首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Daubenton's bat, a trawling vespertilionid bat species, hunts for insects that fly close to, or rest on, the water surface. During summer, many ponds at which Daubenton's bats hunt become gradually covered with duckweed. The purpose of this study was to investigate the effects of duckweed cover on the hunting behaviour of Daubenton's bats and on the ultrasound-reflecting properties of the water surface. Our study revealed the following. (1) Daubenton's bat avoids water surfaces covered with duckweed. (2) Prey abundance was related to the number of foraging Daubenton's bats but was independent of duckweed cover. (3) When mealworms were presented among standardized amounts of duckweed to naturally foraging Daubenton's bats, they caught significantly less mealworms when the duckweed cover was increased. (4) Measurements with ultrasonic signals show that a water surface covered with duckweed returns a much stronger background echo at small angles (i.e. parallel to the water surface) compared to an uncovered water surface. It seems likely that a cover of duckweed on the water surface interferes with prey detection by masking the echoes returning from prey. (5) It was relatively difficult for the bats to discriminate small patches of duckweed from mealworms. The proposed discrimination mechanism for this trawling bat species suggests that single duckweed patches can also be mistaken for natural prey by Daubenton's bats. Received: 4 January 1998 / Accepted after revision: 19 July 1998  相似文献   

2.
3.
4.
When hunting for fish Noctilio leporinus uses several strategies. In high search flight it flies within 20–50 cm of the water surface and emits groups of two to four echolocation signals, always containing at least one pure constant frequency (CF) pulse and one mixed CF-FM pulse consisting of a CF component which is followed by a frequency-modulated (FM) component. The pure CF signals are the longest, with an average duration of 13.3 ms and a maximum of 17 ms. The CF component of the CF-FM signals averages 8.9 ms, the FM sweeps 3.9 ms. The CF components have frequencies of 52.8–56.2 kHz and the FM components have an average bandwidth of 25.9 kHz. A bat in high search flight reacts to jumping fish with pointed dips at the spot where a fish has broken the surface. As it descends to the water surface the bat shows the typical approach pattern of all bats with decreasing pulse duration and pulse interval. A jumping fish reveals itself by a typical pattern of temporary echo glints, reflected back to the bat from its body and from the water disturbance. In low search flight N. leporinus drops to a height of only 4–10 cm, with body parallel to the water, legs extended straight back and turned slightly downward, and feet cocked somewhat above the line of the legs and poised within 2–4 cm of the water surface. In this situation N. leporinus emits long series of short CF-FM pulses with an average duration of 5.6 ms (CF 3.1 and FM 2.6) and an average pulse interval of 20 ms, indicating that it is looking for targets within a short range. N. leporinus also makes pointed dips during low search flight by rapidly snapping the feet into the water at the spot where it has localized a jumping fish or disturbance. In the random rake mode, N. leporinus drops to the water surface, lowers its feet and drags its claws through the water in relatively straight lines for up to 10m. The echolocation behavior is similar to that of high search flight. This indicates that in this hunting mode N. leporinus is not pursuing specific targets, and that raking is a random or statistical search for surface fishes. When raking, the bat uses two strategies. In directed random rake it rakes through patches of water where fish jumping activity is high. Our interpretation is that the bat detects this activity by echolocation but prefers not to concentrate on a single jumping fish. In the absence of jumping fish, after flying for several minutes without any dips, N. leporinus starts to make very long rakes in areas where it has hunted successfully before (memory-directed random rake). Hunting bats caught a fish approximately once in every 50–200 passes through the hunting area.  相似文献   

5.
Summary Field observations in a maternity colony of Myotis emarginatus (Vespertilionidae) were made during the summers of 1986 and 1987 in southern Germany. The nursery colony consisted of about 90 adult and 30 juvenile bats which roosted in a dimly lit and relatively cool church attic. Telemetry data from six adult M. emarginatus disclosed that some individuals also use secondary day roosts in trees or small buildings located close to their foraging areas. During the night, radiotagged individuals spent most of the time on the wing in forested areas (Fig. 2). Stationary bouts lasted no longer than 63 min. Individual bats returned to the same foraging areas on consecutive nights. All major foraging areas were situated in or at the fringes of forests, at distances as far as 10 km from the nursery roost. During commuting flights to the forests, M. emarginatus avoided open fields and preferred flight paths which offered cover such as orchards, hedges, overhanging foliage along creeks, etc. On the way to the forests, the bats started to forage within buildings, in open spaces where aggregations of insects were present, and around or within the foliage of various types of trees at the level of tree tops or the upper third of the foliage. At these transient foraging areas close to the maternity roost, M. emarginatus displayed flexible foraging strategies: (1) They gleaned prey (mainly flies and spiders) from the substrate, (2) seized insects in aerial pursuit, and (3) occasionally hovered in front of foliage and walls.Our observations confirm the conclusion from morphometric data on the wings that M. emarginatus is a predominantly gleaning bat and contradict the suggestion that it makes only brief flights of short distances. On the contrary, our field data suggest that M. emarginatus spends most of the night on the wing and commutes over distances of at least 10 km. Offprint requests to: D. Krull  相似文献   

6.
Summary In Myotis emarginatus, the patterns of echolocation sounds vary with different foraging habitats: In commuting flights the echolocation sounds are linearly frequency modulated sweeps that start at about 100 kHz, terminate at 40 kHz, and have a duration of 1–3 ms. They consist of a loud first harmonic. The second and third harmonics are at least 15 dB fainter than the first one and often undetectable. A distinctly different type of sound is emitted when the bats search for flying insects in open spaces. The sounds are reduced in bandwidth and elongated by a constant frequency component that follows the initial frequency modulated part. Typically, sounds start at about 94 kHz and terminate in a constant frequency component at about 40–45 kHz. The average duration of the constant frequency tail is 2.8 ms; this approximately doubles the length of the pulse, with the longest recorded sound lasting 7.2 ms. When bats are foraging near and within foliage, and gleaning prey from foliage, echolocation sounds are brief (average 1 ms) frequency modulated pulses with a broad bandwidth. The pulses start at about 105 kHz and sweep down to 25 kHz. During gleaning within a building, the frequency range of the sounds is shifted to higher frequencies and extends from 124 to 52 kHz. When the bats forage for aireal insects in a confined area that creates echo-clutter, they emit sounds similar to those used during gleaning within buildings except that sound durations are extended to about 1.8 ms. In each foraging area, the echolocation sounds emitted during the search for and approach to prey are similar in structure. Sound and pause durations are reduced in the approach phase. Irrespective of foraging style and habitat, immediately before capture the bat emits a rapid and stereotyped sequence of 2-10 echolocation pulses (final buzz). These pulses are brief (0.2–0.5 ms), frequency modulated sounds with a reduced bandwidth. The sounds start at 45 kHz and sweep down to 35–20 kHz. The repetition rate is increased up to 200 pulses/s. Offprint requests to: G. Neuweiler  相似文献   

7.
Bats produce echolocation signals that reflect the sensory tasks they perform. In open air or over water, bats encounter few or no background echoes (clutter). Echolocation of such bats is the primary cue for prey perception and varies with the stage of approach to prey, typically comprising search, approach, and terminal group calls. In contrast, bats that glean stationary food from rough surfaces emit more uniform calls without a distinct terminal group. They use echolocation primarily for orientation in space and mostly need additional sensory cues for finding food because clutter echoes overlap strongly with food echoes. Macrophyllum macrophyllum is the only Neotropical leaf-nosed bat (Phyllostomidae) that hunts in clutter-poor habitat over water. As such, we hypothesized that, unlike all other members of its family, but similar to other trawling and aerial insectivorous bats, M. macrophyllum can hunt successfully by using only echolocation for prey perception. In controlled behavioral experiments on Barro Colorado Island, Panamá, we confirmed that echolocation alone is sufficient for finding prey in M. macrophyllum. Furthermore, we showed that pattern and structure of echolocation signals in M. macrophyllum are more similar to aerial and other trawling insectivorous bats than to close phylogenetic relatives. Particularly unique among phyllostomid bats, we found distinct search, approach, and terminal group calls in foraging M. macrophyllum. Call structure, however, consisting of short, multiharmonic, and steep frequency-modulated signals, closely resembled those of other phyllostomid bats. Thus, echolocation behavior in M. macrophyllum is shaped by ecological niche as well as by phylogeny.  相似文献   

8.
Acoustic signals which are used in animal communication must carry a variety of information and are therefore highly flexible. Echolocation has probably such functions and could prove as flexible. Measurable variabitlity can indicate flexibility in a behaviour. To quantify variability in bat sonar and relate to behavioural and environmental factors, I recorded echolocation calls of Euderma maculatum, Eptesicus fuscus, Lasiurus borealis and L. cinereus while the bats hunted in their natural habitat. I analysed 3390 search phase calls emitted by 16 known and 16 unknown individuals foraging in different environmental and behvioural situations. All four species used mainly multiharmonic signals that showed considerable intra- and inter-individual variability in the five signal variables I analysed (call duration, call interval, highest and lowest frequency and frequency with maximum energy) and also in the shape of the sonagram. A nested multivariate analysis of variance identified the influences of individual, hunting site, close conspecifics and of each observation on the frequency with maximum energy in the calls, and on other variables measured. Individual bats differed in multiple comparisons, most often in the main call frequency and least often in call interval. In a discriminant function analysis with resubstitution, 56–76% of a species' calls were assigned to the correct individual. Distinct individual call patterns were recorded in special situations in all species and the size of foraging areas in forested areas influenced temporal and spectral call structure. Echolocation behaviour was influenced by the presence of conspecifics. When bats were hunting together, call duration decreased and call interval increased in all species, but spectral effects were less pronounced. The role of morphometric differences as the source of individually distinct vocalizations is discussed. I also examined signal adaptations to long range echolocation and the influence of obstacle distance on echolocation call design. My results allow to discuss the problems of echo recognition and jamming avoidance in vespertilionid bats.  相似文献   

9.
The Hipposideridae and Rhinolophidae are closely related families of bats that have similar echolocation (long-duration pure-tone signal, high duty cycle) and auditory systems (Doppler-shift compensation, auditory fovea). Rhinolophid bats are known to forage in highly cluttered areas where they capture fluttering insects, whereas the foraging habitat of hipposiderid bats is not well understood. Compared to rhinolophids, hipposiderid calls are shorter in duration, have lower duty cycles, and they exhibit only partial Doppler-shift compensation. These differences suggest that the foraging habitat of the two families may also differ. We tested this hypothesis by studying foraging and echolocation of Hipposideros speoris at a site with a range of vegetation types. Bats foraged only while in flight and used all available closed and edge habitats, including areas adjacent to open space. Levels of clutter were high in forest and moderate in other foraging areas. Prey capture (n=42) occurred in edge vegetation where it bordered open space. Echolocation signals of H. speoris lacked an initial upward frequency-modulated sweep and were of moderate duration (5.1-8.7 ms). Sequences had high duty cycles (23-41%) and very high pulse repetition rates (22.8-60.6 Hz). Variation in signal parameters during search phase flight across foraging habitats was low. H. speoris showed a greater flexibility in its use of foraging habitat than is known for any rhinolophid species. Our study confirmed that there are differences in habitat use between hipposiderid and rhinolophid bats and we suggest that this divergence is a consequence of differences in their echolocation and auditory systems.  相似文献   

10.
11.
Social animals often use vocal communication signals that contain individual signatures. As bats emit echolocation calls several times per second to orient in space, these might seem ideal candidates for conveying the caller's individual identity as a free by-product. From a proximate perspective, however, coding of caller identity is hampered by the simple acoustic structure of echolocation signals, by their task-specific design and by propagation loss. We investigated the occurrence of individual signatures in echolocation calls in individually marked, free-living Bechstein's bats (Myotis bechsteinii) in a situation with defined social context in the field. The bats belonged to two different colonies, for both of which genetic data on relatedness structure was available. While our data clearly demonstrate situation specificity of call structure, the evidence for individual-specific signatures was relatively weak. We could not identify a robust and simple parameter that would convey the caller's identity despite the situation-specific call variability. Discriminant function analysis assigned calls to call sequences with good performance, but worsened drastically when tested with other sequences from the same bats. Therefore, we caution against concluding from a satisfactory discrimination performance with identical training and test sequences that individual bats can reliably be told apart by echolocation calls. At least the information contained in a single call sequence seems not to be sufficient for that purpose. Starting frequencies did give the best discrimination between individuals, and it was also this parameter that was correlated with genetic relatedness in one of our two study colonies. Echolocation calls could serve as an additional source of information for individual recognition in Bechstein's bats societies, while it is unlikely that a large number of individuals could be reliably identified in different situations based on echolocation alone.  相似文献   

12.
The literature suggests that in familiar laboratory settings, Indian false vampire bats (Megaderma lyra, family Megadermatidae) locate terrestrial prey with and without emitting echolocation calls in the dark and cease echolocating when simulated moonlit conditions presumably allow the use of vision. More recent laboratory-based research suggests that M. lyra uses echolocation throughout attacks but at emission rates much lower than those of other gleaning bats. We present data from wild-caught bats hunting for and capturing prey in unfamiliar conditions mimicking natural situations. By varying light level and substrate complexity we demonstrated that hunting M. lyra always emit echolocation calls and that emission patterns are the same regardless of light/substrate condition and similar to those of other wild-caught gleaning bats. Therefore, echoic information appears necessary for this species when hunting in unfamiliar situations, while, in the context of past research, echolocation may be supplanted by vision, spatial memory or both in familiar spaces.Communicated by T. Czeschlik  相似文献   

13.
Summary In October 1984 foraging areas and foraging behaviour of the rufous horseshoe bat, Rhinolophus rouxi, were studied around a nursery colony on the hill slopes of Sri Lanka. The bats only foraged in dense forest and were not found in open woodlands (Fig. 1). This strongly supports the hypothesis that detection of fluttering prey is by pure tone echolocation within or close to echo-cluttering foliage. During a first activity period after sunset for about 30–60 min, the bats mainly caught insects on the wing. This was followed by a period of inactivity for another 60–120 min. Thereafter the bats resumed foraging throughout the night. They mainly alighted on specific twigs and foraged in flycatcher style. Individual bats maintained individual foraging areas of about 20x20 m. They stayed in this area throughout the night and returned to the same area on subsequent nights. Within this area the bats generally alighted on twigs at the same spots. Foraging areas were not defended against intruders. The bats echolocated throughout the night at an average repetition rate of 9.6±1.4 sounds/s. While hanging on twigs they scanned the surrounding area for flying prey by turning their bodies continuously around their legs. On average they performed one brief catching flight every 2 min and immediately returned to one of their favourite vantage points. Echolocation sounds may consist of up to three parts, a brief initial frequency-modulated (FM) component, a long constant frequency (CF) part lasting for about 40–50 ms, and a final FM part again (Fig. 4b, c). Adult males and females emitted pure tone frequencies in separate bands, the males from 73.5–77 kHz and the females from 76.5–79 kHz (Fig. 5). During scanning for prey from vantage points, the bats mostly emitted pure tones without any FM component (Fig. 4a). The last few pure tones emitted before take-off were prolonged to about 60 ms duration. The final FM part was therefore not an obligatory component of the echolocation signals in horseshoe bats. During flight and especially during emergence from the cave, most sounds consisted of a pure tone and loud initial and final FM sweeps. We therefore suggest that the initial FM part might also be relevant for echolocation. From our observations we conclude that the FM components are especially important during obstacle avoidance. In most sounds emitted in the field a fainter first harmonic was present. It was usually up to 30 dB fainter than the second harmonic, but in some instances it was as loud or even distinctly louder than the second one (Fig. 6a). Even within one sound the intensity relationship between the two harmonics may be reversed. We therefore suggest that the first harmonic is an integral part of the signal and relevant for information analysis in echolocation.  相似文献   

14.
When searching for flying insects, Molossops temminckii uses unusual echolocation calls characterized by upward modulation of frequency vs time (UFM). Call frequency increases asymptotically in the relatively long (∼8 ms) pulses from a starting frequency of ∼40 kHz to a long narrowband tail at ∼50 kHz. When approaching a prey, the bat progressively increases the duration of calls and intersperses in the sequence broadband downwardly frequency-modulated signals with a terminal frequency of about 53 kHz, which totally replaces the UFM signals at the end of the approach phase. The sequence progresses to a capture buzz resembling those from other molossid and vespertilionid bats. The M. temminckii wing morphology is characterized by an average aspect ratio and a high wing loading, suggesting that it is more maneuverable than the typical Molossidae but less than typical Vespertilionidae. M. temminckii regularly forages near clutter, where it needs to pay attention to the background and might face forward and backward masking of signals. We hypothesize that the UFM echolocation signals of M. temminckii represent an adaptation to foraging near background clutter in a not very maneuverable bat needing a broad attention window. The broadband component of the signal might serve for the perception of the background and the narrowband tail for detection and perhaps classification of prey. Bats may solve the signal masking problems by separating emission and echoes in the frequency domain. The echolocation behavior of M. temminckii may shed light on the evolution of the narrowband frequency analysis echolocation systems adopted by some bats foraging within clutter.  相似文献   

15.
Summary 1. Echolocation and foraging behavior of the horseshoe bats Rhinolophus ferrumequinum and R. hipposideros feeding under natural conditions are described. 2. The calls of both species consisted predominantly of a long CF segment, often initiated and terminated by brief FM sweeps of substantial bandwidth. 3. R. hipposideros typically flew close to vegetation, and fed by aerial hawking, gleaning and by pouncing on prey close to the ground. R. hipposideros called with a CF segment close to 112 kHz which is the second harmonic of the vocalization; its calls included low intensity primary harmonics, and had prominent initial and terminal FM sweeps of considerable bandwidth. When searching for prey on the wing it had longer interpulse intervals than R. ferrumequinum, but emitted shorter pulses at a higher repetition rate; overall it had a similar duty cycle to R. ferrumequinum. 4. R. ferrumequinum, calling with a CF segment close to 83 kHz, also used harmonics other than the dominant secondary in its calls, and modified its echolocation according to ecological conditions. This species showed certain parallels with R. rouxi of Asia. It was observed feeding by aerial hawking and by flycatching. When scanning for prey from a perch (perch hunting), calls were of shorter duration, and interpulse intervals were on average longer, than when bats were flying. Mean duty cycle was longer in flight, and the bandwidths and frequency sweep rates of the FM segments in the calls increased in comparison with perched bats. 5. FM information may facilitate determination of target range and the location and nature of obstacles; it may also be involved in the interpretation of echoes and the detection of moving targets among clutter. The rising FM sweep initiating the call in both species when flying (and to a lesser extent perch hunting) in the wild must have a significant adaptive role, and should be considered an essential component of the call; rhinolophids should be termed FM/CF/FM bats.Abbreviations CF constant frequency - FM frequency modulated - FM1 initial rising frequency sweep - FM2 terminal falling frequency sweep - PRR pulse repetition rate - SD standard deviation - SNR signal-to-noise ratio  相似文献   

16.
During house hunting, honeybee, Apis melli- fera, workers perform the vibration signal, which may function in a modulatory manner to influence several aspects of nestsite selection and colony movement. We examined the role of the vibration signal in the house-hunting process of seven honeybee swarms. The signal was performed by a small proportion of the older bees, and 20% of the vibrating bees also performed waggle dances for nestsites. Compared to non-vibrating controls, vibrating bees exhibited increased rates of locomotion, were more likely to move into the interiors of the swarms, and were more likely to fly from the clusters and perform waggle dances. Recipients responded to the signal with increased locomotion and were more likely than non- vibrated controls to fly from the swarms. Because vibration signals were intermixed with waggle dances by some vibrators, and because they stimulated flight in recipients, the signals may have enhanced nestsite scouting and recruitment early in the house-hunting process. All swarms exhibited increased vibration activity within 0.5–1 h of departure. During these final periods, numerous vibrating bees wove repeatedly in and out of the clusters while signaling and motion on the swarms increased until it culminated in mass flight. The peaks of vibration activity observed at the end of the house-hunting process may therefore have activated the entire swarm for liftoff once a new nestsite had been selected. Thus, the vibration signal may help to integrate the behavior of numerous groups of workers during nestsite selection and colony relocation. Received: 17 January 2000 / Received in revised form: 5 April 2000 / Accepted: 3 May 2000  相似文献   

17.
In order to understand why animals are social and how group members interact with each other it is important to know their relatedness. However, few studies have investigated the genealogy in complete social groups of free-living animals with low reproductive skew. This holds particularly true for bats. Although almost all bat species are social, their sociobiology is not well understood. Because they are volant, nocturnal and have a rather cryptic life-style, bats are difficult to observe in the wild. Furthermore females are generally gregarious making genetic parent-offspring assignment a challenging task. We used genetic markers in combination with knowledge about age and colony membership of individually marked bats to construct pedigrees in completely sampled maternity colonies of Bechstein's bats (Myotis bechsteinii). Despite considerable fluctuations in population size, no immigration occurred over 5 years in four colonies living in close proximity. Additionally, confrontation tests showed that females of one maternity colony were able to detect and attempted to prevent the intrusion of foreign females into a roost they occupy. Although colonies were absolutely closed, and 75% of the colony members lived together with close relatives (rS=0.25), mean colony relatedness was nearly zero (0.02). Average relatedness therefore is a poor estimator for the potential of kin selection in Bechstein's bat colonies and may be misleading when attempting to understand the social structure of animals living in groups where many members breed. Based on our results we discuss the potential adaptive value of living in closed societies with low reproductive skew.  相似文献   

18.
19.
We studied the echolocation and foraging behavior of two Neotropical frugivorous leaf-nosed bats (Carollia perspicillata, C. castanea: Phyllostomidae) in a flight cage. To test which cues Carollia uses to detect, identify, and localize ripe Piper fruit, their preferred natural food, we conducted experiments under semi-natural conditions with ripe, unripe, and artifical fruits. We first offered the bats ripe fruits and documented their foraging behavior using multiflash stereophotography combined with simultaneous sound recordings. Both species showed a similar, stereotyped foraging pattern. In searchflight, the bats circled through the flight cage in search of a branch with ripe fruit. After finding such a branch, the bats switched to approach behavior, consisting of multiple exploration flights and the final approach when the bats picked up the fruit at its tip and tore it off in flight. Our behavioral experiments revealed that odor plays an important role in enabling Carollia to find ripe fruit. While foraging, Carollia always echolocated and produced multiharmonic, frequency-modulated (FM) signals of broad bandwidth, high frequency, short duration, and low intensity. We discriminated an orientation phase (mostly a single pulse per wingbeat) and an approach phase (groups of two to six pulses per wing beat). We conclude from the bats' behavioral reaction to real and artificial fruit as well as from characteristic patterns in their echolocation behavior that during exploration flights, Carollia changes from primarily odor-oriented detection and initial localization of ripe fruit to a primarily echo-oriented final localization of the position of the fruit. Received: 27 March 1997 / Accepted after revision: 28 February 1998  相似文献   

20.
Summary Hipposideros ruber use CF/FM echolocation calls to detect the wing flutter of their insect prey. Fluttering prey were detected whether the insects were flying or sitting on a surface, and prey in either situation were captured with equal success (approximately 40% of capture attempts). Stationary prey were ignored. The bats did not use visual cues or the sounds of wing flutter to locate their prey. Wing flutter detection suggests that H. ruber exploit the Doppler-shifted information in echoes of their echolocation calls. These bats fed primarily upon moths, usually those of between 10 and 25 mm wingchord, although moths of less than 5 mm and greater than 40 mm wingchord were also attacked and captured. They showed no evidence of selecting moths on the basis of species or other taxonomic distinction, and occasionaly captured other insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号