from long-term (continuous corn) plots in Fulton County, IL confirm expected low Mo accumulation by corn stover, even at very high biosolids loads and soil Mo loads estimated to be near 18 kg Mo ha(-1). Uptake slopes were actually negative, but USEPA protocol would assign UC values of 0.001. Data from plots in Minnesota also suggested essentially no correlations between stover Mo and soil Mo loads for continuous corn. However, greater Mo accumulation in corn grown following soybean [Glycine max (L.) Merr.] suggests the possibility of enhanced Mo bioavailability to corn in corn-soybean rotations. Nevertheless, molybdenosis risk to cattle consuming corn stover produced on biosolids-amended land is small as stover Mo concentrations were always low and stover Cu to Mo ratios exceeded 2:1, which avoids molybdenosis problems.  相似文献   

18.
Re-vegetation is the main aim of ecological restoration projects, and in Mediterranean environments native plants are desirable to achieve successful restoration. In 1998, the burst of a tailings dam flooded the Guadiamar river valley downstream from Aznalcóllar (Southern Spain) with sludges that contained elevated concentrations of metals and metalloids, polluting soils and waters. A phytoremediation experiment to assess the potential use of native shrub species for the restoration of soils affected by the spillage was performed from 2005 to 2007, with soils divided into two groups: pH < 5 and pH > 5. Four native shrubs (Myrtus communis, Retama sphaerocarpa, Rosmarinus officinalis and Tamarix gallica) were planted and left to grow without intervention. Trace element concentrations in soils and plants, their extractability in soils, transfer factors and plant survival were used to identify the most-interesting species for phytoremediation. Total As was higher in soils with pH < 5. Ammonium sulphate-extractable zinc, copper, cadmium and aluminium concentrations were higher in very-acid soils, but arsenic was extracted more efficiently when soil pH was >5. Unlike As, which was either fixed by Fe oxides or retained as sulphide, the extractable metals showed significant relationships with the corresponding total soil metal concentration and inverse relationships with soil pH. T. gallica, R. officinalis and R. sphaerocarpa survived better in soils with pH > 5, while M. communis had better survival at pH < 5. R. sphaerocarpa showed the highest survival (30%) in all soils. Trace element transfer from soil to harvestable parts was low for all species and elements, and some species may have been able to decrease trace element availability in the soil. Our results suggest that R. sphaerocarpa is an adequate plant species for phytostabilising these soils, although more research is needed to address the self-sustainability of this remediation technique and the associated environmental changes.  相似文献   

19.
Chemical fractionation of phosphorus in stabilized biosolids   总被引:2,自引:0,他引:2  
Three chemicals-ferrous sulfate (FeSul), calcium oxide (CaO), and aluminum sulfate (alum)-were applied at different rates to stabilize P in fresh, anaerobically digested biosolids (FBS) obtained from an activated sewage treatment plant. A modified Hedley fractionation procedure was used to assess P forms in these sludge-borne materials and in a biosolids compost (BSC) prepared from the same FBS. Each biosolids material exhibited a unique pattern of P distribution among fractions. The most available P forms, namely: (i) water-soluble P (WSP); (ii) membrane-P; and (iii) NaHCO(3)-P, were stabilized by small rates of each of the chemicals; but the P transformation into more stable forms depended on the type of chemical added. The stabilized P forms were enhanced by high rates of CaO and FeSul, but were reduced by high rates of alum. The organic P (P(o)) in the first three fractions of the FeSul- and alum-stabilized biosolids was enhanced by the chemical addition, and P(o) transformation from NaOH-P(o) into NaHCO(3)-P(o) was found in calcium-stabilized biosolids. A positive relationship was found between NaHCO(3)-P(o) and the NaHCO(3)-extracted organic C in all chemically stabilized biosolids. One-step extraction by NaHCO(3) or NaOH underestimated P extraction compared to the stepwise extraction. The reported results are consistent with solid-state P speciation reported earlier and contribute important information for optimizing biosolids stabilization to reduce P loss after incorporation in soils and for maximizing soil capacity to safely store pre-stabilized biosolids.  相似文献   

20.
A field test was conducted to determine the ability of three plant species to extract 137Cs and 90Sr from contaminated soil. Redroot pigweed (Amaranthus retroflexus L.), Indian mustard [Brassica juncea (L.) Czern.], and tepary bean (Phaseolus acutifolius A. Gray) were planted in a series of spatially randomized cells in soil that was contaminated in the 1950s and 1960s. We examined the potential for phytoextraction of 90Sr and 137Cs by these three species. Concentration ratios (CR) for 137Cs for redroot pigweed, Indian mustard, and tepary bean were 2.58, 0.46, and 0.17, respectively. For 90Sr they were substantially higher: 6.5, 8.2, and 15.2, respectively. The greatest accumulation of both radionuclides was obtained with redroot pigweed, even though its CR for 90Sr was the lowest, because of its relatively large biomass. There was a linear relationship between the 137Cs concentration in plants and its concentration in soil only for redroot pigweed. Uptake of 90Sr exhibits no relationship to 90Sr concentrations in the soil. Estimates of time required for removal of 50% of the two contaminants, assuming two crops of redroot pigweed per year, are 7 yr for 90Sr and 18 yr for 137Cs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号